Chapter 18

93
Willy Sansen 10-05 181 Distortion in elementary transistor circuits Willy Sansen KULeuven, ESAT-MICAS Leuven, Belgium [email protected]

description

dd

Transcript of Chapter 18

  • 5/21/2018 Chapter 18

    1/93

    Willy Sansen 10-05 181

    Distortionin elementary transistor circuits

    Willy Sansen

    KULeuven, ESAT-MICAS

    Leuven, Belgium

    [email protected]

  • 5/21/2018 Chapter 18

    2/93

    Willy Sansen 10-05 182

    Why distortion ?

    mc

    f

    mc

    f

    CM3

    Non-linearity :

    distortion

    Ch1 Ch2 Ch1 Ch2

    Mixing up channels !!!

  • 5/21/2018 Chapter 18

    3/93

    Willy Sansen 10-05 183

    Table of contents

    Definitions : HD, IM, intercept point, ..

    Distortion in a MOST Single-ended amplifier

    Differential amplifier

    Distortion in a bipolar transistor

    Reduction of distortion by feedback

    Distortion in an opamp

    Other cases of distortion and guide lines

  • 5/21/2018 Chapter 18

    4/93

    Willy Sansen 10-05 184

    Linear distortion

    vIN

    t

    vOUT

    t

    vOUT

    vIN

    f

    High-pass filter

  • 5/21/2018 Chapter 18

    5/93

    Willy Sansen 10-05 185

    Linear distortion

    vIN

    t

    vOUT

    t

    vOUT

    vIN

    f

    Low-pass filter

  • 5/21/2018 Chapter 18

    6/93

    Willy Sansen 10-05 186

    Non-linear distortion

    vIN

    vOUT

    t

    t

    vIN

    vOUT

    QRounded or compressed

    Quiescent point

    Expanded

  • 5/21/2018 Chapter 18

    7/93

    Willy Sansen 10-05 187

    Soft and hard non-linearity

    vIN

    vOUT

    t

    tvIN

    vOUT

    Q

    Soft non-lin.

    vIN

    vOUT

    t

    t

    vIN

    vOUT

    Q

    Hard non-lin.

  • 5/21/2018 Chapter 18

    8/93

    Willy Sansen 10-05 188

    Non-linearity : by power series

    vIN

    vOUT

    t

    tvIN

    vOUT

    Q

    Soft non-lin.

    vOUT = a0 +

    a1vIN + a2vIN2 + a3vIN

    3 + ...

    vIN(t) vOUT(t)

  • 5/21/2018 Chapter 18

    9/93

    Willy Sansen 10-05 189

    How to find a0, a1, a2, a3, ...

    y = a0 + a1u + a2u2 + a3u

    3 +

    a0 = y a1 =dy

    du u = 0

    a3 =

    d3y

    du3 u = 06

    1

    u = 0

    a2 =

    d2y

    du2 u = 02

    1

  • 5/21/2018 Chapter 18

    10/93

    Willy Sansen 10-05 1810

    Definition of harmonic distortion HD

    y = a0 + a1u + a2u2 + a3u

    3 +

    With u = U cos t cos2 x = 1/2 ( 1 + cos 2x)cos3 x = 1/4 ( 3 cos x + cos 3x)

    y = a0 + a1u + a2u2

    + a3u3

    + = a0 +

    (a1+ a3U2) U cos t + U2 cos 2t + U3 cos 3t

    HD2 = U

    4

    a22

    a34

    3

    2

    1

    4

    1a2a1

    a3a1

    HD3 = U2

  • 5/21/2018 Chapter 18

    11/93

    Willy Sansen 10-05 1811

    Amplitude HD versus input signal

    U

    HD10 %

    1 %

    0.1 %

    - 20 dB

    - 40 dB

    - 60 dB

    0.01 0.1 1

    HD2

    HD3

    slope 1

    slope 2

    Low-distortion

    region :slopes 1 and 2

    Noise

  • 5/21/2018 Chapter 18

    12/93

    Willy Sansen 10-05 1812

    HD of a resistor

    HD

    (dB)

    Output Voltage (Vptp)

    slope 1

    slope 1

    slope 2

    slope 2

    THD = HD22 + HD3

    2 +

    HD2

  • 5/21/2018 Chapter 18

    13/93

    Willy Sansen 10-05 1813

    Output spectrum

    Freq. (Hz)

    Output

    amplitude

    (dB)HD2 HD3

    2f 3ff

  • 5/21/2018 Chapter 18

    14/93

    Willy Sansen 10-05 1814

    Definition of intermodulation distortion IM

    y = a0 + a1u + a2u2 + a3u

    3 +

    with u = U (cos 1t + cos 2t )

    y = a0 +

    IM2 = 2 HD2 = U

    IM2 at 1 2

    IM3 at 21 2 and 1 22

    a2a1

    a3a14

    3IM3 = 3 HD3 = U

    2

  • 5/21/2018 Chapter 18

    15/93

    Willy Sansen 10-05 1815

    IM components

    f2f1-f2 f1 f2 2f2-f19 10 11 12

    2f1 f1+f2 2f220 21 22

    3f1 2f1+f2 2f2+f1 3f230 31 32 33 MHz

    0 f2-f10 1

    IM3IM

    3IM

    3IM

    3

    IM2IM2

    HD2 HD2 HD3 HD3

    F F

  • 5/21/2018 Chapter 18

    16/93

    Willy Sansen 10-05 1816

    IM components

    f2f1-f2 f1 f2 2f2-f19 10 11 12

    2f1 f1+f2 2f220 21 22

    3f1 2f1+f2 2f2+f1 3f230 31 32 33 MHz

    0 f2-f10 1

    IM3IM

    3IM

    3IM

    3

    IM2IM2 HD2

    HD2 HD3 HD3

    a1U

    2 x or 6 dB

    3 x or 9.5 dB

    a3U33

    4 a3U31

    4

    a2U2a2U

    2a2U

    21

    2

    IM3 3 x larger !

