Chapter 3. Elementary Functions

39
Chapter 3. Elementary Functions Weiqi Luo ( 骆骆骆 ) School of Software Sun Yat-Sen University Email [email protected] Office # A313

description

Chapter 3. Elementary Functions. Weiqi Luo ( 骆伟祺 ) School of Software Sun Yat-Sen University Email : [email protected] Office : # A313. Chapter 3: Elementary Functions. The Exponential Functions The Logarithmic Function Branches and Derivatives of Logarithms - PowerPoint PPT Presentation

Transcript of Chapter 3. Elementary Functions

Page 1: Chapter 3. Elementary Functions

Chapter 3. Elementary Functions

Weiqi Luo (骆伟祺 )School of Software

Sun Yat-Sen UniversityEmail : [email protected] Office : # A313

Page 2: Chapter 3. Elementary Functions

School of Software

The Exponential Functions The Logarithmic Function Branches and Derivatives of Logarithms Some Identities Involving Logarithms Complex Exponents Trigonometric Function Hyperbolic Functions Inverse Trigonometric and Hyperbolic Functions

2

Chapter 3: Elementary Functions

Page 3: Chapter 3. Elementary Functions

School of Software

The Exponential Function

29. The Exponential Function

3

,z x iye e e z x iy

cos siniye y i y

According to the Euler’ Formula

cos sinz x xe e y ie y

Note that here when x=1/n (n=2,3…) & y=0, e1/n denotes the positive nth root of e.

u(x,y) v(x,y)

Single-Valued

Page 4: Chapter 3. Elementary Functions

School of Software

Properties

29. The Exponential Function

4

1 2 1 2z z z ze e e

1 1 1 2 2 2; +iyz x iy z x Let

1 1 2 2 1 1 2 2x +iy x +iy x iy x iy( e )( e )e e e e1 2 1 2x x iy iy( )(e e )e e

1 2 1 2x x x x=ee e Real value:

Refer to pp. 18

1 2 1 2iy iy i(y )e e e y1 2 1 2x x i(y )e e y

1 2 1 2 1 2( )+ ( y )z z x x i y 1 2z +ze

Page 5: Chapter 3. Elementary Functions

School of Software

Properties

29. The Exponential Function

5

1

1 2

2

zz z

z

ee

e1 2 2 1z z z ze e e

Refer to Example 1 in Sec 22, (pp.68), we have that

z zde e

dz everywhere in the z plane

which means that the function ez is entire.

2 0ze

Page 6: Chapter 3. Elementary Functions

School of Software

Properties

29. The Exponential Function

6

0ze For any complex number z

z x iy ie e e re &xr e y

| | 0 & arg( ) 2 ( 0, 1, 2,...)z x zr e e e y n n

2 2z i z ie e e 2 2, cos 2 sin 2 1z i z ie e e i

which means that the function ez is periodic, with a pure imaginary period of 2πi

Page 7: Chapter 3. Elementary Functions

School of Software

Properties

29. The Exponential Function

7

0xe For any real value x

while ez can be a negative value, for instance

cos sin 1ie i

Page 8: Chapter 3. Elementary Functions

School of Software

Example

In order to find numbers z=x+iy such that

29. The Exponential Function

8

1ze i /42z x iy ie e e e

/42 &x iy ie e e 1

ln 2 & 2 ,( 0, 1, 2,...)2 4

x y n n

1 1ln 2 ( 2 ), ( 0, 1, 2,...)

2 4z i n n

Page 9: Chapter 3. Elementary Functions

School of Software

pp. 92-93

Ex. 1, Ex. 6, Ex. 8

29. Homework

9

Page 10: Chapter 3. Elementary Functions

School of Software

The Logarithmic Function

30. The Logarithmic Function

10

log ln ( 2 ), ( 0, 1, 2,...)z r i n n 0iz re

It is easy to verify that

log ln ( 2 ) ln ( 2 )z r i n r i n ie e e e re z

Please note that the Logarithmic Function is the multiple-valued function.

iz re ln r i ln ( 2 )r i ln ( 2 )r i …

One to infinite values

Page 11: Chapter 3. Elementary Functions

School of Software

The Logarithmic Function

30. The Logarithmic Function

11

ln | | arg( )z i z

log ln ( 2 ), ( 0, 1, 2,...)z r i n n 0iz re

Suppose that 𝝝 is the principal value of argz, i.e. -π < ≤𝝝 π

g ln ( ) lnLo z r iArg z r i is single valued.

And

log 2 , 0, 1, 2,...z Logz i n n

Page 12: Chapter 3. Elementary Functions

School of Software

Example 1

30. The Logarithmic Function

12

log( 1 3 ) ?i

( 2 /3)log( 1 3 ) log(2 )ii e

2ln 2 ( 2 ), 0, 1, 2...

