Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion...

67
Electric Machines I 2017 Shiraz University of Technology Dr. A. Rahideh In The Name of God The Most Compassionate, The Most Merciful

Transcript of Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion...

Page 1: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

Electric Machines I

2017 Shiraz University of Technology Dr. A. Rahideh

In The Name of God The Most Compassionate, The Most Merciful

Page 2: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

2

Table of Contents1.   Introduction to Electric Machines

2.   Electromagnetic Circuits 

3.   Principle of Electromechanical Energy Conversion 

4.   Principle of Direct Current (DC) Machines 

5.   DC Generators 

6.   DC Motors 

2017 Shiraz University of Technology Dr. A. Rahideh

Page 3: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

3

Chapter 3Principle of Electromechanical Energy Conversion

3.1.   Electromechanical Relations

3.2.   Slow versus Fast Movements

3.3.   Mechanical Force Calculations

3.4.   Developed Torque in Doubly Excited Systems 

2017 Shiraz University of Technology Dr. A. Rahideh

Page 4: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

4

Electromechanical RelationsMotoring Case

Electrical System

Coupling Field

Mechanical System

Electrical losses

elecP mechP

Magnetic losses Mechanical losses

Ohmic (copper) losses

Hysteresis losses

Eddy current losses

Bearing losses

Ventilation

Windage

mechfieldelec WWW mechfieldelec dWdWdW

2017 Shiraz University of Technology Dr. A. Rahideh

Page 5: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

5

Magnetic System with Single Excitation

irve

i

e

r

v

2irviei

dtirvidteidt 2

mechfieldelec dWdWdW 0mechdW

eidtdWdW fieldelec dtde

N

iddWfield

2017 Shiraz University of Technology Dr. A. Rahideh

Page 6: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

6

Magnetic Relay with Single ExcitationAssumption 1: The movable part cannot move or is not allowed to move

0mechdW iddWdW fieldelec

2017 Shiraz University of Technology Dr. A. Rahideh

Page 7: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

7

Magnetic Relay with Single ExcitationAssumption 1: The movable part cannot move

0mechdW

iddWdW fieldelec

0

idWfield

N

ggcc lHlHNi

B ggcc

field NAdBN

lHlHW

0

0BHg

B

gccfield AdBlBlHW0

0

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

2017 Shiraz University of Technology Dr. A. Rahideh

Page 8: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

8

Magnetic Relay with Single ExcitationAssumption 1: The movable part cannot move

where is the core volumeis the air‐gap volume

B

gccfield AdBlBlHW0

0

B

gccfieldBVdBHVW

00

2

2

cVgV

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

Stored magnetic energy in the core

Stored magnetic energy in the air‐gap

2017 Shiraz University of Technology Dr. A. Rahideh

Page 9: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

9

Magnetic Relay with Single ExcitationAssumption 1: The movable part cannot move

In the case of linear systems:

0

2

0

2

22 BVBVW g

rcfield

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

Stored magnetic energy in the core

Stored magnetic energy in the air‐gap

constantr

rc

BH0

2017 Shiraz University of Technology Dr. A. Rahideh

Page 10: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

10

Magnetic Relay with Single ExcitationExample 1: In the following system if the air‐gap flux density is 1 T and air‐gap length is constant and fringing effect is neglected, calculate:a) The DC source voltage;b) Stored magnetic energy.

1.0

(At/m)H

(T)B

200

0.8

400

1.2

600

0.6

1000800

cm5

i 250N

+ v _

+ e _

5r

cm10

Fixed part

Mov

able

par

t

Spring

mmg 5cm10 Not in scale cm5 cm5

cm10

cm5

2017 Shiraz University of Technology Dr. A. Rahideh

Page 11: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

11

Magnetic Relay with Single ExcitationSolution 1: From the curve   

1.0

(At/m)H

(T)B

200

0.8

400

1.2

600

0.6

1000800

T1 cg BBAt/m670cH

At/m10795104

1 37

0

g

g

BH

cm5

i 250N

+ v _

+ e _

5r

cm10

Fixed part

Mov

able

par

t

Spring

mmg 5cm10 Not in scale cm5 cm5

cm10

cm5

ggcc lHlHNi 2

m6.0clmm5gl

A4.3321 ggcc lHlH

Ni

V167 rivdc

2017 Shiraz University of Technology Dr. A. Rahideh

Page 12: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

12

Magnetic Relay with Single ExcitationSolution 1: 

