Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

71
Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks

Transcript of Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Page 1: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Chapter 5Biochemical Forensic

Analysis: DNAProf. J. T. Spencer

Adjunct Prof. T. L. Meeks

Page 2: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Learning Goals and Objectives

The use of DNA evidence has become the "gold standard" of forensic investigations. In order to understand the wealth of information that can be gained from forensic DNA studies…

Page 3: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Learning Goals and Objectives

• The chemical structure of DNA and how it holds genetic information

• The transcription and translation processes of DNA

• What parts of DNA are involved in forensic examinations

• What are variable number tandem repeats (VNTR) and short tandem repeats (STR)

• What a mutation is• How the Restriction Fragment Length

Polymorphism (RFLP) method works

Page 4: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Learning Goals and Objectives

• How the polymerase chain reaction (PCR)/STR method of DNA typing works

• How frequency of occurrences of STRs in populations is determined and used

• What is CODIS• How mitochondrial DNA can be used in

forensic investigations• How DNA typing is being used in plants and

other living organisms

Page 5: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

The Cell

• The smallest unit of life• The nucleus is the

“brain” of the cell– contains all the genetic

info the cell needs to exist & to reproduce

• In most types of cells, genetic information is organized into structures called chromosomes

Page 6: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Chromosomes

• In most types of cells, genetic information is organized into structures called chromosomes– usually X shaped

• Y chromosome in males

– 23 pairs in humans• one from mother & one

from father

Page 7: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Genes

• Each chromosome contains hundreds to thousands information blocks called genes

• Each gene is the blueprint for a specific type of protein in the body– only identical twins will have all

the genes identical

Page 8: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Chromosomes

• Each chromosome is a single polymeric molecule called DNA– if fully extended the

molecule would be about 1.7 meters long

– unwrapping all the DNA in all your cells

• cover the distance from earth to moon 6,000 times

Page 9: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Structure of DNA

Page 10: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Nucleotides

• DNA is a polymer built from monomers called nucleotides

• Each nucleotide is consists of– deoxyribose

• pentose sugar

– phosphoric acid– a nitrogenous base

Page 11: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

The DNA Backbone

• The monomers are linked together by phosphodiester bridges (bonds)– links the 3’ carbon in

the ribose of one nucleotide to the 5’ carbon in the ribose of the adjacent nucleotide

Page 12: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

The DNA Double Helix

• DNA is normally a double stranded macromolecule

• Two polynucleotide chains are held together by H-bonding– A always pairs with T– C always pairs with G

Page 13: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.
Page 14: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.
Page 15: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

5’ T-T-G-A-C-T-A-T-C-C-A-G-A-T-C 3’

3’ A-A-C-T-G-A-T-A-G-G-T-C-T-A-G 5’

In a double helix the strands go in opposite directions

Page 16: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Functions of DNA

• Two Functions– To transmit information from one generation

of cells to the next – To provide the information for the synthesis of

components (proteins) necessary for cellular function

Page 17: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.
Page 18: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Cell Types

Where can DNA be found?Where can DNA be found?

Cell Blood

Sweat

Hair Roots Saliva

Various Tissue Semen

SAME

Page 19: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Nuclear DNA

Where are the types of DNA found in a cell?Where are the types of DNA found in a cell?

Mitochondrial DNACellCell

Page 20: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Sources of Biological Evidence

• Blood• Semen• Saliva• Urine• Hair• Teeth• Bone• Tissue

Page 21: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Types of objects where DNA may be foundTypes of objects where DNA may be found

Blood Stains

Semen Stains

Chewing Gum

Stamps & Envelopes

Penile Swabs

Plant Material

Sweaty Clothing

Bone

Hair

Fingernail Scraping

Saliva

Animal Material

Page 22: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Where DNA Evidence is Found

Page 23: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

BloodHair RootsSalivaSweatTissue

Chemical

DNA

Isolation of DNAIsolation of DNA

Page 24: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Semen stainChemical

RemoveEpithelial

DNA

Differential Isolation of DNADifferential Isolation of DNA

Different Chemical

Sperm DNA

Semen stain

Epithelial DNA

Sperm DNA

Page 25: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

DNA

Solution

AmplificationAmplification(making copies)(making copies)

Page 26: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

TG C

ATTA

G C

A T

A

G

TA

GA

A T

C

AT

CT

Heat

Step one of a single cycle

DENATUREDENATURE

Page 27: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

TAC TA TTCTT AT C

AA TA G G

Step two of a single cycle

ANNEALANNEAL

Page 28: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Step three of a single cycle

TAAATA G G

T ACTT AT C TAC TT

CA

AA

G

GG

GT

TT

T

A G

EXTENDEXTEND

Page 29: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

1 Cycle2 Cycles

3 Cycles

4 Cycles

5 Cycles

28 Cycles

AmplificationAmplification

DNA

PCR (Polymerase Chain Reaction)PCR (Polymerase Chain Reaction)