3i n n

Page 13: Chapter 3. Elementary Functions

School of Software

Example 2 & 3

30. The Logarithmic Function

13

log1 ln1 (0 2 ) 2 , 0, 1, 2,...i n n i n

1 0Log

log( 1) ln1 ( 2 ) (2 1) , 0, 1, 2,...i n n i n

( 1)Log i

Page 14: Chapter 3. Elementary Functions

School of Software

The Logarithm Function

where𝝝=Argz, is multiple-valued.

If we let θ is any one of the value in arg(z), and let α denote any real number and restrict the value of θ so that

The above function becomes single-valued.

With components

31. Branches and Derivatives of Logarithms

14

log ln ( 2 ), 0, 1, 2,... z r i n n

log ln , ( 0, 2 )z r i r

2

( , ) ln & ( , )u r r v r

Page 15: Chapter 3. Elementary Functions

School of Software

The Logarithm Function

is not only continuous but also analytic throughout the domain

31. Branches and Derivatives of Logarithms

15

log ln , ( 0, 2 )z r i r

0, 2r A connected open set

?

Page 16: Chapter 3. Elementary Functions

School of Software

The derivative of Logarithms

31. Branches and Derivatives of Logarithms

16

log ln , ( 0, 2 )z r i r

( , ) ln & ( , )u r r v r

&r rru v u rv

1 1 1log ( ) ( 0)i i

r r i

dz e u iv e i

dz r re z

1og

dL z

dz z

Page 17: Chapter 3. Elementary Functions

School of Software

Examples When the principal branch is considered, then

31. Branches and Derivatives of Logarithms

17

3( ) ( )Log i Log i

ln12 2i i

And

33 ( ) 3(ln1 )

2 2Log i i i

3( ) 3 ( )Log i Log i

Page 18: Chapter 3. Elementary Functions

School of Software

pp. 97-98

Ex. 1, Ex. 3, Ex. 4, Ex. 9, Ex. 10

31. Homework

18

Page 19: Chapter 3. Elementary Functions

School of Software

32. Some Identities Involving Logarithms

19

1 2 1 2log( ) log logz z z z

where 1 21 1 2 20 & 0i iz re z r e

1 21 2 1 2 1 2 1 2log( ) log( ) ln( ) ( 2 )i iz z re r e r r i n

1 2 1 1 2 2ln ln ( 2 ) ( 2 )r r i n i n

1 1 1 2 2 2[ln ( 2 )] [ln ( 2 )]r i n r i n

1 1 2 2(ln | | arg ) (ln | | arg )z i z z i z

1 2log logz z 1 2n n n 1 11

1 2 1 2 1 22

log( ) log( ) log log log logz

z z z z z zz

Page 20: Chapter 3. Elementary Functions

School of Software

Example

32. Some Identities Involving Logarithms

20

1 2 1z z

1 2log( ) log(1) 2z z n i

1 2log( ) log( ) log( 1) (2 1)z z n i

1 2 1 2 1 2log log (2 1) (2 1) 2( 1)z z n i n i n n i

1 22 log( )n i z z 1 2 1n n n

Page 21: Chapter 3. Elementary Functions

School of Software

32. Some Identities Involving Logarithms

21

log ( 0, 1, 2,...)n n zz e n

When z≠0, then

1log1/ ( 1,2,3...)zn nz e n

logc c zz e Where c is any complex number

Page 22: Chapter 3. Elementary Functions

School of Software

pp. 100

Ex. 1, Ex. 2, Ex. 3

32. Homework

22

Page 23: Chapter 3. Elementary Functions

School of Software

Complex Exponents

When z≠0 and the exponent c is any complex number, the function zc is defined by means of the equation

where logz denotes the multiple-valued logarithmic function. Thus, zc is also multiple-valued.

33. Complex Exponents

23

logc c zz e

The principal value of zc is defined by

ogc cL zz e

Page 24: Chapter 3. Elementary Functions

School of Software

33. Complex Exponents

24

iz re If and α is any real number, the branch

log lnz r i ( 0, 2 )r Of the logarithmic function is single-valued and analytic in the indicated domain. When the branch is used, it follows that the function

exp( log )cz c z

is single-valued and analytic in the same domain.

exp( log ) exp( log )cd d cz c z c z

dz dz z

Page 25: Chapter 3. Elementary Functions

School of Software

Example 1

33. Complex Exponents

25

2 exp( 2 log )ii i i

1log ln1 ( 2 ) (2 ) , ( 0, 1, 2,...)

