Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4...

33
SNUMSE K.H. Oh Chapter 4 Transients The time-varying currents and voltages resulting from the sudden application of sources, usually due to switching, are called transients.

Transcript of Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4...

Page 1: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

Chapter 4Transients

The time-varying currents and voltages resulting from the sudden application of sources, usually due to switching, are called transients.

Page 2: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

1. First-order RC or RL Circuits.

2. Concepts of Transient Response and Steady-State Response.

3. Transient Response of First-Order Circuits to Time Constant.

4. RLC Circuits in DC Steady-State Conditions.

5. Second-Order Circuits.

6. Step Response of a Second-Order System to its Natural Frequency and Damping Ratio.

Goal

Page 3: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhFirst-Order RC Circuits

( ) ( ) 0=+R

tvdt

tdvC CC

( ) stC Ketv =( ) ( ) 0=+ tv

dttdvRC C

C

0=+ stst KeRCKse RCs 1−=

( ) RCtC Ketv −=

Discharge of a Capacitance through a Resistance

( ) RCtiC eVtv −=

( ) iC Vv =+0

KCL at Node

Page 4: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

( ) RCtiC eVtv −=

The time interval τ = RC is called the time constant of the circuitIn one time Constant, Voltage decays by factor 1/e

Page 5: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

( ) τtssC evvtv −−=

Charging Capacitance from DC Source through a Resistance

( ) ( ) 0=−

+R

vtvdt

tdvC sCC

( ) ( ) sCC vtvdt

tdvRC =+

( ) ( ) 000 =−=+ CC vv

KCL at Node

I.C.

( ) stC eKKtv 21 +=

sst vKeKRCs =++ 12)1(

RCs 1−= svK =1

( ) RCtsC eKvtv /

2−+= svK −=2

:sv Steady State Response (Forces Response)τt

sev −

RC=τ

: Transient Response

Page 6: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

( ) τtssC evvtv −−=

Page 7: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhDC STEADY STATE

Steady State (Forced) Response for RLC circuits with DC sources are:

1. Replace Capacitances with open circuits.

2. Replace Inductances with short circuits.

3. Solve the remaining circuit.

( ) 0)( ==dt

tdvCti Cc

( ) 0)( ==dt

tdiLtv LL

At Steady State of DC Circuit,

- Voltage is Constant

- Current is Constant

Page 8: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhExample of DC STEADY STATE

If Time is Sufficiently Large, Steady State becomes.

ARR

vi sx 1

5510

21

=+

=+

=

ViRv xx 52 ==

Page 9: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhRL Circuits

To solve circuits with DC sources, Resistances, & One energy-storage element (Inductance or Capacitance) are:

1. Apply KCL & KVL to write the Circuit Equation.

2. If Integrals, Differentiate to Differential Equation.

3. Assume a Solution form K1 + K2est.

4. Substitute Solution into Differential equation to determine K1 and s

5. Use the initial conditions to determine the value of K2.

6. Write the final solution.

(Alternatively, we can determine K1 by solving the circuit in steady state )

Page 10: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhRL Transient Analysis (Series & Switch On)

Step 1. Apply KCL & KVL to write the circuit equation (No Step 2)( )

svdt

tdiLtRi =+)(

Step 3. Assume a solution of the form K1 + K2est.steKKti 21)( +=

Initial Condition00)( <= tti

Page 11: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

( ) LtRs eKRvti −+= 2/

Time constant isRL

Step 4. Substitute the solution into the differential equation

sst vesLKRKRK =++ )( 221

= Zero= vs

RvK s=1 L

Rs −=

Step 5. Use the initial conditions to determine the value of K2.

0/)0( 2 =+=+ KRvi s ( ) )1(/ LtRs eRvti −−=

Step 6. Write the final solution.

( ) )1(2 τteti −−=250

100==

Rvs ms

RL 2

501.0===τ

Page 12: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

( ) )1(2 τteti −−=

( )dt

tdiLtv LL =)(

( ) LtRsL evtv −=( ) )1(/ LtR

s eRvti −−=

( ) τtL etv −=100

Using

In given Circuit Condition, R=100Ω, L=0.1H

Page 13: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhRL Transient Analysis (Parallel & Switch Off)

Initial Condition

00)(&)(1

<== ttvRvti s

Before Switch Off, Current Circulates through R1 , vs & InductorAfter Switch Off, Current from vs disappear

Current flows through inductor return to R2Voltage appears across R2 & Inductor, causing to Current to decaySteady-State Solution becomes Zero State

Page 14: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhStep 1. Apply KCL & KVL Circuit equation (No Step 2)

( )sv

dttdiLtRi =+)(

Step 3&4. Assume Solution form K1 + K2est steKKti 21)( +=

Steady State is Zero State : K1 = 0 steKti 2)( =

τ/2)( teKti −=

2RL

Step 5. Use the initial conditions to determine the value of K2.

