Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests...

31
309 chAPTeR 13. Forests and Water Graeme Lockaby, Chelsea Nagy, James M. Vose, Chelcy R. Ford, Ge Sun, Steve McNulty, Pete Caldwell, Erika Cohen, and Jennifer Moore Myers 1 key FiNDiNGS • Forest conversion to agriculture or urban use consistently causes increased discharge, peak flow, and velocity of streams. Subregional differences in hydrologic responses to urbanization are substantial. • Sediment, water chemistry indices, pathogens, and other substances often become more concentrated after forest conversion. If the conversion is to an urban use, the resulting additional increases in discharge and concentrations will produce even higher loads. • Although physiographic characteristics such as slope and soil texture play key roles in hydrologic and sediment responses to land use conversion, land use (rather than physiography) is the primary driver of water chemistry responses. • Conversion of forest land to urban uses may decrease the supply of water available for human consumption and increase potential threats to human health. • Increases in urbanization by 2060 in the Appalachians, Piedmont, and Coastal Plain will increase imperviousness and further reduce hydrologic stability and water quality indices in the headwaters of several major river basins and in small watersheds along the Atlantic Ocean and Gulf of Mexico. 1 Graeme Lockaby is a co-lead author and Associate Dean and Professor, Auburn University School of Forestry and Wildlife Sciences, Auburn, AL 36849. Chelsea Nagy is a Graduate Research Assistant, Brown University, Department of Ecology and Evolutionary Biology, Providence, RI 02912. James M. Vose is a co-lead author and Project Leader, U.S. Department of Agriculture Forest Service, Southern Research Station, Center for Integrated Forest Science, College of Natural Resources, North Carolina State University, Raleigh, NC 27695. Chelcy R. Ford is an Ecologist, U.S. Department of Agriculture Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, Otto, NC 28763. Ge Sun is a Research Hydrologist, U.S. Department of Agriculture Forest Service, Southern Research Station, Eastern Forest Environmental Threats Assessment Center, Raleigh, NC 27606. Steve McNulty is a Supervisory Ecologist, U.S. Department of Agriculture Forest Service, Southern Research Station, Eastern Forest Environmental Threats Assessment Center, Raleigh, NC 27606. Pete Caldwell is a Research Hydrologist, U.S. Department of Agriculture Forest Service, Southern Research Station, Eastern Forest Environmental Threats Assessment Center, Raleigh, NC 27606. Erika Cohen is a Resource Information Specialist, U.S. Department of Agriculture Forest Service, Southern Research Station, Eastern Forest Environmental Threats Assessment Center, Raleigh, NC 27606. Jennifer Moore Meyers is a Resource Information Specialist, U.S. Department of Agriculture Forest Service, Southern Research Station, Eastern Forest Environmental Threats Assessment Center, Raleigh, NC 27606. • On average, water supply model projections indicate that water stress due to the combined effects of population and land use change will increase in the South by 10 percent by 2050. • Water stress will likely increase significantly by 2050 under all four climate change scenarios, largely because higher temperatures will result in more water loss by evapotranspiration and because of decreased precipitation in some areas. • Approximately 5,000 miles of southern coastline are highly vulnerable to sea level rise. iNTRoDucTioN Compared to all other land uses, southern forests provide the cleanest and most stable water supplies for drinking water, recreation, power generation, aquatic habitat, and groundwater recharge (Brown and others 2008, Jackson and others 2004, Sun and others 2004). Forests are unique among land covers because they are long-lived and relatively stable. However, they are subject to substantial structural and functional alterations by management practices and/ or natural disturbances, the intensity of which determines whether alterations are short or long-term. Water resources in the South are at risk of degradation from a growing population, continued conversion of forests to other land uses, and climate change. Urban and agricultural lands can impair water resources by introducing nutrients, sediment, bacteria, and other pollutants to streams. Additionally, altered hydrology—including higher peak flows, and lower baseflows and hydroperiods (Amatya and others 2006)—is common with forest conversion to other land uses. Together, these changes can modify the habitat and consequently the composition of aquatic (and riparian) communities. Historical land use practices have dramatically changed the landscape of the South. Soil erosion and sedimentation were prevalent throughout the region during the period of agricultural expansion in the 18 th and 19 th centuries. Evidence can still be seen today in the sediment deposits of floodplains. This massive topsoil erosion and depleted soil productivity was followed by a period of agricultural abandonment and reforestation throughout much of the South. Today major land uses include forestry, agriculture, Chapter 13. Forests and Water

Transcript of Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests...

