CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

12
1 MANDL AND SHAW CHAPTER 4 THE DIRAC FIELD 4.1 The number representation for fermions 4.2 The Dirac equation 4.3 Second quantization 4.4 The fermion propagator 4.5 The electromagnetic interaction and gauge invariance PROBLEMS; 4.1 4.2 4.3 4.4 4.5 APPENDIX A THE DIRAC EQUATION A1 A2 A3 A4 A5 A6 A7 A8 PROBLEMS; A.1 A.2 MAIANI AND BENHAR CHAPTER 6 THE DIRAC EQUATION 6.1 Properties 6.2 Hydrogen atom (skip) 6.3 Traces CHAPTER 7 QUANTIZATION OF THE DIRAC FIELD 7.1 Particles and Antiparticles 7.2 Second quantization 7.3 Canonical quantization 7.4 Lorentz group 7.5 Microcausality 7.6 Spin and statistics

Transcript of CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

Page 1: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

1

MANDL AND SHAW

CHAPTER 4 THE DIRAC FIELD4.1 The number representation for fermions ✔4.2 The Dirac equation4.3 Second quantization4.4 The fermion propagator4.5 The electromagnetic interaction and gauge invariancePROBLEMS; 4.1 4.2 4.3 4.4 4.5

APPENDIX A THE DIRAC EQUATION A1 A2 A3 A4 A5 A6 A7 A8PROBLEMS; A.1 A.2

MAIANI AND BENHAR

CHAPTER 6 THE DIRAC EQUATION6.1 Properties6.2 Hydrogen atom (skip)6.3 Traces

CHAPTER 7 QUANTIZATION OF THE DIRAC FIELD7.1 Particles and Antiparticles7.2 Second quantization7.3 Canonical quantization7.4 Lorentz group7.5 Microcausality7.6 Spin and statistics

0

Page 2: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

The Dirac Equation(Read Appendix A and Sec 4.2)

/1/ Recall the Schroedinger equation

The plane wave solutions are

Ψ(x,t) = C e i ( p.x − E t ) (ħ = 1)

H Ψ = E Ψ ⇒ E = p2 /2m

(nonrelativisic)

P = – i ∇, so P Ψ = p Ψ(x,t )

The plane wave is an eigenstate ofmomentum.

Notations, conventions and units❏ Section 1.2: RATIONALIZED gaussian

electromagnetic units❏ Section 2.1: Relativity notations❏ Section 6.1: Natural units

2

x μ = ( x 0, x 1, x2 , x3 ) ; x 0 = c t

g μν = g μν = DIAG( 1 , −1, −1, −1 )

xμ = g μν x ν ; ( x0 , xi ) = (x0 , xi)

p.x = g μν p μ x ν = p0 x0 − pi xi

p2 = p.p = E2 − p2 = m2

∂μ = ∂ /∂xμ = ( ∂ /∂x0 , ∂ /∂xi )

ħ = 1 and c = 1

α = e2 /(4πħc) = 1 / 137.037

1

Page 3: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

● To be consistent with relativity,t and ( x, y, z ) should be treated similarly; because the Lorentz transformations mix t and ( x, y, z).

So let’s try

i ∂Ψ/∂t = ( α.P + β m ) Ψ

such that

( α.P + βm ) 2 = P 2 + m2

The quantities β and ( αx , αy , αz ) will be

matrices.

Now try

Ψ(x,t) ∝ e i ( p.x − E t ) u .

3

/2/ The Dirac equationWe need an equation with these properties:

(i) linear in time, (unlike Klein Gordon)

(ii) with plane wave solutions,(iii) with E = .

Ψ(x,t) ∝ e i ( p.x − E t ) = e − i p.x

i ∂Ψ/∂t = H Ψ

Should we try

H Ψ = Ψ ;

i.e., H = ?

But that is a nonlocal operator.

16

√ p2+m2

√ p2+m2

√ P2+m2

1

sqrt of P2+m2

Page 4: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

Four - vector notations (Appendix A)Define ɣ0 = β;also, ( ɣ1 , ɣ2 , ɣ3 ) = ( βαx , βαy , βαz )

UPPER AND LOWER INDICES:{x0 , x1 , x2 , x3 } = { ct, x , y, z} ( c = 1 ){x0 , x1 , x2 , x3 } = { ct, −x , −y, −z}gμν = diag(1,−1,−1,−1)

{ɣ0 , ɣ1 , ɣ2 ,ɣ3 } = β { 1 , αx , αy , αz }{ɣo , ɣ1 , ɣ2 ,ɣ3 } = β { 1 , −αx , −αy , −αz }ɣ . A = ɣμ Aμ = ɣμ A

μ = ɣ0 A0− ɣi Ai

β and ( αx , αy , αz )

Since they don’t commute, they must be matrices.

4

1

Page 5: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

/3/ The gamma matricesWhat are the gamma matrices?They are not unique.

The gamma matrices are 4 X 4 matrices, defined by certain anticommutation relations:

Thus, the defining equation is

{ γμ , γν } = 2 gμν (★)

5

i ( γ0 ∂0 + γi ∂i ) ψ − m ψ = 0

i γμ ∂μψ − m ψ = 0

i γ • ∂ψ − m ψ = 0

i ∂ ψ − m ψ = 0

That is the Dirac equation.

Various notations may be used

Slash notation

Q = γμ Qμ .

{ αi , αj } = 2 δij

{ γi , γj } = { βαi , βαj } = − 2 δij

{ γi , γ0 } = { βαi , β } = 0

{ γ0 , γ0 } = 2 (γ0)2 = 2

2

Page 6: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

6

● The standard representation (“Dirac rep.”) for the gamma matrices is

Exercise. Verify (★).

● The Majorana representation

which is sometimes convenient.

● (Peskin and Schroeder use yet a different representation.)

(We never raise the index on a Pauli matrix!)

2

Theorem. If { γμ , γν } = 2 gμν , and U is a unitary matrix (U♰U = 1) ,then { γ′ μ , γ′ ν } = 2 gμν where γ′ μ = U γμ U♰ .

Proof.

Exercise.Find U such that γM

μ = U γμ U♰ .

Page 7: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

For most calculations, we don’t need to use any specific representation of the gamma matrices. Instead we can use some identities that are true for all representations.

{ γμ , γν } = 2 gμν (★)

/4/ Examples of gamma matrix identities

∎ Trace ( γμ γν )

Lemma. Trace(BA) = Trace(AB).

Proof. Trace(BA)

= ∑ Brs Asr = ∑ Asr Brs

= Trace(AB).

Even if A and B do not commute,i.e., BA ≠ AB, always Tr(BA) = Tr(AB).

∎ Trace ( γμ γν γρ γσ )

7

3

Page 8: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

∎ γμ γρ γμ

∎ Etc.

We’ll use many such identities.See the Appendix, Sections A.2 and A.3.

8

3

Page 9: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

/5/ The Dirac spinors

▶ Plane wave solutions of the Dirac equation

9

4

Page 10: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

▶ In the standard (Dirac) representation:

10

4 Normalization choiceThis can be done in different ways.We’ll follow Mandl and Shaw ;eq. (A.27) ;

Also, define

and

completeness

Page 11: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

11

Check the normalization:“ENERGY PROJECTION OPERATORS” ;Section A.5 ;

4

Page 12: CHAPTER 4 THE DIRAC FIELD 6.1 Properties 6.2 Hydrogen atom ...

Homework Problems due Friday, Feb. 17

Problem 24.A. Determine the Dirac spinors v1(p) and v2(p) for

antiparticles.

B. Determine the polarization sum Λ−(p) for antiparticles.

12

HW