1.0

(At/m)H

(T)B

200

0.8

400

1.2

600

0.6

1000800

T1 cg BB

1

00

2

2BVdBHVW gccfield

33 m10305.01.06.0 cV

35 m10505.01.0005.02 gV

7

253

10421105335103

fieldW

J9.20895.19005.1 fieldW

2017 Shiraz University of Technology Dr. A. Rahideh

Page 13: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

13

Energy and CoenergyEnergy

Coenergy

0

idWfield

)A(i

(Wb) Stored Energy

Coenergy

i

field diW0

iWW fieldfield

2017 Shiraz University of Technology Dr. A. Rahideh

Page 14: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

14

-i curve in system with changing air-gap

The ‐i curve  varies with the air‐gap length

)A(i

(Wb.t)

Increasing air-gap length

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

2017 Shiraz University of Technology Dr. A. Rahideh

Page 15: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

15

Magnetic Relay with Single ExcitationAssumption 2: The movable part can move but slowly

In this case the current remains constant during the movement.

2017 Shiraz University of Technology Dr. A. Rahideh

Page 16: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

16

Magnetic Relay with Single ExcitationAssumption 2: The movable part can move but slowly

From o to a: No movement yet, therefore 

o )A(i

(Wb.t) Closed

Open a

b

1i

2

1

c

d

oadfieldelec AiddWdW

0mechdW

mechfieldelec dWdWdW

2017 Shiraz University of Technology Dr. A. Rahideh

Page 17: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

17

Magnetic Relay with Single ExcitationAssumption 2: The movable part can move but slowly

From a to b:

o )A(i

(Wb.t) Closed

Open a

b

1i

2

1

c

d

abcdelec AiiddW 121

oabmech AdW

mechfieldelec dWdWdW

oadobcafieldbfieldfield AAWWdW )()(

2017 Shiraz University of Technology Dr. A. Rahideh

Page 18: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

18

Magnetic Relay with Single ExcitationAssumption 3: The movable part can move but very fast

In this case the flux linkage remains constant during the movement.

2017 Shiraz University of Technology Dr. A. Rahideh

Page 19: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

19

Magnetic Relay with Single ExcitationAssumption 3: The movable part can move but very fast

From o to a: No movement yet, therefore 

oadfieldelec AiddWdW

0mechdW

mechfieldelec dWdWdW

b

o )A(i

(Wb.t) Closed

Open a

1i

2

1

e

d c

2i

2017 Shiraz University of Technology Dr. A. Rahideh

Page 20: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

20

Magnetic Relay with Single ExcitationAssumption 3: The movable part can move but very fast

From a to c:

mechfieldelec dWdWdW

b

o )A(i

(Wb.t) Closed

Open a

1i

2

1

e

d c

2i

0 iddWelec

oacmech AdW

oadocdafieldcfieldfield AAWWdW )()(

2017 Shiraz University of Technology Dr. A. Rahideh

Page 21: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

21

Magnetic Relay with Single ExcitationAssumption 3: The movable part can move but very fast

From c to b: No movement, therefore 

cbedfieldelec AiddWdW

0mechdW

mechfieldelec dWdWdW

b

o )A(i

(Wb.t) Closed

Open a

1i

2

1

e

d c

2i

2017 Shiraz University of Technology Dr. A. Rahideh

Page 22: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

1‐Why does the current remain constant during the slow movement?

2‐Why does the flux linkage remain constant during the fast movement?

3‐Why should the currents at the open and closed stages be the same?

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

22

Some Questions (H.W)

2017 Shiraz University of Technology Dr. A. Rahideh

Page 23: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

23

Magnetic Relay with Single ExcitationAssumption 4: The movable part moves with normal speed

2017 Shiraz University of Technology Dr. A. Rahideh

Page 24: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

24

Magnetic Relay with Single ExcitationAssumption 4: The movable part moves with normal speed

From o to a: No movement yet, therefore 

oadfieldelec AiddWdW

0mechdW

mechfieldelec dWdWdW

b

o )A(i

(Wb.t) Closed

Open a

1i

3

1

f

d

c

2i

e 2

2017 Shiraz University of Technology Dr. A. Rahideh

Page 25: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

25

Magnetic Relay with Single ExcitationAssumption 4: The movable part moves with normal speed