Page 1: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

309chAPTeR 13. Forests and Water

GraemeLockaby,ChelseaNagy,JamesM.Vose, ChelcyR.Ford,GeSun,SteveMcNulty, PeteCaldwell,ErikaCohen, andJenniferMooreMyers1

key FiNDiNGS

• Forestconversiontoagricultureorurbanuseconsistentlycausesincreaseddischarge,peakflow,andvelocityofstreams.Subregionaldifferencesinhydrologicresponsestourbanizationaresubstantial.

• Sediment,waterchemistryindices,pathogens,andothersubstancesoftenbecomemoreconcentratedafterforestconversion.Iftheconversionistoanurbanuse,theresultingadditionalincreasesindischargeandconcentrationswillproduceevenhigherloads.

•Althoughphysiographiccharacteristicssuchasslopeandsoiltextureplaykeyrolesinhydrologicandsedimentresponsestolanduseconversion,landuse(ratherthanphysiography)istheprimarydriverofwaterchemistryresponses.

•Conversionofforestlandtourbanusesmaydecreasethesupplyofwateravailableforhumanconsumptionandincreasepotentialthreatstohumanhealth.

• Increasesinurbanizationby2060intheAppalachians,Piedmont,andCoastalPlainwillincreaseimperviousnessandfurtherreducehydrologicstabilityandwaterqualityindicesintheheadwatersofseveralmajorriverbasinsandinsmallwatershedsalongtheAtlanticOceanandGulfofMexico.

1GraemeLockabyisaco-leadauthorandAssociateDeanandProfessor,AuburnUniversitySchoolofForestryandWildlifeSciences,Auburn,AL36849.ChelseaNagyisaGraduateResearchAssistant,BrownUniversity,DepartmentofEcologyandEvolutionaryBiology,Providence,RI02912.JamesM.Voseisaco-leadauthorandProjectLeader,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,CenterforIntegratedForestScience,CollegeofNaturalResources,NorthCarolinaStateUniversity,Raleigh,NC27695.ChelcyR.FordisanEcologist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,CoweetaHydrologicLaboratory,Otto,NC28763.GeSunisaResearchHydrologist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,EasternForestEnvironmentalThreatsAssessmentCenter,Raleigh,NC27606.SteveMcNultyisaSupervisoryEcologist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,EasternForestEnvironmentalThreatsAssessmentCenter,Raleigh,NC27606.PeteCaldwellisaResearchHydrologist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,EasternForestEnvironmentalThreatsAssessmentCenter,Raleigh,NC27606.ErikaCohenisaResourceInformationSpecialist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,EasternForestEnvironmentalThreatsAssessmentCenter,Raleigh,NC27606.JenniferMooreMeyersisaResourceInformationSpecialist,U.S.DepartmentofAgricultureForestService,SouthernResearchStation,EasternForestEnvironmentalThreatsAssessmentCenter,Raleigh,NC27606.

•Onaverage,watersupplymodelprojectionsindicatethatwaterstressduetothecombinedeffectsofpopulationandlandusechangewillincreaseintheSouthby10percentby2050.

•Waterstresswilllikelyincreasesignificantlyby2050underallfourclimatechangescenarios,largelybecausehighertemperatureswillresultinmorewaterlossbyevapotranspirationandbecauseofdecreasedprecipitationinsomeareas.

•Approximately5,000milesofsoutherncoastlinearehighlyvulnerabletosealevelrise.

iNTRoDucTioN

Comparedtoallotherlanduses,southernforestsprovidethecleanestandmoststablewatersuppliesfordrinkingwater,recreation,powergeneration,aquatichabitat,andgroundwaterrecharge(Brownandothers2008,Jacksonandothers2004,Sunandothers2004).Forestsareuniqueamonglandcoversbecausetheyarelong-livedandrelativelystable.However,theyaresubjecttosubstantialstructuralandfunctionalalterationsbymanagementpracticesand/ornaturaldisturbances,theintensityofwhichdetermineswhetheralterationsareshortorlong-term.WaterresourcesintheSouthareatriskofdegradationfromagrowingpopulation,continuedconversionofforeststootherlanduses,andclimatechange.Urbanandagriculturallandscanimpairwaterresourcesbyintroducingnutrients,sediment,bacteria,andotherpollutantstostreams.Additionally,alteredhydrology—includinghigherpeakflows,andlowerbaseflowsandhydroperiods(Amatyaandothers2006)—iscommonwithforestconversiontootherlanduses.Together,thesechangescanmodifythehabitatandconsequentlythecompositionofaquatic(andriparian)communities.

