Chapter 2 System Ist Order Response

download Chapter 2 System Ist Order Response

of 18

Transcript of Chapter 2 System Ist Order Response

  • 8/22/2019 Chapter 2 System Ist Order Response

    1/18

    Chapter 2 (page#119)

    Continuous-TimeSystem Responses

    2.2 Response of Ist Order System

    2.3 Response of Second-Order Systems

    2.5 Stability Testing

    Introduction

    2.4 Higher- Order System Response

  • 8/22/2019 Chapter 2 System Ist Order Response

    2/18

    Introduction

    Chapter: Continuous-Time System Responses

    Higher Order Systems = Sum of first order and second order systems. Why?

    Time function f(t) = u(t); Laplace Transform F(s) = 1/s

    [see table B.1 P=836]

    Examples of Step Inputs:

    Common input to control system is the : Step function

  • 8/22/2019 Chapter 2 System Ist Order Response

    3/18

    OtherTypes of Inputs:

    Ramp

    Sinusoidal

    Pulse

    Repeated Sequence

    Random Number

    In automatic Landing of

    aircraft, the aircraft is

    commanded to follow for the

    glide slop; this glide slop is

    commonly approximately 3o

    For investigation: response of Ist & IInd order systems are

    checked for various inputs

  • 8/22/2019 Chapter 2 System Ist Order Response

    4/18

    0

    0

    as

    b

    )s(R

    )s(C)s(G)s(T

    2.2(p 120) RESPONSE OF FIRST-ORDER SYSTEMS

    1

    s

    K

    )s(R

    )s(C

    Kb

    aLet

    0

    0

    &

    1

    K)s(R)s)(s(C 1

    K)s(R)s()s(C

    1

    K)s(R)s()s(C

    11

    Can be written as

    = time constant:

    = RC (seconds); = L / R (sec)

    K=DC gain i.e steady state valueG(0)=K

    )......(rbca

    dt

    dc1200 )s(Rb]aS)[s(C 00

    /s

    /K

    )s(R

    )s(C

    1

    X

    S = -a0

    Pole =1/=-a0

    X

    S = -a0

    Pole =1/=-a0

    CharacteristicsEquation: Why?

    C(t)

    t

    K

    -S0

    S=0-Transient

    -Natural Steady-state

    Ts=4

  • 8/22/2019 Chapter 2 System Ist Order Response

    5/18

    K)s(R)s()s(C

    11

    The inverse Laplace Transform (Time domain)

    K)s(r)dt

    d()t(c

    11K)s(r

    )t(c

    dt

    )t(dc

    1

    Now take the Laplace transform and include the initial conditions

    )s(Rk)s(C

    )(c)s(CS

    0

    ILLT of a constant = impulse response; impulse function c(0)(t)

    C(0) : initial condition and is a constant value

    2.2(p 120) RESPONSE OF FIRST-ORDER SYSTEMS .Cont

  • 8/22/2019 Chapter 2 System Ist Order Response

    6/18

    )s(R

    s

    /K

    s

    )(C)s(C

    11

    0

    )s(RK)s(C

    )(c)s(CS 0

    )s(R

    K

    )(C)s)(s(C 01

    2.2(p 120) RESPONSE OF FIRST-ORDER SYSTEMS .Cont

  • 8/22/2019 Chapter 2 System Ist Order Response

    7/18

    )s(R

    s

    /K

    s

    )(C)s(C

    11

    0

    C(s)

    1

    1

    s

    1s

    /K

    +

    +

    R(s)

    c(0)

    1s

    /K

    R(s) C(s)C(0) initial condition

    is impulse input

    2.2(p 120) RESPONSE OF FIRST-ORDER SYSTEMS .Cont

    If initialconditions=0

  • 8/22/2019 Chapter 2 System Ist Order Response

    8/18

    Unit-step response for first-order system =R(s) = A/s

    )s(Rs

    K

    )s(C

    1

    ss

    /K)s(C1

    1

    )s(R)s(G)s(C

    1

    s

    K

    s

    K

    1

    s

    /KR(s) C(s)

    = 1/s

    2.2(p 120) RESPONSE OF FIRST-ORDER SYSTEMS .Cont

  • 8/22/2019 Chapter 2 System Ist Order Response

    9/18

    1s

    K

    s

    K)s(C

    Inverse Laplace transform [see table B.1 P=836]

    01 t,)e(K)t(ct

    t

    KeK)t(c

    Originates in the pole of R(s), has

    Constant Value & is Called:

    Forced Response

    Steady State Response

    Originates in the System G(s) Transfer

    Function & is Called:

    Transient Response

    Natural Response

    As t0 Ke-t/

    goes to zero

    e-50

    TABLE 4.1

    t e-t/

    0 1

    0.3679

    2 0.1353

    3 0.0498

    4 0.0183

    5 0.0067

    TABLE 4.1

    t e-t/

    0 1

    0.3679

    2 0.1353

    3 0.0498

    4 0.0183

    5 0.0067

    2.2(p 120) RESPONSE OF FIRST-ORDER SYSTEMS .Cont

  • 8/22/2019 Chapter 2 System Ist Order Response

    10/18

    t e-t/

    0 1

    0.3679

    2 0.1353

    3 0.0498

    4 0.0183

    5

    0.0067

    )e(Kt

    1

    tKe

    Figure 2.1&2.2 Step response of first order system

    Slop = K/ If decay at its initial rate, it wouldreach a value of zero in sec

    2 %

    1 %

    Settling

    Time

    Ts=4

    -K

    K

    -0.5K

    0.5K

    0t

    C(t)

    Ts=4

    2.2(p 120) RESPONSE OF FIRST-ORDER SYSTEMS .Cont

  • 8/22/2019 Chapter 2 System Ist Order Response

    11/18

    Example Find the unit step response of a system with the transfer function

    150

    52

    s.

    .

    )s(R

    )s(C)s(G

    2

    5

    sX

    S = -2

    Pole =1/

    ss)s(R)s(G)s(C

    1

    2

    5

    2

    2525

    s

    /

    s

    /

    )e()/()t(c t2125 )e(Kt

    1

    K= 5/2 =steady state response or forced response

    s=-2 s= 1/ =2 =0.5 sec Ts=4 =2 sec

    Characteristic equation ? S+2=0

    ponsenaturalres)e)/( t225 t Will go to zero (decay exponentially)Ts=4 =2 sec

    C(t)

    t

    2.5

    5.0;5.2;1

    )(

    Ks

    KsG

    1

    /

    s

    K

    Step response R(s) = A/s = 1/s unit step response

  • 8/22/2019 Chapter 2 System Ist Order Response

    12/18

    150

    52

    s.

    .

    )s(R

    )s(C)s(G 5052

    1.;.K;

    s

    K

    )e(.)t(c

    Similarly

    t

    152

    S=d/dt=0

    t > 4S=d/dt 0t < 4

    52

    1050

    520

    0

    150

    52

    .

    x.

    .)(G

    s

    s.

    .

    )s(G

    5215244

    .)e(.)t(ct

    TABLE 4.1

    t e-t/

    0 1

    0.3679

    2 0.1353

    3 0.0498

    4 0.0183

    5 0.0067

    TABLE 4.1

    t e-t/

    0 1

    0.3679

    2 0.1353

    3 0.0498

    4 0.0183

    5 0.0067

    521050

    520

    0

    .x.

    .)(G

    s

    C(t)

    t

    2.5

    Ts=4 =2 sec

    K

    015200

    )e(.)(ct

    015200

    )e(.)(ct

  • 8/22/2019 Chapter 2 System Ist Order Response

    13/18

    Example was stable: (Pole in left half of S-plane) the forced response is the steady-state response and the natural response is the transient response

    DC gain:

    If the system is stable, so that c(t) has a (dc) steady-statevalue:

    For unstable responses, "steady-state" and "transient"

    are meaningless

    XS = -2

    Pole =1/

    2

    5

    s

    )s(T

  • 8/22/2019 Chapter 2 System Ist Order Response

    14/18

    MATLAB m.File Program

    num=[0 0 5];

    den=[1 2 0];

    [r,p,k]=residue(num,den)

    pause

    G=tf ([0 5],[1,2]);

    Step (G)

    >>r =

    -2.5000

    2.5000

    >>p =

    -2

    0

    >>k =[ ]

    t = 0:0.01:3;

    c=2.5*(1-exp(-2*t));

    plot(t,c)

    MATLAB Si li k

  • 8/22/2019 Chapter 2 System Ist Order Response

    15/18

    MATLAB Simulink

    D2 1 F D ill P bl S l ti (P 123)

  • 8/22/2019 Chapter 2 System Ist Order Response

    16/18

    0

    0

    )(

    )()()(

    as

    b

    sR

    sYsGsT

    D2.1 For Drill Problems Solutions (Page 123)

    ConditionsInitialNotuea

    Ab

    a

    Abty ta )()( 0

    0

    0

    0

    0

    00

    0 )0()()(as

    YsR

    as

    bsY

    Zero-state

    componentZero-input

    component

    ICWithtuea

    Aby

    a

    Abty

    ta)()0()( 0

    0

    0

    0

    0

    10)0(

    );(6)(

    ;3

    3

    )(

    )(Pr

    y

    tutr

    ssT

    aoblemDrill

  • 8/22/2019 Chapter 2 System Ist Order Response

    17/18

    dt

    diLiRV

    )....(rbcadt

    dc1200 ViR

    dt

    diL

    )s(V)RLS)(s(I

    )RLS()s(V

    )s(I

    1

    1

    s

    K

    )s(R

    )s(C

    )L/RS(

    L/

    )s(V

    )s(I

    1

    /s

    /K

    )s(R

    )s(C

    1

  • 8/22/2019 Chapter 2 System Ist Order Response

    18/18

    X

    S = -a0

    Pole =1/=-a0

    Characteristics

    Equation

    X

    S = -a0

    Pole =1/=-a0X

    S = -a0

    Pole =1/=-a0