Page 30: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Analysis of amplified DNA Analysis of amplified DNA

AmplifiedDNA

DNAProfile

Page 31: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Brief History of Forensic DNA Typing

• 1980 - Ray White describes first polymorphic RFLP marker

• 1985 - Alec Jeffreys discovers multilocus VNTR probes

• 1985 - first paper on PCR• 1988 - FBI starts DNA casework• 1991 - first STR paper• 1995 - FSS starts UK DNA database• 1996 – First mtDNA case• 1998 - FBI launches CoDIS database

Page 32: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

DNA Use in Forensic Cases

• Most are rape cases or murders

• Looking for match between evidence and suspect

• Must compare victim’s DNA profile

•Mixtures must be resolved

•DNA is often degraded

•Inhibitors to PCR are often present

Challenges

Page 33: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Human Identity Testing

• Forensic cases -- matching suspect with evidence

• Paternity testing -- identifying father

• Historical investigations-Czar Nicholas, Jesse James

• Missing persons investigations• Mass disasters -- putting pieces back together

• Military DNA “dog tag”• Convicted felon DNA databases

Page 34: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Sample Obtained from Crime Scene or

Paternity Investigation Biology

DNAExtraction

DNAExtraction

DNAQuantitation

DNAQuantitation

PCR Amplificationof Multiple STR

markers

PCR Amplificationof Multiple STR

markers

TechnologySeparation and Detection of

PCR Products(STR Alleles)

Sample Genotype

Determination

GeneticsComparison of Sample

Genotype to Other Sample Results

Comparison of Sample Genotype to Other

Sample Results

If match occurs, comparison of DNA profile to population databases

If match occurs, comparison of DNA profile to population databases

Generation of Case Report with Probability

of Random Match

Generation of Case Report with Probability

of Random Match

Steps in DNA Sample Processing

Page 35: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

BloodHair RootsSalivaSweatTissue

Chemical

DNA

Extraction of DNAExtraction of DNA

Page 36: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.
Page 37: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

RFLP Analysis• Enzymes break DNA into

restriction fragments • Measurements taken of

fragments that vary in length across people (length polymorphism) because they contain VNTRs

• can produce extremely low random match probabilities

• requires relatively large fresh samples (>50 ng DNA)

• slow and expensive

Page 38: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Which Suspect, A or B, cannot be excluded from

the class of potential

perpetrators of this assault?

Page 39: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

DNA Fingerprinting

• The basic structure of everyone’s DNA is the same– the difference between people is the ordering of the

base pairs

• Every person can be distinguished by the sequence of their base pairs– millions of base pairs make this impractical– a shorter method uses repeating patterns that are

present in DNA

Page 40: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

VNTR’s

• DNA strands contain information which directs an organism’s development– exons

• Also contain stretches which appear to provide no relevant genetic information– introns– repeated sequences of base pairs

• Variable Number Tandem Repeats (VNTRs)• can contain anywhere from 20 to 200 base pairs

Page 41: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

VNTRs

• All humans have some VNTRs

• VNTRs come from the genetic information donated by parents– can have VNTRs from mother, father or a

combination

Page 42: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

D1 = biological daughter of both parentsD2 = child of mother & former husbandS1 = couple’s biological sonS2 = adopted son

Page 43: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

VNTR Analysis

• Usually an individual will inherit a different variant of the repeated sequence from each parent

Page 44: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

VNTR Analysis

• PCR primers bracket the locus

• PCR reaction forms a nucleotide chain from the template

Page 45: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

VNTR Analysis

• The length of the amplified DNA & its position after electrophoresis will depend on the number or repeated bases in the sequence

Page 46: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Analysis used 3 different VNTR loci for each suspect giving6 bands

Page 47: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Although some individuals have several bands in common, the overall pattern is distinctive for each

Page 48: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Suspects A & C can be eliminatedB remains a suspect

Page 49: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Short Tandem Repeats (STRs)

the repeat region is variable between samples while the flanking regions where PCR primers bind are constant

7 repeats

8 repeats

AATG

Homozygote = both alleles are the same length

Heterozygote = alleles differ and can be resolved from one another

Page 50: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Short Tandem Repeat

AGAT AGATAGAT

AGAT

AGAT

AGAT

AGAT

AGAT

AGAT

AGAT

6

4

DNA Profile =4,6

TCTA TCTA TCTA

TCTA

TCTA

TCTA

TCTA

TCTA

TCTA

TCTA

7

5

DNA Profile =5,7

TCTA

TCTA

STRSTR

Page 51: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

An Example Forensic STR Multiplex Kit

D3 FGAvWA 5-FAM (blue)

D13D5 D7 NED (yellow)

A D8 D21 D18 JOE (green)

GS500-internal lane standard

ROX (red)

AmpFlSTR® Profiler Plus™Kit available from PE Biosystems (Foster City, CA)