HistoricallandusepracticeshavedramaticallychangedthelandscapeoftheSouth.Soilerosionandsedimentationwereprevalentthroughouttheregionduringtheperiodofagriculturalexpansioninthe18thand19thcenturies.Evidencecanstillbeseentodayinthesedimentdepositsoffloodplains.ThismassivetopsoilerosionanddepletedsoilproductivitywasfollowedbyaperiodofagriculturalabandonmentandreforestationthroughoutmuchoftheSouth.Todaymajorlandusesincludeforestry,agriculture,

Chapter 13. Forests and Water

Page 2: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 3: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 4: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 5: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

313chAPTeR 13. Forests and Water

HadCM3B2.Itshouldbenotedthatclimatemodelsareoftencalibratedtobestaddressclimatewithinaspecificgeographicregion(e.g.,MIROC32A1BwasspecificallydevelopedforJapan).Theapplicationofanygeneralcirculationmodel(GCM)willnotbeuniversallyreliable(i.e.,accuratelyabletopredictfutureclimate).InthisstudytheMIROC32A1BpredictsclimaticconditionsfortheSouthernUnitedStatesthatareextremeformostpartsoftheglobe.Othermodelscouldbeconsideredmoremoderateintheirpredictionsoffutureclimate.TheresultsofallformodelpredictionsarepresentedinthischapterbutfurtherdiscussionoftheGCMcanbefoundinchapter3.

Population and land use change data—TheU.S.CensusBureau(2001)recordsindicatethatpopulationincreasedabout30percentfrom1980to2000.Populationprojectionsatthecensusblocklevelwereaggregatedtothe8-digitHUCwatershedscaleforeachyearfrom1967to2050(NPADataServicesInc.1999).FortheWaSSImodelsimulation,weselectedthelandusedata(chapter4)belongingtoCornerstoneA(IntergovernmentalPanelonClimateChangestorylineA1B,levelcropprices,hightimberprices).Formodelsimulations,thelanduseclassesdescribedinchapter4weregroupedintoeightcategoriesas:crop,deciduousforest,evergreenforest,mixedforest,grassland,shrubland,savanna,andwater/urban/barren.Inaddition,thelandusedatawererescaledfromthecountytothe8-digitHUCwatershedformodelinput.Therepresentativeyearwas2000forhistoricbaselinemodelsimulations,and2050wasselectedforfuturemodelsimulations.

Sea level Rise

WeusedtheanalysisofTitusandRichman(2001)toidentifylandarea1.5m,1.5to3.5m,and>3.5mabovesealevelandgenerated66maps(basedon1-degreedigitalelevationmodels)tooutlinecoastalareasontheGulfofMexicoandthesouthernAtlanticStatesfromVirginiatoFlorida.Thevulnerabilityofcoastalregions(coastalvulnerabilityindex,orCVI)wascalculatedusingtheanalysesofHammar-KloseandThieler(2001),whoincorporatedgeomorphology,coastalslope,rateofrelativesea-levelrise(mmyr-1),shorelineerosionandaccretionrates(myr-1),meantidalrange(m),andmeanwaveheight(m)intocalculationsofCVIfortheAtlantic,Pacific,andGulfofMexicocoasts.Arankingwasappliedtoeachvariablefor~5kmsegments(or3minutes)ofcoastlineandthencombinedtoformanindexofriskusingthefollowingequation:

CVI=

Whereaisgeomorphology,biscoastalslope,cisrelativesea-levelrise,disshorelineerosion/accretionrate,eismeantiderange,andfismeanwaveheight,andthefinalCVIwas

brokenintotofourriskcategories:low(<8.7),moderate(8.7to15.6),high(15.6to20.0),andveryhigh(>20.0).