    Next to Fs !

  • 5/21/2018 Chapter 18

    17/93

    Willy Sansen 10-05 1817

    Output spectrum of amplifier for IM

    Output

    amplitude

    (dB)

    Freq. (MHz)

    IM3IM3

    Ref.: J.Silva-Martinez, Kluwer 1993

  • 5/21/2018 Chapter 18

    18/93

    Willy Sansen 10-05 1818

    Amplitude IM3 versus input signal

    Vin (dB)Noise

    Vout (dB)

    a1Vin

    4

    3a3Vin

    3

    VNout

    IM3

    IMFDR3

    DRN

    IP3

    1 dB -1 dB

    Compression

    point

    IP3 is the IM3Intercept point

    SFDR3

  • 5/21/2018 Chapter 18

    19/93

    Willy Sansen 10-05 1819

    Relation IP3 and IM3

    Vin

    Vout

    a1Vin

    4

    3a3Vin

    3

    VNout

    IM3

    IMFDR3

    DRN

    IP3

    1 dB IP3 is Vin

    where IM3 = F

    IP3 =a1

    a33

    4

    = VinIM

    3

    1

    = VindB - IM3dB2

    1

  • 5/21/2018 Chapter 18

    20/93

    Willy Sansen 10-05 1820

    Vin

    Vout

    a1Vin

    4

    3

    a3Vin3

    VNout

    IM3

    IMFDR3

    DRN

    IP3

    1 dB

    Relation IMFDR3 and IP3

    IMFDR3 = max DR

    @ VNout = 43 a3Vin3

    IMFDR3 =

    a1

    a33

    4 1

    VNin2

    3

    =IP3

    VNin( )

    2/3

    = (IP3dB-VNindB)3

    2

  • 5/21/2018 Chapter 18

    21/93

    Willy Sansen 10-05 1821

    Vin

    Vout

    a1Vin

    4

    3

    a3Vin3

    VNout

    IM3

    IMFDR3

    DRN

    IP3

    1 dB

    = IP3dB - 9.6 dB

    -1 dB is x 0.891

    Vin1dBc = 0.109a1a33

    4

    Vin1dBc = 0.109 IP3

    The IP3 and -1 dB compression point

  • 5/21/2018 Chapter 18

    22/93

    Willy Sansen 10-05 1822

    Relationship exercise

    Vin

    Vout

    a1Vin

    4

    3a3Vin

    3

    VNout

    IM3

    IMFDR3

    DRN

    IP3

    1 dBa1 = 20 a3 = 0.4

    Vin = 0.45 VRMS or 6 dBm

    IP3 = 6 + 25 = 31 dBm

    IM3 = 0.3 % or -50 dB

    VNin = 30 VRMS (-78 dBm)

    IMFDR3 = 119 = 73 dB32

    Vin1dBc = 21 dBm

  • 5/21/2018 Chapter 18

    23/93

    Willy Sansen 10-05 1823

    Definition of crossmodulation distortion CM

    y = a0 + a1u + a2u2 + a3u

    3 +

    with u = U cos 1t + U (1 + mc cos ct ) cos 2t

    CM3 = mc U2 = mc IM34

    3

    mc

    f

    mc

    f

    CM3

    a3a1

    1 2 1 2

  • 5/21/2018 Chapter 18

    24/93

    Willy Sansen 10-05 1824

    Table of contents

    Definitions : HD, IM, intercept point, ..

    Distortion in a MOST

    Single-ended amplifier

    Differential amplifier

    Distortion in a bipolar transistor

    Reduction of distortion by feedback

    Distortion in an opamp

    Other cases of distortion and guide lines

  • 5/21/2018 Chapter 18

    25/93

    Willy Sansen 10-05 1825

    iDS = K (vGS - VT)2

    W

    L

    IDS + ids = K (VGS + vgs - VT)2

    IDS is the DC component

    iDS is the DC + ac component

    ids is the ac component

    Ids is the amplitude of the ac component

    Distortion in a single-MOST amplifier

    K = K

  • 5/21/2018 Chapter 18

    26/93

    Willy Sansen 10-05 1826

    DC and ac components

    vIN

    iDS

    t

    tvIN

    Q

    IDS : DC component

    iDS : DC + ac component

    ids : ac componentIds : amplitude of the ac

    component

    Ids

    IDSiDS

    ids

  • 5/21/2018 Chapter 18

    27/93

    Willy Sansen 10-05 1827

    IDS = K (VGS - VT)2

    W

    L

    IDS + ids = K (VGS + vgs - VT)2

    ids = K (VGS + vgs - VT)2 - K (VGS - VT)2

    ids = 2K (VGS - VT) vgs + K vgs2

    Distortion in a single-MOST amplifier

    K = K

  • 5/21/2018 Chapter 18

    28/93

    Willy Sansen 10-05 1828

    ids = 2K (VGS - VT) vgs + K vgs2

    or ids = g1vgs + g2vgs2 + g3vgs3 +

    g1 = 2K (VGS - VT)

    g2 = K

    g3 = 0

    IM2 = Vgs =g2g1

    & IM3 = 0Vgs

    2(VGS-VT)

