Chapter 6 Integral Transforms - YUctaps.yu.edu.jo/physics/Courses/Phys601/PDF/4_Phys601... · 2014....

42
1 © Dr. Nidal M. Ershaidat Phys. 601: Mathematical Physics Physics Department Yarmouk University Chapter 6 Integral Transforms © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms 2 Overview 1. Integral Transforms - Fourier 2. Development of the Fourier Integral 3. Fourier Transform – Inverse Theorem 4. Fourier Transform of Derivatives 5. Convolution Theorem 6. Momentum Representation 7. Transfer Functions 8. Laplace Transforms 9. Laplace Transform of Derivatives 10.Other Properties 11.Convolution (Faltungs) Theorem 12.Inverse Laplace Transform Integral Transforms © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms 4 In integrals of the form g(α) is called the (integral) transform of f(t) by the Kernel* K(α,t). The nature of the kernel defines the type of the transform. The variables α and t are called conjugate variables. For example: frequency and time are conjugate variables. It is also the case of wavevector and position (k and x) Introduction () () ( )dt t K t f g b a , α = α 1 * German word for nucleus © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms 5 The inverse transform is defined by: The importance of the integral transform appears by looking carefully at equations 1 and 2. Some problems are difficult to solve in their original representations or in their domains. The idea is to map the problem in another domain, solving it in the new domain and then by choosing the appropriate domain and using the inverse transform the solution in the original domain is mapped back! Inverse Transform () ( ) ( ) α α α = - d t K g t f b a , 1 2 © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms 6 Inverse Transform The procedure is summarized schematically in Fig. 6-1: Figure 6-1: Schematic integral transform

Transcript of Chapter 6 Integral Transforms - YUctaps.yu.edu.jo/physics/Courses/Phys601/PDF/4_Phys601... · 2014....

  • 1

    © Dr. Nidal M. Ershaidat

    Phys. 601: Mathematical Physics

    Physics Department

    Yarmouk University

    Chapter 6 Integral Transforms

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    2

    Overview

    1. Integral Transforms - Fourier

    2. Development of the Fourier Integral

    3. Fourier Transform – Inverse Theorem

    4. Fourier Transform of Derivatives

    5. Convolution Theorem

    6.Momentum Representation

    7. Transfer Functions

    8. Laplace Transforms

    9. Laplace Transform of Derivatives

    10.Other Properties

    11.Convolution (Faltungs) Theorem

    12.Inverse Laplace Transform

    Integral Transforms

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    4

    In integrals of the form

    g(αααα) is called the (integral) transform of f(t) by

    the Kernel* K(αααα,t).The nature of the kernel defines the type of the

    transform.

    The variables αααα and t are called conjugate

    variables. For example: frequency and time are

    conjugate variables. It is also the case of

    wavevector and position (k and x)

    Introduction

    (((( )))) (((( )))) (((( ))))dttKtfgb

    a,αααα====αααα ∫∫∫∫ 1

    * German word for nucleus

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    5

    The inverse transform is defined by:

    The importance of the integral transform

    appears by looking carefully at equations 1 and 2.

    Some problems are difficult to solve in their

    original representations or in their domains.

    The idea is to map the problem in another domain,

    solving it in the new domain and then by choosing

    the appropriate domain and using the inverse

    transform the solution in the original domain is

    mapped back!

    Inverse Transform

    (((( )))) (((( )))) (((( )))) αααααααααααα==== −−−−∫∫∫∫ dtKgtfb

    a,1 2

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    6

    Inverse Transform

    The procedure is summarized schematically in

    Fig. 6-1:

    Figure 6-1: Schematic integral transform

  • 2

    Fourier Analysis

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    8

    Fourier series are a basic tool for solving Fourier series are a basic tool for solving

    ordinary differential equations (ODEs) and ordinary differential equations (ODEs) and

    partial differential equations (PDEs) with partial differential equations (PDEs) with

    periodic boundary conditions. Fourier periodic boundary conditions. Fourier

    integrals for integrals for nonperiodicnonperiodic phenomena are phenomena are

    developed in this chapter. The common developed in this chapter. The common

    name for the field is name for the field is Fourier analysisFourier analysis..

    Fourier Series and Integrals

    Appendix 6-1: Fourier Series

    The precursor of the transforms were the Fourier series to express functions in finite intervals. Later the Fourier transform was developed to remove the requirement of finite intervals.

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    10

    Domains of Application

    The Fourier transform is of fundamental

    importance in a broad range of

    applications, including both ordinary and

    partial differential equations, probability,

    quantum mechanics, waves, diffraction

    and interferometry, signal and image

    processing, and control theory, etc ...

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    11

    Fourier Transform

    The appropriate kernel is simply eiωωωωt and

    its real part (cos ω ω ω ωt) or its imaginary part

    (sinωωωωt).

    Because these kernels are the functions

    used to describe waves, Fourier

    transforms appear frequently in studies

    of waves and the extraction of

    information from waves, particularly

    when phase information is involved

    (diffraction for example).

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    12

    Domains of Application – Examples1

    In optics, the diffraction pattern is the Fourier transform of the "obstacle" responsible of "diffracting" the waves.

    The Fraunhofer diffraction pattern is the Fourier transform of the amplitude leaving the diffracting aperture.

    In quantum mechanics the physical origin of the Fourier transforms is the

    duality wave-matter, i.e. the wave nature of matter and our description of matter in terms of waves (Section 6).

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    13

    Domains of Application – Examples2

    The output of a stellar interferometer, for instance, involves a Fourier transform of the brightness across a stellar disk.

    The electron distribution in an atom may be obtained from a Fourier transform of the amplitude of scattered X rays.

    Electron scattering experiments were used, back in the 60's of the last century, in order to define the shape of a nucleus. The diffraction pattern" is used in order to define the "structure" of the scattering nucleus. By using an inverse Fourier transform.

  • 3

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    14

    Domains of Application – Examples3

    In image processing, Fourier transform is a crucial tool. The input is a "spatial" (real) image which is decomposed into its sine and cosine components.

    The output of the transformation, i.e. the result of applying the Fourier transform, is the image in the Fourier or frequency domain. In the Fourier domain image, each point represents a particular frequency contained in the spatial domain image.

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    15

    The Fourier transform of a Gaussian function

    is:

    In order to calculate (3) we complete the

    square in the exponent as follows:

    This yields:

    Example 1 - FOURIER TRANSFORM OF GAUSSIAN

    22 tae

    −−−−

    (((( ))))(((( )))) (((( ))))� dteeg

    tK

    ti

    tf

    ta

    ∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−αααα

    ωωωω−−−−

    ππππ====ωωωω

    ,

    22

    2

    1��� 3

    2

    22

    2

    222

    42 aa

    itatita

    ωωωω−−−−

    ωωωω−−−−−−−−====ωωωω++++−−−− 4

    (((( )))) tdeeg ai

    taa ′′′′

    ππππ====ωωωω ∫∫∫∫

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω−−−−′′′′−−−−

    ωωωω−−−−

    2

    22

    2

    2

    24

    2

    1 5

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    16

    A simple change of variable (shift of origin),

    which is a Gaussian, but in the (Fourier) ωωωω space.

    Example 1 - FOURIER TRANSFORM OF GAUSSIAN

    tddta

    itt ′′′′====⇒⇒⇒⇒

    ωωωω++++====′′′′

    22

    6

    (((( ))))

    (((( ))))22

    44

    4exp2

    1

    2

    1

    2

    1 2222222

    aa

    dea

    edteeg ataa

    ωωωω−−−−====

    ξξξξππππ

    ====ππππ

    ====ωωωω

    ππππ

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ξξξξ−−−−ωωωω−−−−∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−ωωωω−−−− ∫∫∫∫∫∫∫∫�����

    The bigger a is, that is, the narrower the original

    Gaussian is, the wider is its Fourier transform

    ~ .22 4ai

    eωωωω−−−−

    22 tae−−−−

    gives:

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    17

    This is justified by an application of Cauchy’s

    theorem to the rectangle with vertices −T , T , T

    +iω2a2 , −T + iω2a2 for T → ∞, noting that the

    integrand has no singularities in this region

    and that the integrals over the sides from ±±±±T to

    ± ± ± ±T + iω2a2 become negligible for T→∞.

    Shifting the Origin

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    18

    7

    8

    9

    Laplace Transform

    Hankel Transform

    Mellin Transform

    Other useful KernelsThree other useful kernels each giving rise to a particular transform are

    (((( )))) (((( ))))∫∫∫∫∞∞∞∞ αααα−−−−====αααα0

    dtetfg t

    (((( )))) (((( )))) (((( ))))∫∫∫∫∞∞∞∞

    αααα====αααα0

    dttJttfg n

    (((( )))) (((( ))))∫∫∫∫∞∞∞∞ −−−−αααα====αααα0

    1dtttfg

    te

    αααα−−−−

    (((( ))))tJt n αααα

    1−−−−ααααt

    Kernel Transform

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    19

    Mellin and Laplace

    We have seen Mellin transform for e-t.

    (((( )))) (((( )))) (((( ))))!10

    1 −−−−αααα====ααααΓΓΓΓ========αααα ∫∫∫∫∞∞∞∞ −−−−αααα−−−− dtteg t

    (((( ))))10

    !++++

    ∞∞∞∞ αααα−−−−

    αααα========αααα ∫∫∫∫ n

    tn ndtetg

    Laplace transform of tn is

    9

    10

  • 4

    LinearityLinearity

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    21

    Linear OperatorAll the previous integral transforms (Fourier, Laplace, Hankel and Mellin) are linear and we can write

    (((( )))) (((( ))))tfg L====αααα

    (((( )))) (((( ))))αααα==== −−−− gtf 1L

    An inverse operator is expected to exist such that

    11

    12

    In general, the determination of the inverse transform is the main problem in using integral transform.