9 STRs amplified along with sex-typing marker amelogenin in a single PCR reaction

100 bp 400 bp300 bp200 bpSize Separation

Col

or S

epar

atio

n

Page 52: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Short Tandem Repeats (STRs)

the repeat region is variable between samples while the flanking regions where PCR primers bind are constant

AATG

7 repeats

8 repeats

AATG AATG

Primer positions define PCR product size

Fluorescent dye label

Page 53: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

13 CODIS Core STR Loci with Chromosomal Positions

CSF1PO

D5S818

D21S11

TH01

TPOX

D13S317

D7S820

D16S539 D18S51

D8S1179

D3S1358

FGA

VWA

AMEL

AMEL

Page 54: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

DNA Quantitation using Slot Blot

AMEL

D3

TH01 TPOX

Penta D

Penta EFGAD21 D18

CSF

D16D7

D13D5VWA D8

PCR Amplification with Fluorescent STR Kits and Separation with Capillary Electrophoresis

Blood Stain

Overview of Steps Involved in DNA Typing

Genotyping by Comparison to Allelic Ladder

Page 55: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Genotyping by Comparison to Allelic Ladder

Page 56: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

ABI Prism 310 Genetic Analyzer

capillary

Syringe with polymer solution

Autosampler tray

Outlet buffer

Injection electrode

Inlet buffer

Page 57: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Chemistry Involved• Injection

– electrokinetic injection process– importance of sample preparation

(formamide)

• Separation– capillary– POP-4 polymer– buffer

• Detection– fluorescent dyes with excitation and emission

traits – virtual filters (hardware/software issues)

Page 58: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Separation Issues

• Run temperature -- 60 oC helps reduce secondary structure on DNA and improves precision

• Electrophoresis buffer -- urea in running buffer helps keep DNA strands denatured

• Capillary wall coating -- dynamic coating with polymer

• Polymer solution -- POP-4

Page 59: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

DNA Separation Mechanism

+-DNA-

DNA-

DNA-DNA- DNA-

• Size based separation due to interaction of DNA molecules with entangled polymer strands

• Polymers are not cross-linked (as in slab gels)• “Gel” is not attached to the capillary wall• Pumpable -- can be replaced after each run• Polymer length and concentration determine the separation

characteristics

Page 60: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

ABI 310 Filter Set FABI 310 Filter Set F

520 540 560 580 600 620 640WAVELENGTH (nm)

100

80

60

40

20

0

5-FAM JOE NED ROX

Laser excitation(488, 514.5 nm)Laser excitation(488, 514.5 nm)

No

rmal

ized

Flu

ore

sce

nt

Inte

ns

ity

Fluorescent Emission Spectra for ABI Dyes

Page 61: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Sample Detection

CCD Panel

ColorSeparation

Ar+ LASER (488 nm)

Fluorescence ABI Prism spectrograph

Capillary or Gel Lane

Size Separation

Labeled DNA fragments (PCR products)

Detection region

Principles of Sample Separation and Detection

Page 62: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Mitochondrial DNA

What is mtDNA What is mtDNA Typing?Typing?

Database and Database and statistical issuesstatistical issues

Page 63: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

A Mitochondrial Exclusion

Page 64: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

A Mitochondrial Inclusion

Page 65: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.
Page 66: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

Mitochondrial Inconclusive?

Page 67: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

The Future of Forensic DNA

CoDIS

SNP’s & Chips

Page 68: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

FBI’s CoDIS DNA Database

Combined DNA Index System• Used for linking serial crimes and

unsolved cases with repeat offenders• Launched October 1998• Links all 50 states• Requires >4 RFLP markers

and/or 13 core STR markers• Current backlog of >600,000 samples

Page 69: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

On August 25, 1979, an 8-year old girl was brutally raped and murdered inSan Pablo, CA. Semen was collected from the body and placed in anevidence room, where it sat for 22 years. Through this program, a DNA profilewas made and submitted to the state and federal databases. This resulted ina “cold hit” identifying Joseph Cordova Jr. as the suspect. Cordova was ahabitual child molester who at the time of the DNA analysis was incarceratedin a Colorado prison. Cordova was subsequently charged with molesting,raping and murdering the 8-year old girl.

On November 8, 2000, a 12 year old girl, was kidnapped off of the street inRancho Cordova, CA, and driven to Feather River in Sutter County where shewas sexually assaulted and then killed. Nine months later, Justin Weinbergerwas stopped for a traffic violation in New Mexico. A check by police revealedthat Weinberger was wanted on a federal warrant for child pornography. Hewas detained and voluntarily provided a DNA sample. Analysis of that DNAsample resulted in a match with evidence identifying Weinberger as the suspect in this case. Weinberger was subsequently extradited to California where he was tried and convicted of the murder of the 12-year old girl.

Cold Hits and Solved Cases

Page 70: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.
Page 71: Chapter 5 Biochemical Forensic Analysis: DNA Prof. J. T. Spencer Adjunct Prof. T. L. Meeks.

STR Analysis by Hybridization on Microchips