    Coefficients a1, a2, a3 by comparison

    WL

    K = K

  • 5/21/2018 Chapter 18

    29/93

    Willy Sansen 10-05 1829

    Normalized current swing

    ids = 2K (VGS - VT) vgs + K vgs2 iDS = K (vGS - VT)

    2

    or y = a1u + a2u2 + a3u

    3 + ..

    y = =

    ids

    IDS

    y = = u + u2

    Ids

    IDS

    2 vgs

    VGS - VT+

    1

    4

    2 vgs

    VGS - VT( )2

    1

    4

    Vgs

    (VGS - VT)/2U =

    y is the relative current swing !

  • 5/21/2018 Chapter 18

    30/93

    Willy Sansen 10-05 1830

    Numerical example

    The peak value of Vgs

    is Vgsp

    = 100 mV

    (then VgsRMS = 100 /2 = 71 mVRMS)

    if VGS-VT = 0.5 V then Vgsp/[ 2(VGS-VT] = 0.1

    gives IM2 = 10 % (HD2 = 5 %) & IM3 = 0

    The relative current swing U = 0.1/0.25 = 0.4 !

  • 5/21/2018 Chapter 18

    31/93

    Willy Sansen 10-05 1831

    In general

    ids = gmvgs + K2gmvgs2

    + K3gmvgs3

    +govds + K2govds

    2 + K3govds3 +

    gmbvbs + K2gmbvbs2 + K3gmbvbs

    3 +

    K2gm&gmbvgsvbs + K3,2gm&gmbvgs2vbs

    + K3,gm&2gmbvgsvbs2 +

    +

    K3gm&gmb&govgsvdsvbs

    More coefficients a1, a2, a3 ...

  • 5/21/2018 Chapter 18

    32/93

    Willy Sansen 10-05 1832

    Distortion of a MOST diode

    iDS = K (vDS - VT)2

    y = =ids

    IDS

    y = = u + u2Ids

    IDS

    2 vds

    VDS - VT

    +1

    4

    2 vds

    VDS - VT

    ( )2

    1

    4

    Vds

    (VDS - VT)/2U =

    Same as for a MOST transistor amplifier !

  • 5/21/2018 Chapter 18

    33/93

    Willy Sansen 10-05 1833

    The zero HD3 point for smaller L

    gm

    VT

    wi

    vs

    VGSgm

    gm

    IDS = gm

    gmsat = WCoxvsat

    HD3 = 0 at VGS = VT ?

    VGS

    si

  • 5/21/2018 Chapter 18

    34/93

    Willy Sansen 10-05 1834

    Derivatives of gm

    Ref. Fager JSSC Jan. 2004, 24-33

    W = 60 m

    L = 0.6

    m

    VDS = 2 V

  • 5/21/2018 Chapter 18

    35/93

    Willy Sansen 10-05 1835

    A differential pair is symmetrical

    vOd

    vIN

    t

    t

    0

    RLIB

    rounded:

    compressed

    vId

    symmetrical:

    no 2nd order

  • 5/21/2018 Chapter 18

    36/93

    Willy Sansen 10-05 1836

    y = =iOd

    IB

    vId

    VGS-VT

    1

    4

    vId

    VGS-VT

    ( )2

    IB

    VGS - VT

    1 -

    vId is the differential input voltage

    iOd is the differential output current (gmvId) or

    twice the circular current gmvId/2

    IB

    is the total DC current in the pair

    Note that gm = = K (VGS - VT)

    Distortion in MOST differential pair

    W

    L

  • 5/21/2018 Chapter 18

    37/93

    Willy Sansen 10-05 1837

    y = = U 1 - U2IOd

    IB

    1

    4 VId

    VGS - VT

    U =IM3 = U

    23

    32

    U - U31

    8

    1 - x 1 -x

    2

    Distortion in MOST differential amplifier

    y = =iOd

    IB

    vId

    VGS

    -VT

    1

    4

    vId

    VGS-VT

    ( )21 -

    IP3 = 4 (VGS - VT) 3.3 (VGS - VT)2

    3

    IM2 = 0

    U is the relative current swing

  • 5/21/2018 Chapter 18

    38/93

    Willy Sansen 10-05 1838

    Distortion in linear region

    VDS1 = RDID0.2 V

    IDS1 = 1VDS1(VGS1-VT)

    gm1 = 1VDS1 is constant

    Ref. Alini,JSSC, Dec.92, pp.1905-1915

    Low distortion !

  • 5/21/2018 Chapter 18

    39/93

    Willy Sansen 10-05 1839

    Table of contents

    Definitions : HD, IM, intercept point, ..