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    22

    Overview

    1. Integral Transforms - Fourier

    2. Development of the Fourier Integral

    3. Fourier Transform – Inverse Theorem

    4. Fourier Transform of Derivatives

    5. Convolution Theorem

    6.Momentum Representation

    7. Transfer Functions

    8. Laplace Transforms

    9. Laplace Transform of Derivatives

    10.Other Properties

    11.Convolution (Faltungs) Theorem

    12.Inverse Laplace Transform

    22-- Development of Development of

    the Fourier Integralthe Fourier Integral

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    24

    Fourier Series & Fourier Integral

    Fourier series are useful in representing certain functions

    (1) over a limited range [0, 2 π π π π], [−L,L], and so on, or

    (2) for the infinite interval (− ∞ ∞ ∞ ∞,∞∞∞∞), if the function is periodic.

    Fourier transform is a generalization of Fourier series representing a nonperiodic function over the infinite range. Physically this means resolving a single pulse or wave packet into sinusoidal waves.

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    25

    Deriving Fourier Integral

    For a piecewise regular function, f(x) satisfying the Dirichlet conditions defined in the interval

    [-L,L], we can write:

    We start from the definition of the coefficients of Fourier series.

    an, and bn, the Fourier coefficients are given

    by:

    (((( )))) ∑∑∑∑∑∑∑∑∞∞∞∞

    ====

    ∞∞∞∞

    ====

    ++++++++====11

    0 sincos2

    n

    n

    n

    n xnbxnaa

    xf

    (((( )))) ,cos1∫∫∫∫

    ++++

    −−−−

    ππππ====

    L

    L

    n dtL

    tntf

    La (((( )))) .sin

    1∫∫∫∫

    ++++

    −−−−

    ππππ====

    L

    L

    n dtL

    tntf

    Lb 14

    13

  • 5

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    26

    Step 1

    (((( )))) (((( )))) (((( ))))

    (((( )))) ,sinsin1

    coscos1

    2

    1

    1

    1

    ∫∫∫∫∑∑∑∑

    ∫∫∫∫∑∑∑∑∫∫∫∫++++

    −−−−

    ∞∞∞∞

    ====

    ++++

    −−−−

    ∞∞∞∞

    ====

    ++++

    −−−−

    ππππππππ++++

    ππππππππ++++====

    L

    Ln

    L

    Ln

    L

    L

    dtL

    tntf

    L

    xn

    L

    dtL

    tntf

    L

    xn

    Ldttf

    Lxf

    The resulting Fourier series is:

    using the trigonometric identity:

    (((( )))) ββββαααα++++ββββαααα====ββββ−−−−αααα sinsincoscoscos

    15-1

    we have:

    (((( )))) (((( )))) (((( )))) (((( ))))∑∑∑∑ ∫∫∫∫∫∫∫∫∞∞∞∞

    ====

    ++++

    −−−−

    ++++

    −−−−

    −−−−ππππ

    ++++====1

    cos1

    2

    1

    n

    L

    L

    L

    L

    dtxtL

    ntf

    Ldttf

    Lxf 15-2

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    27

    Step 2

    The next step is to let L approach ∞∞∞∞, transforming the interval [-L,L] into [-∞∞∞∞,∞∞∞∞]. We also define a new variable ωωωω as

    .,, ∞∞∞∞→→→→ωωωω∆∆∆∆====ππππ

    ωωωω====ππππ

    LwithLL

    n

    17

    Then we have:

    (((( )))) (((( )))) (((( ))))∑∑∑∑ ∫∫∫∫∞∞∞∞

    ====

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−ωωωωωωωω∆∆∆∆ππππ

    →→→→1

    ,cos1

    n

    dtxttfxf 16

    or

    (((( )))) (((( )))) (((( ))))∫∫∫∫∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    −−−−ωωωωωωωωππππ

    ==== ,cos1

    0

    dtxttfdxf

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    28

    Fourier Integral

    Note the term a0 has vanished assuming that

    Eq. 17 is taken as the Fourier integralFourier integral, under the

    following conditions:

    (((( ))))∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    dttf

    1) f(x) is piecewise differentiable

    2) f(x) is piecewise continuous

    3) f(x) is absolutely integrable, i.e.is finite

    exists.

    (((( ))))∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    dxxf

    Fourier IntegralFourier Integral

    Exponential FormExponential Form

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    30

    Fourier Integral TheoremEq. 17 can be written as:

    using the fact that:

    20(((( )))) (((( ))))∫∫∫∫∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω−−−− ωωωωππππ

    ==== ,2

    1dtetfdexf tixi

    19(((( )))) (((( )))) (((( )))) 0sin2

    1====−−−−ωωωωωωωω

    ππππ==== ∫∫∫∫∫∫∫∫

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    dtxttfdxf

    because sin ωωωω(t-x) is an odd function of ωωωω.

    18(((( )))) (((( )))) (((( )))) ,cos2

    1∫∫∫∫∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−ωωωωωωωωππππ

    ==== dtxttfdxf

    Eq. 20 is called the Fourier integral.© Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    31

    The variable ωωωωThe variable The variable ωωωωωωωω introduced here is an introduced here is an arbitrary mathematical variable. arbitrary mathematical variable.

    In many physical problems, however, it In many physical problems, however, it

    corresponds to the angular frequency corresponds to the angular frequency ωωωωωωωω. .

    We may then interpret We may then interpret Eq. 18Eq. 18 or or Eq. 20Eq. 20 as a as a

    representation of representation of ff((xx)) in terms of a in terms of a

    distribution of infinitely long sinusoidal distribution of infinitely long sinusoidal

    wave trains of angular frequency wave trains of angular frequency ωωωωωωωω, in , in which this frequency is a continuous which this frequency is a continuous

    variable.variable.

  • 6

    Important ApplicationImportant Application

    Derivation of Dirac Delta Derivation of Dirac Delta

    FunctionFunction

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    33

    A Useful Representation of δδδδUsing the Fourier integral we can define Dirac Using the Fourier integral we can define Dirac

    delta function asdelta function as

    Appendix 6Appendix 6--33

    21(((( )))) (((( )))) (((( ))))∫∫∫∫∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−ωωωω−−−−∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−ωωωω ωωωωππππ

    ====ωωωωππππ

    ====−−−−δδδδ dedext txixti2

    1

    2

    1

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    34

    Overview

    1. Integral Transforms - Fourier

    2. Development of the Fourier Integral

    3. Fourier Transform – Inverse Theorem

    4. Fourier Transform of Derivatives

    5. Convolution Theorem

    6.Momentum Representation

    7. Transfer Functions

    8. Laplace Transforms

    9. Laplace Transform of Derivatives

    10.Other Properties

    11.Convolution (Faltungs) Theorem

    12.Inverse Laplace Transform

    33-- Fourier TransformFourier Transform

    Inverse TheoremInverse Theorem

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    36

    Using the Exponential Transform

    Let us define Let us define gg((ωωωωωωωω)), the Fourier transform of the , the Fourier transform of the function function ff((tt)), by, by

    Exponential TransformExponential Transform

    22(((( )))) (((( )))) .2

    1∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω

    ππππ≡≡≡≡ωωωω dtetfg ti

    Then, from Then, from Eq. 20Eq. 20, we have the inverse relation,, we have the inverse relation,

    23(((( )))) (((( ))))∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω−−−− ωωωωωωωωππππ

    ==== .2

    1degtf ti

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    37

    Important Remarks�� Eq. 22Eq. 22 and and Eq. 23Eq. 23 are almost symmetrical, are almost symmetrical,

    differing in the sign of differing in the sign of ii..

    �� In physics we are more interested in the In physics we are more interested in the Fourier transform (Fourier transform (Eq. 22Eq. 22 and and Eq. 23Eq. 23) rather than ) rather than Eq. 20Eq. 20 (Fourier integral)(Fourier integral)

    �� The symmetry is a matter of choice or The symmetry is a matter of choice or

    convenience. This factor is sometimes replaced convenience. This factor is sometimes replaced

    by by 11 in one equation and the entire factor in one equation and the entire factor ½½ππππππππin the other.in the other.

    ππππ21

    ππππ21

  • 7

    38

    Eq. 23bEq. 23b may be interpreted as an expansion of may be interpreted as an expansion of

    ff((rr)) in a continuum of plane wave in a continuum of plane wave

    eigenfunctions; eigenfunctions; gg((kk)) then becomes the then becomes the

    amplitude of the wave amplitude of the wave exp( exp( -- ii k k . . rr))..

    The 3D Form - PhysicsMoving the Fourier transform pair (Fourier Moving the Fourier transform pair (Fourier

    transform and its inverse) to threetransform and its inverse) to three--

    dimensional space, the pair becomes:dimensional space, the pair becomes:

    The integrals are over all space.The integrals are over all space.

    23a(((( ))))(((( ))))

    (((( )))) ,2

    1 323 ∫∫∫∫

    ⋅⋅⋅⋅

    ππππ==== rderfkg rki

    ����

    23b(((( ))))(((( ))))

    (((( )))) .2

    1 323 ∫∫∫∫

    ⋅⋅⋅⋅−−−−

    ππππ==== kdekgrf rki

    ����

    Exercise: Verify Exercise: Verify Eq. 23aEq. 23a and and Eq. 23bEq. 23b by substituting the by substituting the

    leftleft--hand side of one equation into the integrand of the hand side of one equation into the integrand of the

    other equation and using the threeother equation and using the three--dimensional delta dimensional delta

    function.function.