From a to c:

mechfieldelec dWdWdW

acedelec AiddW

oacmech AdW

oadoceafieldcfieldfield AAWWdW )()(

b

o )A(i

(Wb.t) Closed

Open a

1i

3

1

f

d

c

2i

e 2

2017 Shiraz University of Technology Dr. A. Rahideh

Page 26: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

i

N

+ v _

+ e _

r

g

Fixed part

Mov

able

par

t

Spring

26

Magnetic Relay with Single ExcitationAssumption 4: The movable part moves with normal speed

From c to b: No Movement, therefore

mechfieldelec dWdWdW

b

o )A(i

(Wb.t) Closed

Open a

1i

3

1

f

d

c

2i

e 2

cbfefieldelec AiddWdW

0mechdW

2017 Shiraz University of Technology Dr. A. Rahideh

Page 27: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

27

Electromechanical Energy ConversionExample 2: The energy conversion cycles of two machines are OABO and OABCO curves shown below. If the energy conversion efficiency is defined as follows, calculate R1 and R2

EnergyElectricalInputEnergyConverted

R

B

O )A(i

(Wb.t)

A

4

3

1

(1)

B

O )A(i

(Wb.t)

A

4

3

1

(2)

C

2

2017 Shiraz University of Technology Dr. A. Rahideh

Page 28: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

28

Electromechanical Energy ConversionSolution 2: Part (1)

4.0104

1

11

elec

mech

WW

R

B

O )A(i

(Wb.t)

A

4

3

1

(1)

10443

1

1

01

ddididW B

A

A

Oelec

41 OABOmech AW

2017 Shiraz University of Technology Dr. A. Rahideh

Page 29: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

29

Electromechanical Energy ConversionSolution 2: Part (2)

7.0107

2

22

elec

mech

WW

R

10443

3

3

1

1

02

idddidididW C

B

B

A

A

Oelec

72 OABCOmech AW B

O )A(i

(Wb.t)

A

4

3

1

(2)

C

2

2017 Shiraz University of Technology Dr. A. Rahideh

Page 30: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

30

Mechanical ForceThe average force is calculated as the mechanical work divided by the displacement

ntDisplacemeWorkMechanical

aveF

g

dx

i

N

+ v _

r

Fixed part

Mov

able

par

t

Spring

x

)A(i

(Wb.t)

a

0x

gx

x dxx

Fully open (no movement yet)

Fully closed

o

c h b

k

d

f

2017 Shiraz University of Technology Dr. A. Rahideh

Page 31: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

31

Mechanical Force

• If the flux linkage is constant (fast movement),

)A(i

(Wb.t)

a

0x

gx

x dxx

Fully open (no movement yet)

Fully closed

o

c h b

k

d

f

oabmech AdW

oahmech AdW

0elecdW

mechfieldelec dWdWdW

fieldmech dWdW

fielddWFdx

cte

field

xxW

F

),(

2017 Shiraz University of Technology Dr. A. Rahideh

Page 32: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

32

Mechanical Force

• If the current is constant (slow movement),

)A(i

(Wb.t)

a

0x

gx

x dxx

Fully open(no movement yet)

Fully closed

o

c h b

k

d

f

oabmech AdW

oacmech AdW

okafokcdacdfelec AAAdW

mechfieldelec dWdWdW fieldmech WddW

ctei

field

xxiW

F

),(

fieldfieldafieldafieldcfieldcfieldelec WddWWWWWdW )()()()(

fieldWdFdx

2017 Shiraz University of Technology Dr. A. Rahideh

Page 33: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

Translational movementForce

Rotational movement Torque

33

Force and Torque Calculation

where  is the angular position.

ctei

field

xxiW

F

),(

cte

field

xxW

F

),(

ctei

field iWT

),(

cte

fieldWT

),(

2017 Shiraz University of Technology Dr. A. Rahideh

Page 34: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

34

Electromechanical Energy ConversionExample 3: In an electromechanical system                             for

and                       . Calculate the force exerted on the movable part if the current is 3 A and air‐gap length is 5 cm.