21/)0( KRvi s ==+ ( ) τts eRvti −= 1/

( )dt

tdiLtv LL =)( ( ) 0

1

>−= − teRLvtv ts τ

τ

( ) 00 <= ttv

Page 15: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

( ) τts eRvti −= 1/

( )dt

tdiLtv LL =)(

( ) 01

>−= − teRLvtv ts τ

τ

( ) 00 <= ttv

Page 16: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhRC & RL Circuits with General Sources

When Inductor is Linked with General SourceUsing Thévenin Theorem Voltage Source + Resistor

Note : Voltage Source & Current are varying with time

KVL ( ) )()( tvtRi

dttdiL t

L =+( )

Rtvti

dttdi

RL tL )()( =+

( ) )()( tftxdt

tdx=+τGenerally τ : Time Constant

f(t) : Forcing function

Page 17: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhSolution of 1st Order Differential Equation

( ) )()( tftxdt

tdx=+τ

)()(' trytpy =+ ∫+∫∫=−−

∫dttpdttpdttp

eCdttreey)()()(

)(Appendix

The particular solution (called the forced response) is any expression that satisfies the equation.

The complementary solution (called the natural response) is obtained by solving the homogeneous equation.

)()()( txtxtx cp +=

( ) )(1)(1 tftxdt

tdxττ

=+ )(1)(&1)( tftrtpττ

==

ττττττ

ττ

tttdtdtdteCdttfeeeCdttfeey−−−−

∫∫ +=∫+∫∫= )(1)(1 111

( ) 0)(1=+ tx

dttdx

cc

τ( )

τ1

)(/

−=tx

dttdx

c

c ( ) cttxc +−=τ

ln ( ) τt

c Ketx−

=

Page 18: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhStep-by-Step Solution

Circuits with a resistance, a source, and an inductance (or a capacitance)

1. Write Circuit Equation as 1st Order Differential Equation.

2. Find a Particular Solution. The details of this step depend on the form of the forcing function.

3. Obtain the Complete Solution by adding the particular solution to the Complementary Solution

4. Use Initial Conditions to find the value of K.

Page 19: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

0)200sin(2)0()(1)(0

=−++ ∫ tvdttiC

tRi c

t

Use KVL

Step 1. Write Circuit Equation as 1st-Order Differential Equation.

)200cos(400)(1)( ttiCdt

tdiR =+ )200cos(400)()( tCtidt

tdiRC =+

Step 2. Find a particular solution.

)200sin()200cos()( tBtAtip +=Using General Solution orGuessing from Math.

)200cos(10400)()(105 63 ttidt

tdi −− ×=+× Atttip µ)200sin(200)200cos(200)( +=

A=B=200µA

Page 20: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhStep 3. Obtain the Complete Solution

0)()(=+ ti

dttdiRC ( ) τ

tRCt

c KeKeti−−

==

RCt

KeAttti−

++= µ)200sin(200)200cos(200)(

Step 4. Use initial conditions to find the value of K.

AKAR

vi R µµ )200(2005000

1)0()0( +=−=−

=+

=+

AK µ400−=

AeAttti RCt

µµ−

−+= 400)200sin(200)200cos(200)(

msRC 25==τ

Page 21: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

AeAttti RCt

µµ−

−+= 400)200sin(200)200cos(200)(

Page 22: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhSummary of 1st Order Diff. Equation

τττ

τ

ttt

eCdttfeeti−−

∫ += )(1)(

General Voltage SourceConstant Voltage Source (DC)

st

ttt

eKK

eCKdteeti

21

1)(

+=

+=−−

∫ τττ

τ

τττ

τ

ttt

eCdttfeeti−−

∫ += )(1)(

Page 23: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhSecond-Order Circuits

( ) ( ) ( ) ( ) ( )tvvdttiC

tRidt

tdiL sC

t

=+++ ∫ 01

0

Using KVL

Taking Derivative & Divide by L

( ) ( ) ( ) ( )dt

tdvL

tiLCdt

tdiLR

dttid s11

2

2

=++

Page 24: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

( ) ( ) ( ) ( )tftidt

tdidt

tid=++ 2

02

2

2 ωα

LR

2=α

LC1

0 =ω

( )dt

tdvL

tf s1)( =

: Damping Coefficient

: Undamped Resonant Frequency

: Forcing function

Linear 2nd Order Differential Equation

Here We know that )()()( txtxtx cp +=

)(txp

)(txc

( ) ( ) ( ) ( )tftxdt

tdxdt

txdp

pp =++ 202

2

2 ωα

( ) ( ) ( ) 02 202

2

=++ txdt

tdxdt

txdc

cc ωα

:

:

: Particular Solution

: Complementary Solution

Page 25: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

20

21 ωαα −+−=s

20

22 ωαα −−−=s

0ωαζ =

( ) ( ) ( ) ( )tftxdt

tdxdt

txdp

pp =++ 202

2

2 ωα)(txp : Particular Solution :

In Electric Circuit, forcing function is Primarily DC & Sinusoidal SourcesDC Source : Steady State Solution

Can be obtained by Replacing Inductor to Short Circuit & Capacitor to Open Circuit

Sinusoidal Source : Complex Number Analysis (Chapter 5)

( ) ( ) ( ) 02 202

2

=++ txdt

tdxdt

txdc

cc ωα)(txc : Complementary Solution :

Let xc(t)=Kest 0)2( 22 =++ sto Kess ωα

02 22 =++ oss ωαGenerally : Characteristic Equation

Two Solutions :

: Damping Ratio

Page 26: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh2nd Order Circuit Analogy

( ) ( ) ( ) ( )dt

tdvL

dttiLCdt

tdiLR

dttid s11

2

2

=++( ) ( ) ( ) )(12

2

tfm

txmk

dttdx

mC

dttxd

=++

Page 27: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

1. Overdamped case : ζ > 1 or α > ω0 : Real & Distinct Two Roots

( ) tstsc eKeKtx 21

21 +=

2. Critically damped case : ζ = 1 α = ω0 : Real & Equal Roots.

( ) tstsc teKeKtx 11

21 +=

3. Underdamped case : ζ < 1 or α < ω0 : Complex Roots

nn jsjs ωαωα −−=+−= 21 &

Natural frequency is given by 220 αωω −=n

( ) ( ) ( )teKteKtx nt

nt

c ωω αα sincos 21−− +=

In electrical engineering, we use j rather than i to stand for square root of -1, because of i for current.

Solution Case of 2nd Order Equation

Page 28: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhAnalysis of 2nd Order Circuit with DC Source

( )dt

tdvCti c=)(KVL : ( ) ( ) ( ) sC VtvtRi

dttdiL =++

( ) ( ) ( ) sCcc Vtvdt

tdvRCdt

tvdLC =++2

2 ( ) ( ) ( )LCVtv

LCdttdv

LR

dttvd s

Ccc =++

12

2

LR

2=α

LC1

0 =ω

( ) ( ) ( )LCVtv

dttdv

dttvd s

Cocc =++ 2

2

2

2 ωα

Page 29: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhParticular Solution

Set Inductor as Short CircuitCapacitor as Open Circuit

scp Vtv =)(

5.1&105.1 4 =×= ζα

40 101

==LC

ωComplementary Solution

R=300Ωtsts

c eetv 21 708.11708.110)( −+=

41 10618.2 ×−=s

42 10382.0 ×−=s

1&104 == ζαR=200Ωtsts

c teetv 21 5101010)( −−=

421 10−== ss

5.0&105.0 4 =×= ζαR=100Ω)sin(774.5)cos(1010)( tetetv n

tn

tc ωω αα −− −−=

8660=nω

Page 30: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

R=300Ω R=200Ω

R=100Ω

Page 31: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhGeneral RLC Circuit with DC Source

3,2,1,5.0,1.0=ζ

To avoid Overshoot,Design Damping Ratio to 1

Page 32: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. OhRLC Circuit with Parallel L & C

( ) ( ) ( ) ( ) ( )tiidttvL

tvRdt

tdvC nL

t

=+++ ∫ 011

0

Using KCL

Taking Derivative & Divide by C

( ) ( ) ( ) ( )dt

tdiC

tvLCdt

tdvRCdt

tvd n1112

2

=++

Page 33: Chapter 4 Transients - SNUengineering.snu.ac.kr/lecture/electric/Chapter04_SNU.pdf · Chapter 4 Transients ... Circuits with a resistance, a source, ... In Electric Circuit, forcing

SNUMSE

K.H. Oh

( ) ( ) ( ) ( )tftvdt

tdvdt

tvd=++ 2

02

2

2 ωα

RC1

LC1

0 =ω

( )dt

tdiC

tf n1)( =

: Damping Coefficient

: Undamped Resonant Frequency

: Forcing function

Linear 2nd Order Differential Equation

)()()( txtxtx cp +=

All treatments are same as Serial !