    Fourier Cosine and Fourier Cosine and

    Sine TransformsSine Transforms

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    40

    Case of Even and Odd Functions

    If If ff((xx)) is even then is even then Eq. 22Eq. 22 and and Eq. 23Eq. 23, respectively, , respectively,

    can be written as:can be written as:

    24(((( )))) (((( )))) ,cos2

    0

    ∫∫∫∫∞∞∞∞++++

    ωωωωππππ

    ====ωωωω dtttfg cc

    25(((( )))) (((( ))))∫∫∫∫∞∞∞∞++++

    ωωωωωωωωωωωωππππ

    ====0

    .cos2

    dxgtf cc

    If If ff((xx)) is odd then is odd then Eq. 22Eq. 22 and and Eq. 23Eq. 23, respectively, , respectively, can be written as:can be written as:

    26(((( )))) (((( )))) ,sin2

    0

    ∫∫∫∫∞∞∞∞++++

    ωωωωππππ

    ====ωωωω dtttfg ss

    27(((( )))) (((( ))))∫∫∫∫∞∞∞∞++++

    ωωωωωωωωωωωωππππ

    ====0

    .sin2

    dxgtf ss© Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    41

    ParityThe pair, Eq. 24 and Eq. 25 are called the Fourier cosine transforms. The other pair, Eq. 26 and Eq. 27 are the sine Fourier sine transforms.

    The Fourier cosine transforms and the Fourier sine transforms each involve only positive values (and zero)

    The parity of f(x) is used to establish the transforms; but once the transforms are

    established, the behavior of the functions f and gfor negative argument is irrelevant.

    The transform equations impose a definite parity:

    even for the Fourier cosine transform and odd for even for the Fourier cosine transform and odd for

    the Fourier sine transformthe Fourier sine transform..

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    42

    Physical Meaning

    In In Eq. 27Eq. 27, , ff((xx)) is being described is being described by a continuum by a continuum

    of sine waves. The amplitude of of sine waves. The amplitude of sinsinωωωωωωωωxx is given is given by by , in which , in which ggss((ωωωωωωωω)) is the Fourier sine is the Fourier sine transform of transform of ff((xx))..

    (((( )))) (((( ))))∫∫∫∫∞∞∞∞++++

    ωωωωωωωωωωωωππππ

    ====0

    .sin2

    dxgtf ss

    (((( )))) (((( ))))ωωωωππππ sg2

    In the following example the important In the following example the important

    application of the Fourier transform in the application of the Fourier transform in the

    resolution of a finite pulse of sinusoidal wavesresolution of a finite pulse of sinusoidal waves, ,

    is detailed.is detailed.

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    43

    Imagine that an infinite wave train sinω0t is clipped by Kerr cell or saturable dye cell shutters (Fig. 6-2) so that we have

    In Fig. 6-2, N, which represents the number of cycles of the

    wave train, is equal to 5.

    Example 2 – FINITE WAVE TRAIN

    (((( ))))

    ωωωω

    ππππ>>>>

    ωωωω

    ππππ

  • 8

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    44

    f(t) is odd, thus

    Integrating, we find the amplitude function:

    Amplitude in the Fourier Space

    29(((( )))) .sinsin20

    0

    0∫∫∫∫ωωωωππππ

    ωωωωωωωωππππ

    ====ωωωω

    N

    s dtttg

    30(((( ))))(((( ))))(((( ))))

    (((( ))))(((( ))))(((( ))))

    (((( )))).

    2

    sin

    2

    sin2

    0

    00

    0

    00

    ωωωω++++ωωωω

    ωωωωππππωωωω++++ωωωω−−−−

    ωωωω−−−−ωωωω

    ωωωωππππωωωω−−−−ωωωω

    ππππ====ωωωω

    NNgs

    Dependence of g(ωωωω) on frequency.

    For large ωωωω and ω ≈ω ≈ω ≈ω ≈ ωωωω0, the first term will dominate because of the denominator (ωωωω-ωωωω0).

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    45

    Fig. 6-3 shows the first term.

    Single-Slit Diffraction Pattern

    This is the amplitude curve for the single-slit diffraction pattern!

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    46

    For large N, g(ωωωω) may also be interpreted as a Dirac Delta distribution.

    The contributions outside the central maximum being small in this case,

    N vs. Spread in frequency (∆ω∆ω∆ω∆ω)

    N

    0ωωωω====ωωωω∆∆∆∆

    can be taken as a good measure of the spread in frequency of our wave pulse.

    The larger N is, the smaller is the frequency spread.

    For small N, the spread is large and the secondary maxima become more important.

    31

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    47

    If we are dealing with em waves we have

    ∆∆∆∆E represents an uncertainty in the energy of our pulse. There is also an uncertainty in the time

    because our wave of N cycles requires 2ππππN/ωωωω0seconds to pass.

    Uncertainty PrincipleUncertainty Principle

    ωωωω∆∆∆∆====∆∆∆∆⇒⇒⇒⇒ωωωω==== �� EE 32

    0

    2

    ωωωω

    ππππ====∆∆∆∆

    Nt

    The product hN

    Nh

    NtE ====

    ωωωω⋅⋅⋅⋅

    ωωωω====

    ωωωω

    ππππ⋅⋅⋅⋅ωωωω∆∆∆∆====∆∆∆∆⋅⋅⋅⋅∆∆∆∆

    0

    0

    0

    2�

    The Heisenberg uncertainty principle states that:

    which is clearly satisfied in this example.

    ,42 ππππ

    ====≥≥≥≥∆∆∆∆⋅⋅⋅⋅∆∆∆∆h

    tE�

    34

    35

    33Taking

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    48

    Overview

    1. Integral Transforms - Fourier

    2. Development of the Fourier Integral

    3. Fourier Transform – Inverse Theorem

    4. Fourier Transform of Derivatives

    5. Convolution Theorem

    6.Momentum Representation

    7. Transfer Functions

    8. Laplace Transforms

    9. Laplace Transform of Derivatives

    10.Other Properties

    11.Convolution (Faltungs) Theorem

    12.Inverse Laplace Transform

    Fourier Transform Fourier Transform

    of Derivativesof Derivatives

  • 9

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    50

    Starting from the definition of the Fourier Starting from the definition of the Fourier

    transform for transform for ff((xx))

    and for and for dfdf//dxdx

    Integrating by parts:Integrating by parts:

    Transform of the 1st Derivative

    (((( )))) (((( ))))∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω

    ππππ====ωωωω dxexfg xi

    2

    1

    (((( )))) (((( ))))xfvdvdx

    xdf

    eiduuexixi

    ====⇒⇒⇒⇒====

    ωωωω====⇒⇒⇒⇒==== ωωωωωωωω

    (((( ))))(((( ))))

    .2

    11 ∫∫∫∫

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω

    ππππ====ωωωω dxe

    dx

    xdfg xi

    36

    37

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    51

    Differentiation becomes multiplication

    We haveWe have

    We use the fact that, apart from some cases, We use the fact that, apart from some cases,

    ff((xx)) must vanish as must vanish as xx→→±∞±∞±∞±∞±∞±∞±∞±∞ in order for the in order for the Fourier transform of Fourier transform of ff((xx)) to exist. The first term to exist. The first term

    of the of the rhsrhs vanishes and we obtain:vanishes and we obtain:

    (((( )))) (((( )))) (((( )))) (((( ))))

    (((( ))))

    .2

    1

    2

    11

    ��� ���� ��ωωωω

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω ∫∫∫∫ππππωωωω−−−−

    ππππ====ωωωω

    g

    xixi dxexfiexfg

    (((( )))) (((( )))).1 ωωωωωωωω−−−−====ωωωω gigi.e.i.e. the transform of the derivative is (the transform of the derivative is (−−iiωωωωωωωω) ) times the transform of the original function.times the transform of the original function.

    38

    39

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    52

    ConsiderConsider

    Integrating by parts:Integrating by parts:

    Transform of the 2nd Derivative

    (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))ωωωωωωωω−−−−====ωωωωωωωω−−−−====ωωωω gigig 212

    (((( ))))(((( ))))

    ∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω

    ππππ====ωωωω dxe

    dx

    xfdg xi

    2

    2

    22

    1

    (((( )))) (((( ))))dx

    xdfvdv

    dx

    xfd

    eiduuexixi

    ====⇒⇒⇒⇒====

    ωωωω====⇒⇒⇒⇒==== ωωωωωωωω

    2

    2

    (((( ))))(((( )))) (((( ))))

    (((( ))))

    .2

    1

    2

    1

    10

    2

    ���� ����� ����� ���� ��ωωωω

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω

    ≡≡≡≡

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω ∫∫∫∫ππππωωωω−−−−

    ππππ====ωωωω

    g

    xixi dxedx

    xdfie

    dx

    xdfg

    40

    41

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    53

    This may readily be generalized to the This may readily be generalized to the nnthth

    derivative to yieldderivative to yield

    provided all the integrated parts vanish as provided all the integrated parts vanish as

    xx →±∞→±∞→±∞→±∞→±∞→±∞→±∞→±∞. .

    This is the power of the Fourier transform, the This is the power of the Fourier transform, the

    reason it is so useful in solving (partial) reason it is so useful in solving (partial)

    differential equations. The operation of differential equations. The operation of

    differentiation has been replaced by a differentiation has been replaced by a

    multiplication in multiplication in ωωωωωωωω--space.space.