Solution: 1st method (Coenergy)               2nd method (Energy)

209.0xi 40 i cm103 x

i

field diW0

ctei

field

xxiW

F

),(

cte

field

xxW

F

),(

0

idWfield

2017 Shiraz University of Technology Dr. A. Rahideh

Page 35: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

35

Electromechanical Energy Conversion

Solution 3: 1st method (Coenergy)

For                  and 

209.0xi 40 i cm103 x

2/3

00 3209.009.0 i

xdi

xidiW

ii

field

2/32 3

209.0),(i

xxxiW

Fctei

field

A3i cm5x ?F

xi09.0

A3i cm5x N1243209.0 2/3

2 ix

F

2017 Shiraz University of Technology Dr. A. Rahideh

Page 36: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

36

Electromechanical Energy Conversion

Solution 3: 2nd method (Energy)

For                and 

209.0xi 40 i cm103 xA3i cm5x ?F

A3i cm5x

309.009.0

3

2

2

0

2

0

xdxidWfield

3

2

3

2

09.031

09.02

309.02),(

x

ixxx

xWF

cte

field

N7.12409.031

09.02

3

2

xixF

2017 Shiraz University of Technology Dr. A. Rahideh

Page 37: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

37

Electromechanical Energy ConversionExample 4: In the following system assume flux is constant during the movement, calculate the average force.

g

Fixed part A

Movable part N

xxg

2017 Shiraz University of Technology Dr. A. Rahideh

Page 38: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

38

Electromechanical Energy ConversionSolution 4: Since the permeability of the core goes to infinity, the system is linear.

g

Fixed part A

Movable part N

x xg

Li

2NL

221

2

21

212

21

LiLiWfield

N

2

021

AxgWfield

AxxW

Fcte

field

0

221 1),(

2017 Shiraz University of Technology Dr. A. Rahideh

Page 39: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

39

Electromechanical Energy ConversionExample 5: In an electromechanical system the            characteristics is defined as                                        for                   , calculate the average force when                .

i 22/3 15.2 xi m10 xm6.0x

0

223

0)1(5.2 dxidWfield

)1(245),( 2

xx

xWF

cte

field

224525

52 )1( xWfield

26.0 xF

2017 Shiraz University of Technology Dr. A. Rahideh

Page 40: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

40

Developed Torque in Doubly Excited Systems

Consider the following electric motor with double excitation.

wherestator currentrotor currentstator flux linkagerotor flux linkagestator self‐inductancerotor self‐inductancemutual inductance

rrsselec dididW

is

vs

2sN

2sN

Stator

vr

rN

ir

rrssrr

rsrsss

iLiMiMiL

sr

risi

sLrLsrM

2017 Shiraz University of Technology Dr. A. Rahideh

Page 41: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

41

Developed Torque in Doubly Excited Systems

The inductances are defined as follows

wherestator number of turnsrotor number of turnsreluctance seen by stator fluxreluctance seen by rotor fluxreluctance seen by resultant flux

s

ss

NL

2

is

vs

2sN

2sN

Stator

vr

rN

ir

s

r

rNsN

sr

r

rr

NL

2

sr

rssr

NNM

2017 Shiraz University of Technology Dr. A. Rahideh

Page 42: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

42

Developed Torque in Doubly Excited Systems

Assumption 1: The rotor cannot rotate

is

vs

2sN

2sN

Stator

vr

rN

ir

rrsselec dididW

rrssrr

rsrsss

iLiMiMiL

rrssrrrsrssselec iLiMdiiMiLdidW

rrrsrsrrssrssselec diiLdiiMdiiMdiiLdW

mechfieldelec dWdWdW

(1)