    Distortion in a MOST

    Single-ended amplifier

    Differential amplifier

    Distortion in a bipolar transistor

    Reduction of distortion by feedback

    Distortion in an opamp

    Other cases of distortion and guide lines

  • 5/21/2018 Chapter 18

    40/93

    Willy Sansen 10-05 1840

    ICE = IS exp( )

    ICE + ice = IS exp ( )

    VBE

    kTe/qVBE + vbe

    kTe

    /q

    1 + y = exp( )vbe

    kTe/q

    exp (u) = 1 + u + + + if u

  • 5/21/2018 Chapter 18

    41/93

    Willy Sansen 10-05 1841

    is the non-linear equation

    y u + + + ...u2

    2

    u3

    6U =

    Vbe

    kTe/q

    y is the relative current swing !

    a1 = 1

    a2 = 1/2

    a3 = 1/6

    IM2 = U =

    IM3 = U2 = ( ) 2

    a2a1

    Vbe

    kTe

    /q

    1

    2

    3

    4

    a3a1

    Vbe

    kTe/q

    1

    8

    Distortion in a bipolar transistor amplifier

  • 5/21/2018 Chapter 18

    42/93

    Willy Sansen 10-05 1842

    Numerical example

    1. Relative current swing is 10 %

    yp = 0.1 gives IM2 = 5 % (HD2 = 2.5%)IM3 = 0.125 % (HD3 = 0.04 %)

    As a result Vbep = yp(kTe/q)= 2.6 mVp (1.8 mVRMS)

    IP3 = 8 (kTe/q) = 74 mVp or 50 mVRMS or -13 dBm

    2. Vbep = 100 mV

    then yp = 0.1/0.026 4 (must be

  • 5/21/2018 Chapter 18

    43/93

    Willy Sansen 10-05 1843

    y = = u + +Id

    IDU =

    Same as for a Bipolar transistor amplifier !

    Vd

    kTe/q

    y u + + + ...u2

    2

    u3

    6

    u2

    2

    u3

    6

    iD = IS exp( )vD

    kTe/q

    Distortion in a diode

  • 5/21/2018 Chapter 18

    44/93

    Willy Sansen 10-05 1844

    Distortion in bipolar differential amplifier

    y = = tanhiOd

    IB

    y = U - U3IOd

    IB

    1

    3

    VId

    2kTe/qU =

    IM3 = U21

    4

    VId

    2kTe/q

    tanh x =ex - e-x

    x - x31

    3

    ex + e-x

    U is the relative current swing

    IP3 = 4 kTe/qIM2 = 0

  • 5/21/2018 Chapter 18

    45/93

    Willy Sansen 10-05 1845

    C = C0 ( 1 + a1V + a2V2 + ... )

    For poly-poly caps : a120 ppm/V

    a2 2 ppm/V2

    R = R0 ( 1 + a1V + a2V2 + ... ) [JFET with large VP]

    For diffused resistors : a1 5 ppm/V

    a2 1 ppm/V2

    Distortion in a resistor or capacitor

  • 5/21/2018 Chapter 18

    46/93

    Willy Sansen 10-05 1846

    Non-linearity depletion capacitance

    VIN0-VB

    Cj

    C0

    Cj =C0

    1 -

    vIN

    Cj = C0B (1 + x)-1/2 = C0B (1 - 1/2 x + 3/8 x

    2 - 5/16 x3 + ..)

    vIN = VB + vin

    Cj =

    C0

    1 +VB

    1

    1 +VB +

    vin

    x

  • 5/21/2018 Chapter 18

    47/93

    Willy Sansen 10-05 1847

    Table of contents

    Definitions : HD, IM, intercept point, ..

    Distortion in a MOST

    Single-ended amplifier

    Differential amplifier

    Distortion in a bipolar transistor

    Reduction of distortion by feedback

    Distortion in an opamp

    Other cases of distortion and guide lines

  • 5/21/2018 Chapter 18

    48/93

    Willy Sansen 10-05 1848

    Distortion reduction by feedback

    a1 a2 a3

    d1 d2 d3

    F

    v u

    v

    y

    y

    u = v - Fy

    y = a1u + a2 u2 + a3 u

    3

    y = d1v + d2 v2 + d3 v

    3

    elim. uelim. y coeff v2 : d2

    coeff v : d1

    coeff v3 : d3

    -

  • 5/21/2018 Chapter 18

    49/93

    Willy Sansen 10-05 1849

    Distortion reduction by feedback

    a1 a2 a3

    d1 d2 d3

    F

    v u

    v

    y

    y

    Loop gain 1+T = 1+a1Fu is (1+T) times smaller than v :

    v is reduced by loop gain (1+T)

    u = v - Fy

    a1

    1 + T

    a3 (1 + T) - 2F a22

    (1 + T)5

    d1 =

    d2 =

    d3 =

    a2

    (1 + T)3

    1

    F

    -

    i i i f

  • 5/21/2018 Chapter 18

    50/93

    Willy Sansen 10-05 1850

    IM2f = V =d2 V

    (1 + T)2d1

    a2

    a1

    1

    (1 + T)

    a2

    a1

    =V

    (1 + T)

    1

    (1 + T)

    a3

    a1

    2T

    (1 + T)2

    a2

    a1

    -V2

    (1 + T)2IM3f = V

    2d3

    d1

    3

    4= ( )[ ]