    Generalization – nth Derivative

    (((( )))) (((( )))) (((( )))) ,ωωωωωωωω−−−−====ωωωω gig nn 42

    An important An important

    ExampleExample

    Heat Flow PDEHeat Flow PDE

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    55

    kk is the thermal conductivity (MKS unit = is the thermal conductivity (MKS unit = W.mW.m--11.K.K--11))

    The law of heat conduction, also known as Fourier's

    law, states that the time rate of heat transfer time rate of heat transfer qqthrough a material is proportional to the negative

    gradient in the temperature (T) and to the area, at right angles to that gradient, through which the heat is flowing.

    Fourier's Law – Heat ConductionIn heat transfer, conduction is the transfer of heat energy by microscopic diffusion and collisions of particles or quasi-particles within a body due to a temperature gradient.

    43Tkq ∇∇∇∇−−−−====��

    The differential form of Fourier's law, in which we look The differential form of Fourier's law, in which we look

    at the flow rates or fluxes of energy locally, is given byat the flow rates or fluxes of energy locally, is given by

  • 10

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    56

    a is a constant called the thermal diffusivity, also known as Fourier constant.

    where cP is the heat capacity at constant pressure.

    a is related to the thermal conductivity of a material of density ρ ρ ρ ρ by the simple relation:

    In order to find the temperature field ψψψψ(x,t)(Temperature at x at instant t) for a given system, one has to solve the heat equation (which can be derived from Fourier's law)

    Heat Equation

    (((( )))),

    ,2

    22

    xa

    t

    tx

    ∂∂∂∂

    ψψψψ∂∂∂∂====

    ∂∂∂∂

    ψψψψ∂∂∂∂

    ρρρρ====

    Pc

    ka

    44

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    57

    Defining the Fourier transform of Defining the Fourier transform of ψψψψψψψψ((xx,,tt)) asas

    Integrating we obtain

    The previous equation is an ODE for the Fourier transform ΨΨΨΨ of ψψψψ in the time variable t.

    Taking the Fourier transform of both sides of Eq. 44we get

    Temperature Field

    (((( )))) (((( )))) .,, 22 tat

    tωωωωΨΨΨΨωωωω−−−−====

    ∂∂∂∂

    ωωωωΨΨΨΨ∂∂∂∂

    (((( )))) (((( ))))∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωωψψψψππππ

    ====ωωωωΨΨΨΨ dxetxt xi,2

    1,

    (((( )))) Clntat,ln ++++ωωωω−−−−====ωωωωΨΨΨΨ 22 oror (((( )))) taeCt22

    , ωωωω−−−−====ωωωωΨΨΨΨ

    45

    46

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    58

    The integration constant C may still depend on ω and, in general, is determined by initial conditions.

    The Integration Constant

    In fact, C=ΨΨΨΨ(ωωωω,0) is the initial spatial distribution of ΨΨΨΨ, so it is given by the transform (in x) of the initial distribution of ψψψψ, namely, ψψψψ(x, 0).

    Putting this solution back into our inverse Fourier transform, this yields

    (((( )))) (((( ))))(((( ))))

    .2

    1,

    ,

    22

    ∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω−−−−

    ωωωωΨΨΨΨ

    ωωωω−−−− ωωωωωωωωππππ

    ====ψψψψ deeCtx xi

    t

    a t

    ��� 47

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    59

    Taking ψψψψ(ωωωω,0) = δδδδ(ωωωω,0), C is ωωωω-independent.

    δ δ δ δ Function Initial Temperature Distribution

    *ψψψψ(x,t) is the inverse Fourier transform of

    C exp (-a2ωωωω2t).

    (((( )))) ,4

    exp2

    ,2

    2

    −−−−

    ππππ====ψψψψ

    ta

    x

    a

    Ctx

    Integrating Eq. 47 by completing the square as we did in Example 1 (where we calculated the Fourier transform of a Gaussian*), we get

    48

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    60

    Overview

    1. Integral Transforms - Fourier

    2. Development of the Fourier Integral

    3. Fourier Transform – Inverse Theorem

    4. Fourier Transform of Derivatives

    5. Convolution Theorem

    6.Momentum Representation

    7. Transfer Functions

    8. Laplace Transforms

    9. Laplace Transform of Derivatives

    10.Other Properties

    11.Convolution (Faltungs) Theorem

    12.Inverse Laplace Transform

    5 5 -- Convolution Convolution

    TheoremTheorem

  • 11

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    62

    Convolution - DefinitionConvolution is used to solve differential Convolution is used to solve differential

    equations, to normalize momentum wave equations, to normalize momentum wave

    functions (next section), and to investigate functions (next section), and to investigate

    transfer functions.transfer functions.

    (((( )))) (((( ))))∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−ππππ

    ==== dyyxfygg*f2

    1

    Let us consider two functions Let us consider two functions ff((xx)) and and gg((xx)) with with

    Fourier transforms Fourier transforms FF((tt)) and and GG((tt)), respectively. , respectively. We define the operationWe define the operation

    as the convolution of the two functions as the convolution of the two functions ff and and gg over over

    the interval the interval ((−− ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞,,∞∞∞∞∞∞∞∞)). Some authors use the German . Some authors use the German word word FaltungFaltung (which means folding) instead of (which means folding) instead of

    convolution.convolution.

    49

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    63

    Convolution - UseThis form of an integral appears in probability This form of an integral appears in probability

    theory in the determination of the probability theory in the determination of the probability

    density of two random, independent variablesdensity of two random, independent variables

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    64

    Convolution – Graphical Illustration

    For For ff((yy) = ) = ee−−yy , , ff((yy)) and and ff((xx −− yy)) are plotted in are plotted in Fig. 6Fig. 6--44. Clearly, . Clearly, ff ((yy)) and and ff ((xx −− yy)) are mirror images of are mirror images of each other in relation to the vertical line each other in relation to the vertical line yy = = xx/2/2, ,

    i.e.i.e., we could generate , we could generate ff((xx−−yy)) by folding over by folding over ff((yy))on the line on the line yy = = xx/2/2..

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    65

    Back to the Electrostatic Analog

    The solution of Poisson's equation (The solution of Poisson's equation (Chapter 3 Eq. Chapter 3 Eq.

    109109), ), i.e.i.e.

    can be written as

    (((( )))) (((( )))) .4

    12

    21

    2

    01 ∫∫∫∫∫∫∫∫∫∫∫∫ ττττ−−−−

    ρρρρ

    εεεεππππ−−−−====ψψψψ d

    rr

    rr ��

    ��

    (((( )))) (((( ))))(((( ))))�

    (((( ))))

    .2

    4

    2

    12

    1

    210

    21

    21

    2

    ∫∫∫∫∫∫∫∫∫∫∫∫ ττττ

    −−−−

    ππππ

    εεεεππππ−−−−ρρρρ

    ππππ====ψψψψ

    −−−−

    −−−−

    drrrr

    rrf

    rg ��� ���� ��

    ����

    ��

    which we may interpret as the convolution of a

    charge distribution and a weighting function, 1

    210

    2

    4−−−−

    −−−−

    ππππ

    εεεεππππ−−−− rr

    ��

    (((( ))))2r�

    ρρρρ

    50

    51

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    66

    Fourier Transform and Convolution

    (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))

    (((( )))) (((( ))))[[[[ ]]]]

    (((( ))))

    (((( )))) (((( )))) gfdtetGtF

    dtedyeygtF

    dydtetFygdyyxfyg

    xti

    xti

    tG

    yti

    tyxi

    *

    2

    1

    2

    1

    2

    ≡≡≡≡====

    ππππ====

    ππππ====−−−−

    ∫∫∫∫

    ∫∫∫∫ ∫∫∫∫

    ∫∫∫∫ ∫∫∫∫∫∫∫∫

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−

    ππππ

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−−−−−∞∞∞∞++++

    ∞∞∞∞−−−−

    �� ��� ��

    Let's transform Let's transform Eq. 36Eq. 36 by introducing the Fourier by introducing the Fourier

    transforms transforms

    52

    This result may be interpreted as follows: The Fourier inverse transform of a product of Fourier transforms is

    the convolution of the original functions, f ∗∗∗∗ g.© Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    67

    Fourier Transform and Convolution

    (((( )))) (((( )))) (((( )))) (((( ))))∫∫∫∫∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−==== dyygyfdttGtF

    For the special case For the special case xx = 0= 0, , Eq. 52Eq. 52 givesgives

    53

    The minus sign in The minus sign in −−yy suggests that suggests that

    modifications be tried. We now do this with modifications be tried. We now do this with gg∗∗∗∗∗∗∗∗instead of instead of gg using a different technique.using a different technique.