rrrrssrsssfield diiLiidMdiiLdW

rrss i

rrr

ii

rssr

i

sssfield diiLiidMdiiLW000

0

2212

21

rrrssrssfield iLiiMiLW

2017 Shiraz University of Technology Dr. A. Rahideh

Page 43: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

43

Developed Torque in Doubly Excited Systems

Assumption 2: The rotor can rotate

Taking differentiation from the relationyields

is

vs

2sN

2sN

Stator

vr

rN

ir

rrsselec dididW

rrssrr

rsrsss

iLiMiMiL

rrssrrrsrssselec iLiMdiiMiLdidW

rrrrrsrrssrsr

srsrrssrssssselec

dLidiiLdMiidiiM

dMiidiiMdLidiiLdW2

2

rrrrrsrsr

srsrrssrsssssfield

dLidiiLdiiM

dMiidiiMdLidiiLdW2

21

221

2212

21

rrrssrssfield iLiiMiLW

2017 Shiraz University of Technology Dr. A. Rahideh

Page 44: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

44

Developed Torque in Doubly Excited Systems

Assumption 2: The rotor can rotate

is

vs

2sN

2sN

Stator

vr

rN

ir

rrsselec dididW

rrssrr

rsrsss

iLiMiMiL

rrrrrsrrssrsr

srsrrssrssssselec

dLidiiLdMiidiiM

dMiidiiMdLidiiLdW2

2

rrrrrsrsr

srsrrssrsssssfield

dLidiiLdiiM

dMiidiiMdLidiiLdW2

21

221

mechfieldelec dWdWdW

rrsrrsssmech dLidMiidLidW 2212

21

2017 Shiraz University of Technology Dr. A. Rahideh

Page 45: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

45

Developed Torque in Doubly Excited Systems

Assumption 2: The rotor can rotate

Since the torque is defined as

it yields

is

vs

2sN

2sN

Stator

vr

rN

ir

rrsrrsssmech dLidMiidLidW 2212

21

ddWT mech

ddL

id

dMiiddL

iT rr

srrs

ss

2212

21

Electromagnetic torque

Reluctance torque Reluctance torque

2017 Shiraz University of Technology Dr. A. Rahideh

Page 46: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

46

Developed Torque in Doubly Excited Systems

Case 1: Both rotor and stator have salient structures:,        and        are function of     .

Reluctance torque is independent of current direction.

is

vs

2sN

2sN

Stator

vr

rN

ir

ddL

id

dMiiddL

iT rr

srrs

ss

2212

21

Electromagnetic torque

Reluctance torque due to rotor saliency

Reluctance torque due to stator 

saliency

sL rL srM

2017 Shiraz University of Technology Dr. A. Rahideh

Page 47: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

47

Developed Torque in Doubly Excited Systems

Case 2: Rotor has salient structures but stator is cylindrical:and        are function of     .

ddL

id

dMiiddL

iT rr

srrs

ss

2212

21

Electromagnetic torque

Reluctance torque due to rotor saliency

sL srM

0

ddMii

ddL

iT srrs

ss 2

21

is

vs

Stator

vr

rN

ir

2017 Shiraz University of Technology Dr. A. Rahideh

Page 48: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

48

Developed Torque in Doubly Excited Systems

Case 3: Stator has salient structures but rotor is cylindrical:and        are function of    .

ddL

id

dMiiddL

iT rr

srrs

ss

2212

21

Electromagnetic torque

Reluctance torque due to rotor saliency

rL srM

0

ddL

id

dMiiT rr

srrs

221

ir

is

vs

2sN

2sN

Stator

vr

rN

2017 Shiraz University of Technology Dr. A. Rahideh

Page 49: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

49

Developed Torque in Doubly Excited Systems

Case 4: Both rotor and stator are cylindrical (non‐salient):only          is a function of    .

ddL

id

dMiiddL

iT rr

srrs

ss

2212

21

Electromagnetic torque

srM

0

ddMiiT sr

rs

0

is

ir

Stator

vr

rN vs

2017 Shiraz University of Technology Dr. A. Rahideh

Page 50: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

50

Developed Torque in Doubly Excited Systems

Example 6: In the following figure the rotor has no winding and the self‐inductance is assumed to be                                 where     is the rotor position. If stator current is                        .a) Calculate the torque exerted on the rotor.b) Find the conditions in which the average torque is not zero if  

where        is the angular velocity of the rotor and     is the initial position of the rotor. 

ddL

id

dMiiddL

iT rr

srrs

ss

2212

21

2cos10 LLLs tIi ms sin

tm m

si

N

Stator

Rotor

m

2017 Shiraz University of Technology Dr. A. Rahideh

Page 51: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

51

Developed Torque in Doubly Excited Systems

Solution 6:Part a)

Since rotor has no winding: d

dLi

ddMii

ddL

iT rr

srrs

ss

2212

21

2cos10 LLLs tIi ms sin

si

N

Stator

Rotor

m

0ri

ddL

iT ss2

21

2cossin 102

21 LL

ddtIT m

tLIT m 21

2 sin2sin

2017 Shiraz University of Technology Dr. A. Rahideh

Page 52: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

52

Developed Torque in Doubly Excited Systems

Solution 6:Part b)