    3

    4

    2

    Distortion components with feedback

    reduction in

    current swing

    expansioncompression

    reduction by loop gain

    reduction in

    current swing

    Di i i h f db k l

  • 5/21/2018 Chapter 18

    51/93

    Willy Sansen 10-05 1851

    1

    (1 + T)

    a3

    a1

    2T

    (1 + T)2

    a2

    a1

    -V2

    (1 + T)2IM3f = V

    2d3

    d1

    3

    4=

    (

    )[ ]3

    4

    2

    Distortion components with feedback : examples

    MOST : a3 = 0 : a2 dominant

    Diff. pair : a2 = 0 : a3 dominant

    Bipolar : a1 = 1 a2 = 1/2 a3 = 1/6 : a2 dominant

    a3 a1 - 2 a22

    T

    1

    a1

    2

    a3

    T

    1

    a1 a3a11 -

    2 a22

    (

    )For large T : =

    E itt i t t d di t ti IM

  • 5/21/2018 Chapter 18

    52/93

    Willy Sansen 10-05 1852

    IM2f =Vin

    (1 + T)2

    1

    2

    1

    (1 + T)

    =U

    2

    Emitter resistor to reduce distortion IM2f

    1

    kTe/q

    Vin

    (1 + T)

    1

    kTe/q

    U = is the relative current swing

    T = gm RE =VRE

    kTe

    /q

    a2

    IM2f decreases linearly with T for constant U !

    a1 2=

    1

    E itt i t t d di t ti IM

  • 5/21/2018 Chapter 18

    53/93

    Willy Sansen 10-05 1853

    IM3f =

    Null for T = 0.5

    Emitter resistor to reduce distortion IM3f

    1 - 2T

    (1 + T)2

    U2

    8

    Vin

    (1 + T)

    1

    kTe/q

    U = is the relative current swing

    IM3f also decreases with T for constant U

    for large T !!

    a2

    a1 2

    =1 a3

    a1 6

    =1

    N ll i IM b R (Bi l t I 1 A)

  • 5/21/2018 Chapter 18

    54/93

    Willy Sansen 10-05 1854

    Null in IM3 if

    a3 (1 + T) = 2f a22

    a3 (1 + T) = 2T

    0.01 T

    RE

    IM

    %

    1

    0.1

    0.01

    0.1 1 10 100

    1 10 100 1k

    a1

    1

    a22

    T =

    - 1a1a3

    2a22

    T = 0.5

    IM2

    IM3

    Same slopes !

    Null in IM3 by RE (Bipolar trans. ICE = 1 mA)

    Emitter resistor R reduces distortion for large T

  • 5/21/2018 Chapter 18

    55/93

    Willy Sansen 10-05 1855

    Vin

    T

    1

    kTe/q

    U = =

    REICE

    Vin

    IM2fT = =U

    2T

    Vin kTe/q

    2 (REICE )2

    IM3fT = = (

    U2

    4T

    Emitter resistor RE reduces distortion for large T

    =

    kTe/q 2 T2

    Vin 1

    Vin2 kTe/q

    4 (REICE )3kTe/q 4 T

    3

    Vin 1

    =)2

    Source resistor R to reduce distortion

  • 5/21/2018 Chapter 18

    56/93

    Willy Sansen 10-05 1856

    IM2f =1

    (1 + T)

    U

    4

    Source resistor RS to reduce distortion

    is the relative current swing

    T = gm RS =VRS

    (VGS-VT)/2

    Vin

    (1 + T)

    1

    (VGS-VT)/2U =

    IM3f =T

    (1 + T)2

    3U2

    32

    a2

    a1 4=

    1a3 = 0

    (VGS-VT)/2 4 T2

    Vin 1=

    Vin (VGS-VT)/2

    4 (RSIDS )2

    (VGS-VT)

    2/4 32T3

    Vin2 3

    =3Vin

    2 (VGS-VT)/2

    32 (RSIDS )3

    Current source with series R

  • 5/21/2018 Chapter 18

    57/93

    Willy Sansen 10-05 1857

    Iout

    M2

    R

    M1

    VG

    +

    -

    Iout

    (VGS-VT) (VGS-VT)

    (W/L) (W/L)

    Same Iout & same VG :

    Same gain !

    Same output noise !

    Same distortion ?

    Current source with series R

    IM2f

    IM2= VR

    VGST1

    1 -

    ( 1 + ) 2

    VR

    VGST1

    Source & Emitter Follower

  • 5/21/2018 Chapter 18

    58/93

    Willy Sansen 10-05 1858

    Source & Emitter Follower

    vin vout

    IBVB

    RS

    U =

    Vin

    VEnL

    Vin

    (VGS - VT)/2

    1

    gmrDS

    If vBS = 0 !!