2 2i i n n i n

2 exp[(4 1) ], ( 0, 1, 2,...)ii n n

Note that i-2i are all real numbers

Page 26: Chapter 3. Elementary Functions

School of Software

Example 2

The principal value of (-i)i is

33. Complex Exponents

26

exp( ( )) exp( (ln1 )) exp2 2

iLog i i i

P.V. exp2

ii

Page 27: Chapter 3. Elementary Functions

School of Software

Example 3 The principal branch of z2/3 can be written

33. Complex Exponents

27

3 22 2 2 2exp( ) exp( ln ) exp( )

3 3 3 3Logz r i r i

Thus

23 32 23 2 2

cos sin3 3

z r i r

This function is analytic in the domain r>0, -π<𝝝<π

P.V.

Page 28: Chapter 3. Elementary Functions

School of Software

Example 4 Consider the nonzero complex numbers

33. Complex Exponents

28

1 2 31 , 1 & 1z i z i z i

2 ln 21 2( ) 2i i iLog iz z e e

When principal values are considered

(1 ) /4 (ln 2)/21i iLog i iz e e e

(1 ) /4 (ln 2)/22i iLog i iz e e e

-2 ln 22 3( ) ( 2)i i iLog iz z e e e ( )

( 1 ) 3 /4 (ln 2)/23i iLog i iz e e e

1 2 1 2( )i i iz z z z

22 3 2 3( )i i iz z z z e

Page 29: Chapter 3. Elementary Functions

School of Software

The exponential function with base c

33. Complex Exponents

29

z logc z ce

When logc is specified, cz is an entire function of z.

log log log logz z c z c zd dc e e c c c

dz dz

Based on the definition, the function cz is multiple-valued. And the usual interpretation of ez (single-valued) occurs when the principal value of the logarithm is taken. The principal value of loge is unity.

Page 30: Chapter 3. Elementary Functions

School of Software

pp. 104

Ex. 2, Ex. 4, Ex. 8

33. Homework

30

Page 31: Chapter 3. Elementary Functions

School of Software

Trigonometric Functions

34. Trigonometric Functions

31

cos sin & cos sinix ixe x i x e x i x

sin & cos2 2

ix ix ix ixe e e ex x

i

Here x and y are real numbers

Based on the Euler’s Formula

sin & cos2 2

iz iz iz ize e e ez z

i

Here z is a complex number

Page 32: Chapter 3. Elementary Functions

School of Software

Trigonometric Functions

34. Trigonometric Functions

32

sin & cos2 2

iz iz iz ize e e ez z

i

Both sinz and cosz are entire since they are linear combinations of the entire Function eiz and e-iz

sin cos & cos sind d

z z z zdz dz

Page 33: Chapter 3. Elementary Functions

School of Software

pp.108-109

Ex. 2, Ex. 3

34. Homework

33

Page 34: Chapter 3. Elementary Functions

School of Software

Hyperbolic Function

35. Hyperbolic Functions

34

sinh ,cosh2 2

z z z ze e e ez z

Both sinhz and coshz are entire since they are linear combinations of the entire Function eiz and e-iz

sinh cosh , cosh sinhd d

z z z zdz dz

Page 35: Chapter 3. Elementary Functions

School of Software

Hyperbolic v.s. Trgonometric

35. Hyperbolic Functions

35

sin( ) sinh & cos( ) coshi iz z iz z

sinh( ) sin & cosh( ) cosi iz z iz z

Page 36: Chapter 3. Elementary Functions

School of Software

pp. 111-112

Ex. 3

35. Homework

36

Page 37: Chapter 3. Elementary Functions

School of Software

36. Inverse Trigonometric and Hyperbolic Functions

37

In order to define the inverse sin function sin-1z, we write1sinw z sinw zWhen

sin2

iw iwe ew z

i

2( ) 2 ( ) 1 0iw iwe iz e

2 1/2(1 )iwe iz z 1 2 1/2sin log( (1 ) )w z i iz z

Multiple-valued functions. One to infinite many values

Similar, we get 1 2 1/2cos log( (1 ) )z i z i z

1tan g2

i i zz lo

i z

Note that when specific branches of the square root and logarithmic functions are used,all three Inverse functions become single-valued and analytic.

Page 38: Chapter 3. Elementary Functions

School of Software

Inverse Hyperbolic Functions

36. Inverse Trigonometric and Hyperbolic Functions

38

1 2 1/2sinh log[ ( 1) ]z z z

1 2 1/2cosh log[ ( 1) ]z z z

1 1 1tanh log

2 1

zz

z

Page 39: Chapter 3. Elementary Functions

School of Software

pp. 114-115

Ex. 1

36. Homework

39