To have non‐zero average torque the coefficient of t in one of the above sin terms should be zero:

or                      or

2cos10 LLLs tIi ms sin

si

N

Stator

Rotor

m

0ritLIT m 2

12 sin2sin

tm

2

2cos12sin12 ttLIT mm

tttLIT mmmm 2sin2sin2sin 21

21

12

21

0m m m

2017 Shiraz University of Technology Dr. A. Rahideh

Page 53: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

53

Developed Torque in Doubly Excited Systems

Solution 6:Part b)

1) If

2) If 

si

N

Stator

Rotor

m

tttLIT mmmm 2sin2sin2sin 21

21

12

21

0m

m

2sin12

21 LIT mave

2sin12

41 LIT mave

2017 Shiraz University of Technology Dr. A. Rahideh

Page 54: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

54

Electromechanical Energy ConversionExample 7: In the following system assume the movable part is fixed and the air‐gap length is               .1) Calculate the current and voltage if flux density in air‐gap is 0.5 T.2) Calculate the stored energy.

mm1d

3) Obtain the force exerted on the movable part.

4) Compute the inductance of the winding.

1.0

(At/m)H

(T)B

200

0.8

400

1.2

600

0.6

1000800

0.4 0.2

4r

V

Movable

cm5

i

500N

cm5 Spring

cm5

cm10

Not in scale cm5

d

cm10

cm5

2017 Shiraz University of Technology Dr. A. Rahideh

Page 55: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

55

Electromechanical Energy ConversionSolution 7:Part 1)

From the curve 

mm1 gld

T5.0 cg BB At/m350cH

1.0

(At/m)H

(T)B

200

0.8

400

1.2

600

0.6

1000800

0.4 0.2

NllH

NlHlH

i gB

ccggccg

0

m6.0cl 70 104

A215.1i

V86.4 riV

?i ?V

4r

V

Movable

cm5

i

500N

cm5 Spring

cm5

cm10

Not in scale cm5

d

cm10

cm5

2017 Shiraz University of Technology Dr. A. Rahideh

Page 56: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

56

Electromechanical Energy ConversionSolution 7:Part 2)

mm1 gldT5.0 cg BBB At/m350cH

1.0

(At/m)H

(T)B

200

0.8

400

1.2

600

0.6

1000800

0.4 0.2

m6.0cl 70 104

B

gccfieldBVdBHVW

00

2

2

33 m105.105.005.06.0 cV36 m105.205.005.0001.0 gV

J38.0fieldW

?fieldW

4r

V

Movable

cm5

i

500N

cm5 Spring

cm5

cm10

Not in scale cm5

d

cm10

cm5

2017 Shiraz University of Technology Dr. A. Rahideh

Page 57: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

57

Electromechanical Energy ConversionSolution 7:Part 3)

mm1 gld

T5.0 cg BBB

m6.0cl 70 104

B

ggcccfieldBAldBHAlW

00

2

2

xlg

0

2

2

BAx

WF g

cte

field

23 m105.205.005.0 gA

N7.248F

?F

4r

V

Movable

cm5

i

500N

cm5 Spring

cm5

cm10

Not in scale cm5

d

cm10

cm5

2017 Shiraz University of Technology Dr. A. Rahideh

Page 58: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

58

Electromechanical Energy ConversionSolution 7:Part 3)

mm1 gld

T5.0 cg BBB

m6.0cl 70 104

iNAB

iN

iL

23 m105.205.005.0 gA

H514.0L

?L

215.15.0105.2500 3

L

4r

V

Movable

cm5

i

500N

cm5 Spring

cm5

cm10

Not in scale cm5

d

cm10

cm5

2017 Shiraz University of Technology Dr. A. Rahideh

Page 59: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

59

Electromechanical Energy ConversionExample 8: In the following system assume the current is 1.215 A and the air‐gap is fully closed.1) Calculate the flux density.2) Calculate the force exerted on spring.3) Calculate the stored energy

1.0

(At/m)H

(T)B

200

0.8

400

1.2

600

0.6

1000800

0.4 0.2

0d

4r

V

Movable

cm5

i

500N

cm5 Spring

cm5

cm10

Not in scale cm5

d

cm10

cm5

2017 Shiraz University of Technology Dr. A. Rahideh

Page 60: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

60

Electromechanical Energy ConversionSolution 8:Part 1)