    CL

    vin vout

    IBVB

    RS

    CL

    U U

    U =

    Vin

    VE

    Vin

    kTe/q

    1

    gm ro= =

    Distortion Source follower with substrate effect

  • 5/21/2018 Chapter 18

    59/93

    Willy Sansen 10-05 1859

    vin vOUT

    IBVB

    vOUT = vIN - vGS

    KW/L

    IBvGS = VT +

    vOUTF = |2F| +vOUT - |2F|

    vIN = vOUT + VT0 + [ vOUTF ] +KW/L

    IB

    VT

    = VT0

    +

    [v

    OUTF ]

    Distortion Source follower with substrate effect

    CL

    Distortion Source follower - Example

  • 5/21/2018 Chapter 18

    60/93

    Willy Sansen 10-05 1860

    VOUT

    VIN

    = 0

    slope 1

    = 0.8 V 1/2

    slope 1/n

    0

    vIN = u2 + u + B

    u2 = vOUT + |2F|

    B = VGS0 - |2F| - |2F|

    KW/L

    IBVGS0 = VT0 +

    VT0 = 0.6 V ; VGS0 = 0.9 V; 2F = 0.7 V; B = -0.47 V; 1/n = 0.73

    a1 = 0.765; a2 = 0.02; a3 = -0.0035

    VINp = 1 Vp; HD2 = 1.32 %; HD3 = -0.114 %

    2 3 V

    0

    2

    V

    11

    1.37

    0.9 2.27

    1

    Distortion Source follower - Example

    Increasing the IP3 by feedback

  • 5/21/2018 Chapter 18

    61/93

    Willy Sansen 10-05 1861

    Increasing the IP3 by feedback

    M1Vid/2 -Vid/2

    2Ibias

    -ioutiout

    M1 M1Vid/2 -Vid/2

    Ibias

    -ioutiout

    M1

    Ibias

    R R 2R

    IP3 3.3 (VGS-VT)(1+gm1R)2 HD3/n

    2 n= 1+gm1R

    HD3 = - 60 dB for Vid = 1 V requires VGS-VT = 0.38 V and gm1R = 3 !!!

    Increasing the IP3 by feedback

  • 5/21/2018 Chapter 18

    62/93

    Willy Sansen 10-05 1862

    Increasing the IP3 by feedback

    Additional local FB

    2R

    More FB with opamps

    2R

    Distortion cancellation

  • 5/21/2018 Chapter 18

    63/93

    Willy Sansen 10-05 1863

    Distortion cancellation

    Vid/2 -Vid/2

    IB2IB1

    iout

    M1

    iout

    M2M1

    Parameters :

    = IB2/ IB1

    0.25

    v = VGST1/ VGST21.6

    VGST = VGS-VT

    IM3 0 if v = -1/3

    then iout = gm1 Vid (1 - 2/3 )

    Distortion cancellation

  • 5/21/2018 Chapter 18

    64/93

    Willy Sansen 10-05 1864

    Distortion cancellation

    IM3

    iDS

    IB= U - U3 U =

    Vid

    VGS - VT18 IM3 = U

    23

    32

    Vid

    VGS1- VT332 )

    2( 1 - v3

    1 - v

    IM3 0 if v00 = -1/3

    at which point iout = gm1 Vid (1 - 2/3 )

    iout = 2 (iDS1 - iDS2)

    Compensation of IM3

  • 5/21/2018 Chapter 18

    65/93

    Willy Sansen 10-05 1865

    p

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    0 0.25 0.5 0.75 1 1.25 1.5 1.75

    = 0.20

    v00 = 1.71

    = 0.25

    v00

    = 1.6

    = 0.33

    v00 = 1.44

    v

    1 -

    v3

    1 - v

    Output signal vs current ratio

  • 5/21/2018 Chapter 18

    66/93

    Willy Sansen 10-05 1866

    p g

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    1 -

    2/3

    0.25

    v00 = 1.6

    x 0.6

    Table of contents

  • 5/21/2018 Chapter 18

    67/93

    Willy Sansen 10-05 1867

    Definitions : HD, IM, intercept point, ..

    Distortion in a MOST

    Single-ended amplifier

    Differential amplifier

    Distortion in a bipolar transistor

    Reduction of distortion by feedback

    Distortion in an opamp

    Other cases of distortion and guide lines

    Miller CMOS opamp with Feedback

  • 5/21/2018 Chapter 18

    68/93

    Willy Sansen 10-05 1868

    p p

    GBW = 10 MHz & Avc = 10

    ZL = 100 k//5pF

    R2

    +

    -R1vIN

    vOUT

    ZL

    Av

    Av0

    f

    BW

    = 1 kHz

    GBW

    = 10 MHz

    101 MHz

    Distortion in input stage

  • 5/21/2018 Chapter 18

    69/93

    Willy Sansen 10-05 1869

    a1 a2 a3

    d1 d2 d3

    F

    v u

    v y

    u = v - Fy

    y = B1(a1u + a2 u2 + a3 u

    3)

    y = d1v + d2 v2 + d3 v

    3

    elim. uelim. y coeff v2 : d2

    coeff v : d1

    coeff v3 : d3

    B1y

    -

    1+T = 1 + B1a1F

    Distortion in input stage

  • 5/21/2018 Chapter 18

    70/93

    Willy Sansen 10-05 1870

    IM2f = V =d2 V

    (1 + T)2d1

    a2

    a1

    1

    (1 + T)

    a2

    a1

    =V

    (1 + T)

    1

    (1 + T)

    a3

    a1

    2T

    (1 + T)2

    a2

    a1

    -V2

    (1 + T)2

    IM3f = V2

    d3

    d1

    3

    4

    = ( )[ ]3

    4

    2

    1+T = 1 + B1a1F

    Same as before but with different Loop gain :