  • 12

    Parseval'sParseval's RelationRelationUnitarity of Fourier TransformUnitarity of Fourier Transform

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    69

    Eq. 52Eq. 52 and the corresponding sine and cosine and the corresponding sine and cosine

    convolutions are often labeled convolutions are often labeled ParsevalParseval’’ss relations relations

    by analogy with by analogy with ParsevalParseval’’ss theorem for Fourier theorem for Fourier

    series (series (Arfken Chapter 19Arfken Chapter 19-- 6th6th , Chapter 20 in the 7, Chapter 20 in the 7thth editionedition).).

    relates the product of the function relates the product of the function ff and and gg** to to

    their respective Fourier transforms (their respective Fourier transforms (FF and and GG**) ) (in the transform (Fourier) space)(in the transform (Fourier) space)

    Parseval's Relation

    54

    The The Parseval'sParseval's relationrelation

    (((( )))) (((( )))) (((( )))) (((( ))))∫∫∫∫∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ====ωωωωωωωωωωωω dttgtfdGF **

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    70

    21’(((( )))) (((( )))) (((( ))))∫∫∫∫∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω−−−−−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−ωωωω

    ππππ====

    ππππ====−−−−ωωωωδδδδ dtedtex xtixti

    2

    1

    2

    1

    Using delta function representation, we can writeUsing delta function representation, we can write

    we havewe have

    Derivation of the Parseval's Relation

    55

    Integrating over Integrating over tt and usingand using

    (((( )))) (((( )))) (((( )))) (((( ))))∫∫∫∫ ∫∫∫∫ ∫∫∫∫∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωω−−−−∞∞∞∞++++

    ∞∞∞∞−−−−ππππ

    ⋅⋅⋅⋅ωωωωωωωωππππ

    ==== dtdxexGdeFdttgtf txiti **

    2

    1

    2

    1

    56

    (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))

    (((( )))) (((( )))) ,*

    **

    ∫∫∫∫

    ∫∫∫∫ ∫∫∫∫∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωωωωωωωωωω====

    ωωωωωωωω−−−−δδδδωωωω====

    dGF

    ddxxxGFdttgtf

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    71

    Special case f(t) = g(t)In the very important case where In the very important case where ff((tt) = ) = gg((tt)), the , the integrals on both sides of integrals on both sides of Eq. 56Eq. 56 are nothing else are nothing else

    but normalization integrals.but normalization integrals.

    This important relation guarantees that if This important relation guarantees that if ff((tt)) is is

    normalized in the normalized in the ""tt--spacespace"", then its Fourier , then its Fourier

    transform transform FF((ωωωωωωωω)) (in the transform (frequency) (in the transform (frequency) space) is normalized too!space) is normalized too!

    57(((( )))) (((( )))) (((( )))) (((( ))))∫∫∫∫∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ωωωωωωωωωωωω==== dFFdttftf **

    This is what we call the unitarity of Fourier This is what we call the unitarity of Fourier

    transform which has a large importance in transform which has a large importance in

    quantum physics.quantum physics.

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    72

    Unitarity of Fourier Transform

    It may be shown that the Fourier It may be shown that the Fourier

    transform is a unitary operation (in the transform is a unitary operation (in the

    Hilbert space Hilbert space LL22, square , square integrableintegrable

    functions). The functions). The Parseval'sParseval's relation is a relation is a

    reflection of this unitary property.reflection of this unitary property.

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    73

    ApplicationsIn In FraunhoferFraunhofer diffraction optics the diffraction diffraction optics the diffraction

    pattern (amplitude) appears as the transformpattern (amplitude) appears as the transform

    of the function describing the aperture. of the function describing the aperture.

    With intensity proportional to the square of the With intensity proportional to the square of the

    amplitude the amplitude the ParsevalParseval relation implies that relation implies that

    the energy passing through the aperture the energy passing through the aperture

    seems to be somewhere in the diffraction seems to be somewhere in the diffraction

    patternpattern——a statement of the conservation of a statement of the conservation of

    energy. energy.

    Parseval’sParseval’s relations may be developed relations may be developed

    independently of the inverse Fourier transform independently of the inverse Fourier transform

    and then used rigorously to derive the inverse and then used rigorously to derive the inverse

    transform. transform.

  • 13

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    76

    A rectangular pulse is described by

    a) The Fourier exponential transform is

    Example 3 – Single Slit Diffraction

    (((( ))))

    >>>>

  • 14

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    82

    Examples - Thermodynamics

    In thermodynamics temperature In thermodynamics temperature TT and entropy and entropy

    SS are conjugate variables. Pressure are conjugate variables. Pressure ((PP)) and and

    volume volume ((VV)) are also conjugate variables. The are also conjugate variables. The

    pair pair ((TT,,SS)) or the pair or the pair ((PP,,VV)) are used to define all are used to define all the properties of a thermodynamics system the properties of a thermodynamics system

    such as the internal energy.such as the internal energy.

    In fact all thermodynamic potentials are In fact all thermodynamic potentials are

    expressed in terms of conjugate variables. expressed in terms of conjugate variables.

    In statistical physics, pairs of extensive and In statistical physics, pairs of extensive and

    intensive properties of a given system form intensive properties of a given system form

    pairs of conjugate variables pairs of conjugate variables

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    83

    Important Consequences in Physics

    The duality leads naturally to an uncertainty The duality leads naturally to an uncertainty

    principle in physics called the Heisenberg principle in physics called the Heisenberg

    uncertainty principle.uncertainty principle.

    84

    59

    3)3) The expectation value, The expectation value, i.e.i.e. the average position of the the average position of the

    particle along the particle along the xx--axisaxis isis

    2)2) ψψψψψψψψ((xx) ) dxdx is normalized (total probabilities = is normalized (total probabilities = 11))

    (((( )))) (((( )))) (((( )))) 1* ====ψψψψψψψψ==== ∫∫∫∫∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    dxxxdxxP 58 (((( )))) (((( ))))∫∫∫∫∞∞∞∞

    ∞∞∞∞−−−−

    ψψψψψψψψ==== dxxxxx *

    Real SpaceIn this section we shall start with the usual space In this section we shall start with the usual space

    distribution and derive the corresponding momentum distribution and derive the corresponding momentum

    distribution. distribution.

    For the one dimensional case our wave function For the one dimensional case our wave function ψψψψψψψψ((xx))has the following properties:has the following properties:

    1)1) ψψψψψψψψ**((xx)) ψψψψψψψψ((xx) ) dxdx is the probabilityis the probability of finding the of finding the quantum system between quantum system between xx and and xx++dxdx..

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    85

    2)2) gg((pp)) is normalized (total probabilities = is normalized (total probabilities = 11))

    (((( )))) (((( )))) .1* ====∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    dppgpg 60

    3)3) The expectation value, The expectation value, i.e.i.e. the average the average momentum of the particle ismomentum of the particle is

    (((( )))) (((( )))) .*∫∫∫∫∞∞∞∞

    ∞∞∞∞−−−−

    ==== dxpgppgp 61

    Momentum SpaceWe want a function We want a function gg((pp)) that will give the same that will give the same information about the momentum:information about the momentum:

    1)1) gg**((pp)) gg((pp) ) dpdp is the probability is the probability that the particle has that the particle has

    a momentum between a momentum between pp and and pp++dpdp..

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    86

    (((( )))) (((( )))) ,2

    1∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    −−−−ψψψψππππ

    ==== dxexpg xpi �

    63

    64

    Momentum (Fourier) SpaceSuch a function is given by Fourier transform of Such a function is given by Fourier transform of

    the space function the space function ψψψψψψψψ((xx)),, i.e.i.e.

    (((( )))) (((( )))) .2

    1 **∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ψψψψππππ

    ==== dxexpg xpi �

    The corresponding 3D momentum function isThe corresponding 3D momentum function is

    (((( ))))(((( ))))

    (((( )))) .rderpg pri∫∫∫∫∞∞∞∞++++

    ∞∞∞∞−−−−

    ⋅⋅⋅⋅−−−−ψψψψππππ

    ==== 323

    2

    1 ����

    62

    Parseval'sParseval's relation guarantees the normalization of relation guarantees the normalization of

    gg((pp)) if if ψψψψψψψψ((xx)) is normalized.is normalized.

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    87

    Checking property (3) means showing thatChecking property (3) means showing that

    We replace the momentum functions by Fourier We replace the momentum functions by Fourier

    transformed space functions, and the first integral transformed space functions, and the first integral

    becomesbecomes

    where where ppxx is the momentum operator in the space is the momentum operator in the space

    representation,representation,

    Expectation Values

    (((( )))) (((( )))) (((( ))))�

    (((( ))))∫∫∫∫∫∫∫∫∞∞∞∞

    ∞∞∞∞−−−−

    ∞∞∞∞

    ∞∞∞∞−−−−

    ψψψψψψψψ======== dxxdx

    d

    ixdxpgppgp

    xp

    �**65

    (((( )))) (((( )))) (((( )))) .2

    1 *∫∫∫∫ ∫∫∫∫ ∫∫∫∫

    ∞∞∞∞

    ∞∞∞∞−−−−

    ′′′′−−−−−−−− ′′′′ψψψψ′′′′ψψψψππππ

    dxxddpxxep xxpi �

    �66

  • 15

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    88

    Substituting into Substituting into Eq. 66Eq. 66 and integrating by parts, and integrating by parts,

    holding holding xx′′ and and pp constant, we obtainconstant, we obtain

    Expectation ValuesUsing the plane wave identityUsing the plane wave identity

    (((( )))) (((( )))) ,

    −−−−====

    ′′′′−−−−−−−−′′′′−−−−−−−− �� � xxpixxpi eidx

    dep 67

    Here Here pp is a constant, not an operator.is a constant, not an operator.