From the curve 

0 gld

T21.1cB

1.0

(At/m)H

(T)B

200

0.8

400

1.2

600

0.6

1000800

0.4 0.2

ggcc lHlHNi

m6.0cl 70 104

?B

cclHNi At/m1012c

c lNiH

A215.1i

4r

V

Movable

cm5

i

500N

cm5 Spring

cm5

cm10

Not in scale cm5

d

cm10

cm5

2017 Shiraz University of Technology Dr. A. Rahideh

Page 61: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

61

Electromechanical Energy ConversionSolution 8:Part 2)

0 gldT21.1cB At/m1012cH

1.0

(At/m)H

(T)B

200

0.8

400

1.2

600

0.6

1000800

0.4 0.2

m6.0cl 70 104

B

gccfieldBVdBHVW

00

2

2

33 m105.105.005.06.0 cV

0gV

J92.0fieldW

?fieldW

B

ccfield dBHVW0

4r

V

Movable

cm5

i

500N

cm5 Spring

cm5

cm10

Not in scale cm5

d

cm10

cm5

2017 Shiraz University of Technology Dr. A. Rahideh

Page 62: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

62

Electromechanical Energy ConversionSolution 8:Part 3)

0 gld

T21.1 cg BBB

m6.0cl 70 104

B

ggcccfieldBAldBHAlW

00

2

2

xlg

0

2

2

BAx

WF g

cte

field

23 m105.205.005.0 gA

N4.1456F

?F

4r

V

Movable

cm5

i

500N

cm5 Spring

cm5

cm10

Not in scale cm5

d

cm10

cm5

2017 Shiraz University of Technology Dr. A. Rahideh

Page 63: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

63

Developed TorqueExample 9: In the following figure the rotor has no winding and the self‐inductance is assumed to be                                         where      is the rotor position. If stator current is 10 Aac with frequency of 60 Hz:                       .a) In which rotational velocity the average torque is not zero if  

where        is the angular velocity of the rotor and     is the initial position of the rotor. 

b) In the velocity obtained above calculate the maximum torque and mechanical power.

c) Obtain maximum torque at zero velocity. 

ddL

id

dMiiddL

iT rr

srrs

ss

2212

21

4cos2.02cos3.01.0 sL

tm m

si

N

Stator

Rotor

m

2017 Shiraz University of Technology Dr. A. Rahideh

Page 64: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

64

Developed TorqueSolution 9:Part a)

ddL

iT ss2

21

4cos2.02cos3.01.0 sL tm

ti ss cos10

si

N

Stator

Rotor

m

4cos2.02cos3.01.0cos10 221

ddtT s

120602 s

4sin8.02sin6.0cos50 2 tT s

)(4sin8.0)(2sin6.02

2cos150

tttT mm

s

2017 Shiraz University of Technology Dr. A. Rahideh

Page 65: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

65

Developed TorqueSolution 9:Part a)

or                                           or

4cos2.02cos3.01.0 sL tm

ti ss cos10

si

N

Stator

Rotor

m

120602 s

)(4sin8.0)(2sin6.02

2cos150

tttT mm

s

422sin4.0422sin4.022sin3.022sin3.0

)(4sin8.0)(2sin6.025

tttt

ttT

smsm

smsm

mm

)sin()sin(cossin 21 bababa

0m 120 sm 6021 sm

2017 Shiraz University of Technology Dr. A. Rahideh

Page 66: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

66

Developed TorqueSolution 9:Part b)

at 

at

4cos2.02cos3.01.0 sL tm

si

N

Stator

Rotor

m

120602 s

120 sm

6021 sm

2sin5.7aveT

Nm5.7max aveT 4 k

4sin10aveT

W28271205.7max maveTP

Nm10max aveT82 k

W18856010max maveTP

2017 Shiraz University of Technology Dr. A. Rahideh

Page 67: Chapter 3-Principle of Electromechanical Energy Conversion...Electromechanical Energy Conversion Example 2: The energy conversion cycles of two machines are OABO and OABCO curves shown

67

Developed TorqueSolution 9:Part c)

4cos2.02cos3.01.0 sL tm

si

N

Stator

Rotor

m

120602 s

0m 4sin202sin15 aveT

Nm31max aveT

04cos802cos300 aveT

012cos282cos3 2

082cos32cos16 2 62.02cos

81.02cos o8.25o9.71 Nm10max aveT

2017 Shiraz University of Technology Dr. A. Rahideh