    Distortion in input stage with LPF

  • 5/21/2018 Chapter 18

    71/93

    Willy Sansen 10-05 1871

    a1 a2 a3

    d1 d2 d3

    F

    v u

    v y

    u = v - Fy

    y = B1p(a1u + a2 u2 + a3 u3)

    y = d1v + d2 v2 + d3 v

    3

    elim. uelim. y coeff v2 : d2

    coeff v : d1

    coeff v3 : d3

    yB1fp

    -

    1+T = 1 + B1pa1F

    Distortion in input stage with LPF

  • 5/21/2018 Chapter 18

    72/93

    Willy Sansen 10-05 1872

    IM2f =V

    (1 + T)2

    a2

    a1

    1

    (B1pa1F)2

    a2

    a1

    = V

    1

    (1 + T)

    a3

    a1

    V2

    (1 + T)2IM

    3f

    =3

    4

    diff.pair

    =a3

    a1

    3

    4

    1

    (B1pa1F)3 V

    2

    f

    ffp

    fp

    40 dB/dec

    60 dB/decIM3f =

    Single trans.

    a22

    a12

    3

    4

    2

    (B1pa1F)3

    V2

    Distortion in output stage

  • 5/21/2018 Chapter 18

    73/93

    Willy Sansen 10-05 1873

    A1

    d1 d2 d3

    F

    v u

    v y

    u = v - Fy

    y = A1b1u+A12b2u

    2+A13b3 u

    3

    y = d1v + d2 v2 + d3 v

    3

    elim. uelim. y coeff v2 : d2

    coeff v : d1

    coeff v3 : d3

    yb1 b2 b3

    -

    1+T = 1 + A1b1F

    Distortion in output stage

  • 5/21/2018 Chapter 18

    74/93

    Willy Sansen 10-05 1874

    IM2f =V

    (1 + T)2

    b2

    b1

    A1

    (A1b1F)2

    b2

    b1

    = V

    f

    f

    =

    b22

    b12

    3

    4

    2 A12

    (A1b1F)3 V2

    IM3f =

    Single trans.

    2T

    (1 + T)2

    b2

    b1

    V2

    (1 + T)2

    ( )3

    4

    2

    x A1

    x A12

    Two-stage opamp a & b

  • 5/21/2018 Chapter 18

    75/93

    Willy Sansen 10-05 1875

    IM2f

    ffp

    V

    T2

    a2

    a1 fp

    f

    V

    T2

    b2

    b1a1 T = a1b1F

    IM3f

    ffp

    V2

    T3

    a3

    a1

    V2

    T3

    b3

    b1a1

    2

    3

    4

    ( )2

    fp

    f( )

    3

    ( )a1a3 - 2 a22

    a1a3

    ( )b1b3 - 2 b22

    b1b3

    3

    4

    Three-stage opamp a & b & c

  • 5/21/2018 Chapter 18

    76/93

    Willy Sansen 10-05 1876

    IM2f

    ffp

    V

    T2

    a2

    a1 fp

    f

    V

    T2

    c2

    c1a1b1 T = a1b1c1F

    IM3f

    ffp

    V2

    T3

    a3

    a1

    V2

    T3

    c3

    c1a1

    2b12

    3

    4

    ( )2

    fp

    f( )

    3

    ( )a1a3 - 2 a22

    a1a3

    ( )c1c3 - 2 c22

    c1c3

    3

    4

    Distortion in an opamp at low frequencies

  • 5/21/2018 Chapter 18

    77/93

    Willy Sansen 10-05 1877

    12

    34

    VOUT= 1 V

    M1 M1

    M2 M2

    M4

    +- Cc

    M3

    GBW = 10 MHz

    Av0 = 10.000

    BW = 1 kHz

    Avc = 10Vin =0.1 mV

    Vm =

    10 mV

    ZL IDS1 = 6 A

    gm1 = 60 S

    IDS3 = 120 A

    gm3 = 1.2 mS

    RL = 100 k CL = 5 pF

    Cc = 1 pF

    Low-distortion amplifier

  • 5/21/2018 Chapter 18

    78/93

    Willy Sansen 10-05 1878

    Av

    Av0

    f

    BW

    = 1 kHz

    GBW= 10 MHz

    10

    Av

    Av0

    f

    vout

    vm

    RL(CL+Cc)

    1 MHz

    256 kHz

    Av2

    Av1

    30 MHz

    gm1

    gm3

    CL+C

    cCc

    0.3

    vin = constant

    fnd

    GBW

    Distortion in an opamp at low frequencies

  • 5/21/2018 Chapter 18

    79/93

    Willy Sansen 10-05 1879

    12

    34

    VOUT= 1 V

    M1 M1

    M2 M2

    M4

    +- Cc

    Vnode at 100 Hz ?

    M3

    GBW = 10 MHz

    Avc = 10

    Vin =0.1 mV

    Vm =

    10 mV

    ZL

    U1 = gm1Vin/IDS1 = 5 10-4

    IDS1 = 6 A

    IDS3 = 120 A

    U3 = gm3Vm/IDS3 = 0.1

    Distortion in an opamp at low frequencies

  • 5/21/2018 Chapter 18

    80/93

    Willy Sansen 10-05 1880

    Distortion generation by nonlinear output stage :

    Distortion reduction by feedback :

    T = 1000 IM2f= 2.5 %/1000 = 0.0025 % Negligible !