    (((( ))))[[[[ ]]]] (((( )))) (((( ))))∫∫∫∫ ∫∫∫∫ ∫∫∫∫∞∞∞∞

    ∞∞∞∞−−−−

    ∞∞∞∞++++

    ∞∞∞∞−−−−

    ′′′′−−−−−−−− ′′′′ψψψψ′′′′ψψψψ⋅⋅⋅⋅ππππ

    ==== .2

    1 * dxxdxdx

    d

    ixdpep xxpi�

    �68

    Here we assume Here we assume ψψψψψψψψ((xx)) vanishes as vanishes as xx → ±∞→ ±∞→ ±∞→ ±∞→ ±∞→ ±∞→ ±∞→ ±∞, , eliminating the integrated part. Using the Dirac eliminating the integrated part. Using the Dirac

    delta function, delta function, Eq. 68Eq. 68 reduces to reduces to Eq. 65Eq. 65 to verify our to verify our momentum representation (momentum representation (qedqed))..

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    89

    Overview

    1. Integral Transforms - Fourier

    2. Development of the Fourier Integral

    3. Fourier Transform – Inverse Theorem

    4. Fourier Transform of Derivatives

    5. Convolution Theorem

    6.Momentum Representation

    7. Transfer Functions

    8. Laplace Transforms

    9. Laplace Transform of Derivatives

    10.Other Properties

    11.Convolution (Faltungs) Theorem

    12.Inverse Laplace Transform

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    90

    Self Reading

    7- Fourier Transfer Functions

    Arfken 6th Edition– Section 15.7, pages: 961-964Arfken 7th Edition– Section 20.5, pages: 997-1002See both sections.

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    91

    Overview

    1. Integral Transforms - Fourier

    2. Development of the Fourier Integral

    3. Fourier Transform – Inverse Theorem

    4. Fourier Transform of Derivatives

    5. Convolution Theorem

    6.Momentum Representation

    7. Transfer Functions

    8.Laplace Transforms9. Laplace Transform of Derivatives

    10.Other Properties

    11.Convolution (Faltungs) Theorem

    12.Inverse Laplace Transform

    88-- Laplace Laplace

    TransformsTransforms

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    93

    For instance, For instance, FF((tt)) may diverge exponentially for may diverge exponentially for

    large large tt. However, if there is some constant. However, if there is some constant ss00such thatsuch that

    Definition

    The Laplace transform The Laplace transform ff((ss)) or or LL of a function of a function FF((tt))is defined byis defined by

    The integral need not exist!The integral need not exist!

    (((( )))) (((( )))){{{{ }}}} (((( )))) (((( )))) .lim00

    ∫∫∫∫∫∫∫∫∞∞∞∞

    −−−−−−−−

    ∞∞∞∞→→→→============ dttFedttFetFsf ts

    ats

    aL 69

    (((( )))) ,0

    ∫∫∫∫∞∞∞∞

    dttF

    (((( )))) ,0 MtFe ts ≤≤≤≤−−−− 70

  • 16

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    94

    where where MM is a positive constant for is a positive constant for

    sufficiently large sufficiently large tt, , tt > > tt00, the Laplace , the Laplace

    transform (transform (Eq. 46Eq. 46) will exist for ) will exist for ss > > ss00; ; FF((tt)) is is

    said to be of exponential order. said to be of exponential order.

    Counterexample

    As a counterexample, As a counterexample, does not satisfy does not satisfy

    the condition given by the condition given by Eq. 47Eq. 47 and is not of and is not of

    exponential order. does not exist.exponential order. does not exist.

    (((( ))))2tetF ====

    {{{{ }}}}2teL

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    95

    "Failures" exist

    The Laplace transform may also fail to exist The Laplace transform may also fail to exist

    because of a sufficiently strong singularity because of a sufficiently strong singularity

    in the function in the function FF((tt)) as as tt →→00; that is,; that is,

    71∫∫∫∫∞∞∞∞

    −−−−

    0

    dttents

    diverges at the origin for diverges at the origin for nn ≤≤≤≤≤≤≤≤ −1−1. The Laplace . The Laplace transform transform LL{{ttnn}} does not exist for does not exist for nn ≤≤≤≤≤≤≤≤ −−11..

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    96

    The operation denoted LL by is linear.

    Linearity

    Since, for two functions Since, for two functions FF((tt)) and and GG((tt)), for , for

    which the integrals existwhich the integrals exist

    (((( )))) (((( )))){{{{ }}}} (((( )))){{{{ }}}} (((( )))){{{{ }}}}tGbtFatGbtFa LLL ++++====++++ 72

    Elementary Elementary

    FunctionsFunctions

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    98

    Self Reading

    Elementary Functions

    Arfken 6th Edition –pages: 965-966Arfken 7th Edition–pages: 1008-1010

    Inverse TransformInverse Transform

  • 17

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    100

    Definition

    The Laplace transform of The Laplace transform of FF((tt)) is (is (Eq. 69Eq. 69))

    The inverse is, by definition,The inverse is, by definition,

    (((( )))) (((( )))){{{{ }}}} (((( )))) .0

    ∫∫∫∫∞∞∞∞

    −−−−======== dttFetFsf tsL

    (((( )))) (((( )))){{{{ }}}} (((( )))) .0

    1

    ∫∫∫∫∞∞∞∞

    −−−− ======== dssfesftF tsL 73

    This inverse transform is not unique.This inverse transform is not unique.

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    101

    where N(t) is a null function, indicating that

    Two functions F1(t) and F2(t) may have the same

    transform, f(s). However, in this case F1(t) – F2(t)

    = N(t)

    For all positive t0. (Lerch's theorem)

    Unicity of L-1 – Lerch's Theorem

    74(((( )))) ,00

    0

    ====∫∫∫∫t

    dttN

    In physics, we need L-1 to be unique and therefore we take N(t) = 0.

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    102

    (1) A table of transforms can be built up and

    used to carry out the inverse transformation,

    exactly as a table of logarithms can be used to

    look up antilogarithms,

    Several Methods exist:

    2) A general technique for L−1 using the

    calculus of residues, (Arfken in Section 15.12 ),

    Determination of L-1

    3) Numerical inversion.

    Partial Fraction Partial Fraction

    ExpansionExpansion

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    104

    Utilization of a table of transforms (or inverse

    transforms) is facilitated by expanding f(s) in partial fractions.

    Often, the Laplace transform f(s) occurs in the form of a

    fraction g(s)/h(s), where g(s) and h(s) are polynomials

    with no common factors, g(s) being of lower degree

    than h(s).

    Using Tables

    If the factors of h(s) are all linear and distinct, then by the method of partial fractions we may write

    75(((( ))))n

    n

    as

    c

    as

    c

    as

    csf

    −−−−++++++++

    −−−−++++

    −−−−==== �

    2

    2

    1

    1

    where the ci are independent of s. The ai are the roots

    of h(s). © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    105

    Partial Fraction ExpansionIf any one of the roots, say, a1, is multiple

    (occurring m times), then f(s) has the form

    76(((( )))) ∑∑∑∑====

    −−−−

    −−−−====

    −−−−++++++++

    −−−−++++

    −−−−====

    n

    i i

    i

    n

    nmm

    as

    c

    as

    c

    as

    c

    as

    csf

    2

    1,

    2

    1,2

    1

    ,1�

    Finally, if one of the factors is quadratic,

    (s2 + ps + q), then the numerator, instead of being a simple constant, will have the form (See Example 3)

    77qsps

    bsa

    ++++++++

    ++++2

  • 18

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    106

    Let

    The partial fraction method consists in writing the previous fraction as the sum of two fractions. (Note the degrees of the polynomials in the numerators in the rhs)

    The lhs is developed and like powers of s are

    equated, i.e.

    Example 3 – Partial Fraction Expansion

    (((( )))) (((( ))))222

    kss

    ksf

    ++++==== 78

    80

    (((( )))) (((( ))))22 ksbsa

    s

    csf

    ++++

    ++++++++==== 79

    (((( )))) (((( ))))bsasksck ++++++++++++==== 222

    .;0;,0 02212 skkcsbsac ============++++⇒⇒⇒⇒

    which gives, for s=0, c = 1, b = 0 and a = -1,© Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    107

    We finally have

    F(t) is obtained by calculating the Laplace

    transform of the two fractions in the rhs.

    and consequently:

    Example 3 – Partial Fraction Expansion

    (((( )))) (((( )))) ,1

    22 ks

    s

    ssf

    ++++−−−−==== 81

    {{{{ }}}}s

    L1

    1 ==== 82{{{{ }}}} 22cos kss

    ktL++++

    ====and

    (((( )))){{{{ }}}} (((( )))) ktkss

    ssf cos1

    122

    111 −−−−====

    ++++−−−−

    ==== −−−−−−−−−−−− LLL 83

    We have (See Arfken, Elementary Functions, pages 965-966).

    99-- Laplace Transform Laplace Transform

    of Derivativesof Derivatives

    © Dr. Nidal M. Ershaidat - Mathematical Physics - Phys. 601 - Chapter 4 Integral Transforms

    109

    Self Reading

    9- Laplace Transform of Derivatives

    2) Arfken 6th Edition –Section 15.9 pages: 971-9787th Edition – Section 20.8 pages: 1016-1038.

    1) Lecture by Dr. Raed AlmomaniSee

    Last Lecture

    ������ ���� � ��� ���������� ���� � ��� ���������� ���� � ��� ���������� ���� � ��� ���������� ���� � ��� ���������� ���� � ��� ���������� ���� � ��� ���������� ���� � ��� ���������� ���� � ��� ���������� ���� � ��� ���������� ���� � ��� ���������� ���� � ��� ����

    ةةةةررررييييخخخخألألألألاااا ةةةةلقلقلقلقححححللللاااا

    © Dr. Nidal M. Ershaidat

  • Chapter 4

    Integral Transforms

    Appendix 4-1

    Fourier Series

    Introduction

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 3

    Piecewise regular functionsDefinition:

    A piecewise regular function is a function

    f(x) which has a finite number of

    discontinuities and a finite number of

    extrema values over a single interval.