    U3 = gm3Vm/IDS3 = 0.1

    IM2 = U3/4 = 0.25 0.1 = 2.5 %

    Distortion in an opamp at high frequencies

  • 5/21/2018 Chapter 18

    81/93

    Willy Sansen 10-05 1881

    12

    34

    VOUT= 1 V

    M1 M1

    M2 M2

    M4

    +- Cc

    Vnode at 100 kHz ?

    M3

    GBW = 10 MHz

    Avc = 10

    Vin =10 mV

    Vm =

    10 mV

    ZL

    U1 = gm1Vin/IDS1 = 5 10-2

    IDS1 = 6 A

    IDS3 = 120 A

    U3 = gm3Vm/IDS3 = 0.1

    Distortion in an opamp at high frequencies

  • 5/21/2018 Chapter 18

    82/93

    Willy Sansen 10-05 1882

    Distortion generation by nonlinear output stage :

    Distortion reduction by feedback :T = 10 IM2f= 2.5 %/100 = 0.25 %

    U3 = gm3Vm/IDS3 = 0.1

    IM2 = U3/4 = 0.25 0.1 = 2.5 %

    Distortion generation by nonlinear input stage :

    U1 = gm1Vm/IDS1 = 0.05

    IM3 = U12/10 = 0.0025/10 = 0.025 % Negligible !

    Miller CMOS OTA Measured Distortion

  • 5/21/2018 Chapter 18

    83/93

    Willy Sansen 10-05 1883

    HD2 (dB)

    Freq.

    (Hz)

    1.8 V Low distortion CMOS Opamp

  • 5/21/2018 Chapter 18

    84/93

    Willy Sansen 10-05 1884

    Ref.Hernes Kluwer 2003

    GBW 3 GHz

    CL = 8 pF

    fP = 380 MHz

    at 0.38 Vpeak

    SR 900 V/s

    fP =2 Vpeak

    SR

    Large VGS4-VT

    HD2 & HD3 vs Amplitude

  • 5/21/2018 Chapter 18

    85/93

    Willy Sansen 10-05 1885

    large distortion

    Slope 1

    Slope 2

    HD2 & HD3 vs Frequency

  • 5/21/2018 Chapter 18

    86/93

    Willy Sansen 10-05 1886

    HD2 HD3dBdB

    Hz Hz

    Table of contents

  • 5/21/2018 Chapter 18

    87/93

    Willy Sansen 10-05 1887

    Definitions : HD, IM, intercept point, ..

    Distortion in a MOST

    Single-ended amplifier

    Differential amplifier

    Distortion in a bipolar transistor

    Reduction of distortion by feedback

    Distortion in an opamp

    Other cases of distortion and guide lines

    Other cases of distortion and guide lines

  • 5/21/2018 Chapter 18

    88/93

    Willy Sansen 10-05 1888

    Distortion caused by limited SR

    Distortion of a switch

    Distortion at high frequencies :

    Volterra series instead of power series

    Distortion in continuous-time filters

    Guide lines

    Guide lines for low distortion

  • 5/21/2018 Chapter 18

    89/93

    Willy Sansen 10-05 1889

    Scaling such that voltage amplitudes

    are limited

    Scaling such that relative current swings

    are limited Feedback

    All fully differential

    Distortion components

  • 5/21/2018 Chapter 18

    90/93

    Willy Sansen 10-05 1890

    Distortion comp. IM2 IM3x Up x Up

    2 Up = Vref=

    Bipolar 1/2 1/8 kTe/q

    MOST 1/4 0 (VGS-VT)/2

    Bip. diff.pair 0 1/4 2kTe/q

    MOST diff.pair 0 3/32 (VGS-VT)

    Vref

    Vip

    Distortion components with Feedback (T > 5)

  • 5/21/2018 Chapter 18

    91/93

    Willy Sansen 10-05 1891

    Distortion comp. IM2 -IM3x Up x Up

    2 Up = Vref=

    Bipolar 1/2T 1/4T kTe/q x T

    MOST 1/4T 3/32T (VGS-VT)/2 x T

    Bip. diff.pair 0 1/4T 2kTe/q x T

    MOST diff.pair 0 3/32T (VGS-VT) x T

    Vref

    Vip

    References

  • 5/21/2018 Chapter 18

    92/93

    Willy Sansen 10-05 1892

    P.Wambacq, W.Sansen : Distortion analysis of analog Integrated

    Circuits, Kluwer Ac. Publ. 1998

    W.Sansen : Distortion in elementary transistor circuits

    IEEE Trans. CAS II Vol 46, No 3, March 1999, pp.315-324

    J. Silva-Martinez, etal : High-performance CMOS continuous-time

    filters, Kluwer Ac. Publ. 1993

    B. Hernes, T. Saether : Design criteria for low-distortion in

    feedback opamp circuits, Kluwer Ac. Publ. 2003

    G. Palumbo, S. Pennisi : Feedback amplifiers, Kluwer Ac. Publ. 2002

    Table of contents

  • 5/21/2018 Chapter 18

    93/93

    Willy Sansen 10-05 1893

    Definitions : HD, IM, intercept point, ..

    Distortion in a MOST

    Single-ended amplifier

    Differential amplifier

    Distortion in a bipolar transistor

    Reduction of distortion by feedback

    Distortion in an opamp

    Other cases of distortion and guide lines