    0

    Example: (((( ))))

    ====

    ++++∈∈∈∈====

    nxfor

    nnxforxxf

    0

    1{,}

    2 3 4 5 61

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 4

    0

    The sawtooth function

    Another Example

    (((( ))))

    ππππ

  • © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 7

    The following integral identities (for m,n#0):

    represent the orthogonality relationships of the sine and cosine functions.

    Orthogonality

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    δδδδππππ====

    20

    0

    x

    x

    nmdxxnsinxmsin

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    δδδδππππ====

    20

    0

    x

    x

    nmdxxncosxmcos

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    ====

    20

    0

    0

    x

    x

    dxxncosxmsin

    (((( ))))∫∫∫∫ππππ++++

    ====

    20

    0

    0

    x

    x

    dxxmsin (((( ))))∫∫∫∫ππππ++++

    ====

    20

    0

    0

    x

    x

    dxxmcos

    δ δ δ δmn = Kronecker symbol

    Harmonic Analysis

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 9

    The computation and study of Fourier series is

    known as harmonic analysis and is extremely

    useful as a way to break up an arbitrary

    periodic function into a set of simple terms

    that can be plugged in, solved individually, and

    then recombined to obtain the solution to the

    original problem or an approximation to it to

    whatever accuracy is desired or practical.

    Computation of Fourier Series

    Calculation of

    Fourier Coefficients

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 11

    For this purpose we integrate both sides of the Fourier expansion, i.e.:

    Computing a0

    According to the orthogonality relations we have:

    which gives:

    Coefficients of Fourier Series

    (((( ))))∫∫∫∫ππππ++++

    ππππ====

    2

    0

    0

    0

    1x

    x

    dxxfa

    (((( )))) ∑∑∑∑ ∫∫∫∫∑∑∑∑ ∫∫∫∫∫∫∫∫∫∫∫∫∞∞∞∞

    ====

    ππππ++++∞∞∞∞

    ====

    ππππ++++ππππ++++ππππ++++

    ++++++++====1

    2

    1

    22

    0

    2 0

    0

    0

    0

    0

    0

    0

    02 n

    x

    x

    n

    n

    x

    x

    n

    x

    x

    x

    x

    dxxninsbdxxncosadxa

    dxxf

    (((( )))) 00

    2

    22

    0

    0

    aa

    dxxf

    x

    x

    ππππ====ππππ××××====∫∫∫∫ππππ++++

    �������0

    �������0

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 12

    For this purpose we first multiply both sides of the Fourier expansion by cos mx and integrate

    over the period [x0,x0+2ππππ], i.e.:

    Calculation of an

    (((( )))) mn

    nmn

    x

    x

    aaxdxmcosxf ∑∑∑∑∫∫∫∫∞∞∞∞

    ====

    ππππ++++

    ====δδδδ====ππππ 1

    20

    0

    1

    According to the orthogonality relations we have:

    (((( ))))

    ∑∑∑∑ ∫∫∫∫

    ∑∑∑∑ ∫∫∫∫∫∫∫∫∫∫∫∫

    ∞∞∞∞

    ====

    ππππ++++

    ∞∞∞∞

    ====

    ππππ++++ππππ++++ππππ++++

    ++++++++====

    1

    2

    1

    22

    0

    2

    0

    0

    0

    0

    0

    0

    0

    02

    n

    x

    x

    n

    n

    x

    x

    n

    x

    x

    x

    x

    dxxninsxmcosb

    dxxncosxmcosaxdxmcosa

    xdxmcosxf

    ��� ���� ��0

    ����� 0

    ��� ���� ��

    mnδδδδππππ

  • © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 13

    ��� ���� ��

    mnδδδδππππ

    (((( )))) mn

    nmm

    x

    x

    bbxdxmsinxf ∑∑∑∑∫∫∫∫∞∞∞∞

    ====

    ππππ++++

    ====δδδδ====ππππ 1

    20

    0

    1

    Now we first multiply both sides of the Fourier expansion by sinmx and integrate over the

    period [x0,x0+2ππππ] , i.e.:

    According to the orthogonality relations we have:

    Calculation of bn

    (((( ))))

    ∑∑∑∑ ∫∫∫∫

    ∑∑∑∑ ∫∫∫∫∫∫∫∫∫∫∫∫∞∞∞∞

    ====

    ππππ++++

    ∞∞∞∞

    ====

    ππππ++++ππππ++++ππππ++++

    ++++

    ++++====

    1

    2

    1

    22

    0

    2

    0

    0

    0

    0

    0

    0

    0

    0

    inssin

    cossinsin2

    sin

    n

    x

    x

    n

    n

    x

    x

    n

    x

    x

    x

    x

    dxnxmxb

    dxnxmxamxdxa

    mxdxxf

    ��� ���� ��0

    ����� 0

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 14

    The orthogonality relations for a periodic

    function on the interval [-ππππ, ππππ] become:

    Orthogonality

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−

    δδδδππππ==== nmdxxnsinxmsin

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−

    δδδδππππ==== nmdxxncosxmcos

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−

    ==== 0dxxncosxmsin

    (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−

    ==== 0dxxmsin (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−

    ==== 0dxxmcos

    δδδδmn = Kronecker symbol

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 15

    The FS coefficients are thus given by the following relations:

    n = 1, 2, 3, ∞∞∞∞. Note that we distinguish the coefficient of the constant term a0 by writing it in a special form in order to preserve symmetry with the definitions of an and bn.

    Coefficients of Fourier Series

    (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−ππππ

    ==== dxxfa1

    0

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−ππππ

    ==== dxxnxfan cos1

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−ππππ

    ==== dxxnxfbn sin1

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 16

    A Fourier series converges to the function equal

    to the original function at points of continuity or

    to the average of the two limits at points of

    discontinuity)

    f

    If f satisfies the Dirichlet conditions.

    Convergence of Fourier Series

    (((( )))) (((( ))))

    (((( )))) (((( ))))

    ππππππππ−−−−====

    ++++

    ππππ

  • © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 19

    Using the definitions of the coefficients, the Fourier series is written as:

    General Form of Fourier Series

    (((( )))) (((( )))) (((( ))))

    (((( )))) ]

    [

    ∫∫∫∫

    ∫∫∫∫∑∑∑∑∫∫∫∫ππππ++++

    ππππ++++∞∞∞∞

    ====

    ππππ++++

    ++++++++ππππ

    ====

    2

    2

    1

    2

    0

    0

    0

    0

    0

    02

    1

    x

    x

    x

    xn

    x

    x

    dunucosufxnsin

    dunucosufxncosduufxf

    Application

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 21

    Example: Find the Fourier expansion for the periodic function:

    Example

    (((( ))))

    ππππ≤≤≤≤≤≤≤≤

    ≤≤≤≤≤≤≤≤ππππ−−−−====

    xforx

    xforxf

    0

    00

    2ππππ 3ππππππππ0-2ππππ -ππππ-3ππππ

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 22

    Let’s compute the Fourier coefficients

    Solution1

    (((( ))))

    ππππ≤≤≤≤≤≤≤≤

    ≤≤≤≤≤≤≤≤ππππ−−−−====

    xforx

    xforxf

    0

    00

    (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−ππππ

    ==== dxxfa1

    02

    10

    1

    0

    0ππππ

    ====ππππ

    ++++ππππ

    ==== ∫∫∫∫∫∫∫∫ππππ++++

    ππππ−−−−

    dxxdx

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−ππππ

    ==== dxxncosxfan1

    (((( ))))∫∫∫∫ππππ++++

    ππππ====

    0

    1dxxnsinx

    (((( ))))∫∫∫∫ππππ++++

    ππππ====

    0

    1dxxncosx

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−ππππ

    ==== dxxnsinxfbn1

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 23

    Solution2

    (((( )))) (((( )))) (((( ))))[[[[ ]]]] (((( ))))[[[[ ]]]]1110110

    −−−−−−−−====−−−−ππππ====∫∫∫∫ππππ++++

    n

    ncosncos

    ndxxnsin

    n

    ��� ���� ��vu

    We need to compute the integral

    xu ==== (((( )))) (((( )))) (((( ))))xnsinn

    dxxncosvdxxncosdv1

    ========⇒⇒⇒⇒==== ∫∫∫∫,

    (((( )))) (((( )))) (((( ))))

    −−−−

    ππππ====

    ππππ==== ∫∫∫∫∫∫∫∫

    ππππ++++ππππππππ++++

    000

    111dxxnsin

    nxnsin

    n

    xdxxncosxan

    where we used the integration by parts:

    ��� ���� ��

    ∫∫∫∫−−−− duv��� ���� ��

    ∫∫∫∫ dvu

    (((( )))) 00

    ====

    π

    xnsinn

    x

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 24

    Thus we have:

    If n is even

    If n is odd

    an

    (((( )))) (((( ))))[[[[ ]]]]nnn

    dxxncosxa 1111

    2

    0

    −−−−−−−−ππππ

    ====ππππ

    ==== ∫∫∫∫ππππ++++

    ππππ

    ====2

    2

    0

    n

    an

  • © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 25

    bnNow we compute bn , We proceed as for an, i.e.

    (((( ))))∫∫∫∫ππππ++++

    ππππ====

    0

    1dxxnsinxbn

    ��� ���� ��vu

    (((( )))) (((( ))))∫∫∫∫ππππ++++ππππ

    ππππ++++

    ππππ−−−−====

    00

    1dxxncos

    nxncos

    n

    x

    ��� ���� ��

    ∫∫∫∫−−−− duv��� ���� ��

    ∫∫∫∫ dvu

    (((( )))) (((( )))) (((( ))))nnn

    ncosnn 1

    11++++

    −−−−====

    −−−−−−−−====

    ππππ−−−−====

    (((( ))))

    ππππ++++ ∫∫∫∫

    ππππ++++

    0

    11dxxncos

    n(((( ))))

    ππππ

    −−−−

    ππππ====

    0

    1xncos

    n

    x

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 26

    The Fourier series for the function

    Solution

    (((( ))))

    ππππ≤≤≤≤≤≤≤≤

    ≤≤≤≤≤≤≤≤ππππ−−−−====

    xforx

    xforxf

    0

    00

    2ππππ 3ππππππππ0-2ππππ -ππππ-3ππππ

    (((( ))))(((( )))) (((( ))))

    nxsinn

    nxcosn

    xfn n

    nn

    ∑∑∑∑ ∑∑∑∑∞∞∞∞

    ====

    ∞∞∞∞

    ====

    ++++−−−−

    ++++−−−−−−−−

    ++++ππππ

    ====1 1

    1

    2

    111

    4

    ][

    is

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 27

    The sawtooth function

    Another Example

    (((( ))))

    ππππ

  • © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 31

    Solution4and the integrals

    (((( )))) (((( )))) (((( ))))

    (((( )))) 1

    000

    1

    1

    ++++

    ππππ−−−−ππππ−−−−ππππ−−−−

    −−−−ππππ

    ====ππππππππ

    −−−−====

    ++++

    −−−−==== ∫∫∫∫∫∫∫∫

    n

    nncos

    n

    dxxncosn

    xncosn

    xdxxnsinx

    (((( )))) (((( )))) (((( ))))

    (((( )))) 1000

    1

    1

    ++++

    ππππππππππππ

    −−−−ππππ

    ====ππππππππ

    −−−−====

    ++++

    −−−−==== ∫∫∫∫∫∫∫∫

    n

    nncos

    n

    dxxncosn

    xncosn

    xdxxnsinx

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 32

    Useful Integrals

    (((( )))) 00

    ====∫∫∫∫ππππ++++

    dxxncos

    (((( )))) 00

    ====∫∫∫∫ππππ−−−−

    dxxncos

    (((( )))) (((( ))))(((( ))))nn

    dxxnsin 111

    0

    −−−−−−−−====∫∫∫∫ππππ++++

    (((( )))) (((( ))))(((( ))))1110

    −−−−−−−−====∫∫∫∫ππππ−−−−

    n

    ndxxnsin

    (((( )))) (((( ))))(((( ))))nn

    dxxncosx 111

    2

    0

    −−−−−−−−====∫∫∫∫ππππ−−−−

    (((( )))) (((( ))))(((( ))))1112

    0

    −−−−−−−−====∫∫∫∫ππππ++++

    n

    ndxxncosx

    (((( )))) (((( ))))n

    dxxnsinxn ππππ

    −−−−====++++

    ππππ−−−−

    ∫∫∫∫1

    0

    1

    (((( )))) (((( ))))n

    dxxnsinxn ππππ

    −−−−====++++

    ππππ

    ∫∫∫∫1

    0

    1

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 33

    (((( )))) (((( )))) (((( )))) (((( ))))∫∫∫∫∫∫∫∫ππππ++++

    ππππ−−−−

    ππππ−−−−ππππ

    ++++ππππ++++ππππ

    ====

    0

    0

    11dxxncosxdxxncosx

    an

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−ππππ

    ==== dxxncosxfan1

    (((( )))) (((( ))))

    (((( )))) (((( )))) (((( ))))∫∫∫∫∫∫∫∫

    ∫∫∫∫∫∫∫∫ππππ++++ππππ++++

    ππππ−−−−ππππ−−−−

    ππππ−−−−ππππ

    ++++ππππ

    ++++ππππππππ

    ++++ππππ

    ====

    00

    00

    11

    11

    dxxncosdxxncosx

    dxxncosdxxncosx

    (((( ))))(((( )))) (((( ))))(((( ))))0

    1110

    11122

    −−−−−−−−−−−−

    ππππ++++++++

    −−−−−−−−

    ππππ====

    nn

    nn

    0====

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 34

    (((( )))) (((( )))) (((( )))) (((( ))))∫∫∫∫∫∫∫∫ππππ++++

    ππππ−−−−

    ππππ−−−−ππππ

    ++++ππππ++++ππππ

    ====

    0

    0

    11dxxnsinxdxxnsinx

    bn

    (((( )))) (((( ))))

    (((( )))) (((( )))) (((( ))))∫∫∫∫∫∫∫∫

    ∫∫∫∫∫∫∫∫ππππ++++ππππ++++

    ππππ−−−−ππππ−−−−

    ππππ−−−−ππππ

    ++++ππππ

    ++++ππππππππ

    ++++ππππ

    ====

    00

    00

    11

    11

    dxxnsindxxnsinx

    dxxnsindxxnsinx

    (((( )))) (((( )))) (((( )))) (((( ))))nnnn

    nnnn 11111111

    ++++++++++++++++−−−−

    ++++−−−−

    ++++−−−−

    ++++−−−−

    ====

    (((( )))) 114 ++++

    −−−−====n

    n

    (((( )))) (((( ))))∫∫∫∫ππππ++++

    ππππ−−−−ππππ

    ==== dxxnsinxfbn1

    Now we compute bn, We proceed as for an, i.e.

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 35

    The Fourier series for the function

    The Series

    (((( ))))(((( ))))

    ∑∑∑∑∞∞∞∞

    ====

    ++++−−−−

    ++++ππππ====1

    11

    4n

    n

    xnsinn

    xf

    is

    (((( ))))

    ππππ

  • © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 37

    Using the definitions:

    Substituting in the definition of Fourier series

    we get:

    Complex Form of Fourier Series

    (((( )))) ,2

    sini

    eexn

    xnixni −−−−−−−−==== (((( )))) ,

    2cos

    xnixni eexn

    −−−−++++====

    (((( )))) ∑∑∑∑∑∑∑∑∞∞∞∞

    ====

    ∞∞∞∞

    ====

    ++++++++====11

    0 sincos2 n

    n

    n

    n xnbxnaa

    xf

    (((( )))) [[[[ ]]]] [[[[ ]]]]∑∑∑∑∑∑∑∑∞∞∞∞

    ====

    −−−−∞∞∞∞

    ====

    −−−− −−−−++++++++++++====11

    0

    222 n

    xnixnin

    n

    xnixnin eei

    bee

    aaxf

    [[[[ ]]]] [[[[ ]]]]∑∑∑∑∑∑∑∑∞∞∞∞

    ====

    −−−−∞∞∞∞

    ====

    ++++++++−−−−++++====11

    0

    2

    1

    2

    1

    2 n

    xni

    nn

    n

    xni

    nn ebiaebiaa

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 38

    can be written in the form

    The previous equation

    The limit n = - ∞∞∞∞ takes into account the terms e-inx

    Complex Form of Fourier Series

    (((( )))) [[[[ ]]]] [[[[ ]]]]∑∑∑∑∑∑∑∑∞∞∞∞

    ====

    −−−−∞∞∞∞

    ====

    −−−− −−−−++++++++++++====11

    0

    222 n

    xnixnin

    n

    xnixnin eei

    bee

    aaxf

    [[[[ ]]]] [[[[ ]]]]∑∑∑∑∑∑∑∑∞∞∞∞

    ====

    −−−−∞∞∞∞

    ====

    ++++++++−−−−++++====11

    0

    2

    1

    2

    1

    2 n

    xni

    nn

    n

    xni

    nn ebiaebiaa

    (((( )))) ∑∑∑∑∞∞∞∞

    ∞∞∞∞−−−−====

    ====n

    xni

    n ecxf

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 39

    For n > 0, we have

    In order to find cn we multiply both sides of the

    equation:

    by and integrate over the interval [x0 ,x0+ππππ], i.e.xmie −−−−

    The Complex Coefficients

    2

    0

    0

    ac ====

    (((( )))) ∑∑∑∑∞∞∞∞

    ∞∞∞∞−−−−====

    ====n

    xni

    n ecxf

    nnn biac −−−−====*cbiac nnnn ====++++====−−−−

    (((( )))) (((( ))))∑∑∑∑ ∫∫∫∫∫∫∫∫∞∞∞∞

    ∞∞∞∞−−−−====

    ππππ++++

    −−−−

    ππππ++++

    −−−− ====n

    x

    x

    xmni

    n

    x

    x

    xmi dxecdxexf

    22 0

    0

    0

    0

    ∑∞

    ∞−=

    δπ=

    n

    mnnc2

    (((( ))))∫∫∫∫ππππ++++

    −−−−

    ππππ====⇒⇒⇒⇒

    20

    02

    1x

    x

    xmi

    m dxexfc

    Some Properties and

    Uses of Fourier Series

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 41

    The problem, as we have seen, is to determine

    the number of coefficients one should calculate

    in order to get as close as possible to the

    shape of the periodic function f(x).

    The rate of convergence of the series gives an

    idea when to stop.

    Convergence

    © Dr. Nidal M. Ershaidat Phys. 601 Chapter 6: Integral Transforms - Appendix 6-2 Calculating Fourier Series 42

    Convergence - Properties

    1- If the function f(x) is discontinuous , then

    some of the Fourier coefficients will vary as

    1/n. The convergence in gene