DatasourcesusedtocalculateCVIincludedstategeologicmapsand1:250,000-scaletopographicmapstodeterminegeomorphology;acombinationofU.S.NavyETOPO5andNationalGeophysicalDataCenterdigitaltopographicandbathymetricelevationdatabasestodeterminecoastalslope;NationalOceanServicedatatodeterminerelativesea-levelriseandmeantidalrange;acombinationoftheMayandothers(1982)CoastalErosionInformationSystemdatasetandmorerecentStateandlocalregionalstudiestoestimateshorelineerosionandaccretionrates;andtheU.S.ArmyCorpsofEngineersWaveInformationStudytoestimatemeanwaveheight(Hammar-KloseandThieler2001).Afteralldatawerecompiledandrescaledtoa5kmgrid,eachvariablewasrankedfrom1(verylowvulnerabilitytosealevelrise)to5(veryhighvulnerabilitytosealevelrise).

ReSulTS

Physical environment of the Southern Region

Thesouthernclimateispredominantlyhumidsubtropical;however,thewesternmostareas,suchasTexasandOklahoma,aresemi-arid.Theaverageannualtemperaturerangeis15to21°Candtheprecipitationrangeis1010to1520mmyr-1(Bailey1980).Ultisols,thepredominantsoilorderoftheSouth,arestronglyleachedandnutrientpoorwithasubsurfaceaccumulationofclay(Bailey1980,USDANaturalResourceConservationService2009).ThereliefismostlylevelalongmuchoftheAtlanticandGulfofMexico,however,theupperCoastalPlainofAlabamaandMississippiismoderatelytogentlyrolling(MartinandBoyce1993).CoastalPlainsoilsaresandy.ThePiedmonthasgentlyrollingtosteepterrainwithclayeysurfaceandsubsurfacesoils.Consequently,thepotentialforerosionishighthroughoutthePiedmontandevenhighertowardtheBlueRidgesubregionoftheSouthernAppalachians(Trimble2008).TheSouthernAppalachianshavesteeptopographyandelevationrangesfrom225to900m.ThethreemajorriverbasinsoftheSoutharetheMobile,Tennessee,andCumberland(WorldWildlifeFund2010).Southernstreamssupportadiversityoffreshwaterspeciesandarethusahighconservationpriority(WorldWildlifeFund2010).Physiographicsubregions,andthelandscapecomponentsofwatershedswithinthem,areconnectedthroughtheflowofenergyandmaterials,themovementofspecies,andthemovementofinsects,disease,andotherdisturbanceagents.Unlikemanyoftheexchanges,themovementofwateracrossmostoftheSouthisfairlypredictablebecausewaterfollowshydrologicflowpathsthatareprimarilydrivenbyelevationgradients.ExceptionsoccurinthelowerCoastalPlainandother

√ a*b*c*d*e*f6( )

Page 6: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

314The Southern Forest Futures Project

systemswherehydrologyisdominatedbygroundwaterhydrology.Understandinghowchanginglandscapeswillalterthequantity,quality,andvalueofsurfacewaterandgroundwaterrequiresanalysesatexpandingspatialscalestoexaminehowrapidurbanizationaffectsforestpracticessuchascutting,roadbuilding,anddrainage.

Functions of Forested Wetlands and Riparian Forests

Forestedwetlandscanbedescribedbyhydrogeomorphicconsiderationssuchaslandscapeposition,watersource,andhydrodynamicsaredominantprocessregulators(Ainslie2002).Thethreemostcommonclassesofsouthernforestedwetlandsareriverine,depressional,andflatwithmineralororganicsoil(table13.3).Ingeneral,forestsandhydrologicalcyclesareconnectedthroughtheprocessesofevapotranspiration(Amatyaandothers2008).Hydrologicalfunctionsofsouthernforestedwetlandsmayincludefloodmitigationorshort-termsurfacewaterstorage;andtoalesserextentthanforestedwetlandsinotherregionsoftheUnitedStates,theyabatestormsandrechargegroundwater(NationalResearchCouncil1995,Walbridge1993).Biogeochemicalfunctionsofwetlands,includingcyclingofelementsandretentionandremovalofdissolvedsubstances,servetoimprovesurface,subsurface,andgroundwaterquality(Blevins2004,NationalResearchCouncil1995).Regardlessoftype,allforestedwetlandscontributetofoodwebmaintenancebyprovidinghabitatforplantsandanimals(Faulkner2004,Walbridge1993).Someforestedwetlandsmayprovideuniquefunctionsbasedontheirdistinctivecharacteristicsandstructure.Forexample,CarolinaBaysmaycontainrareandendangeredplantsandalsoprovidedesirablebreedingsitesandhabitatforbirdsandwildlife

(Ainslie2002).Andmineralsoilflatscanhaveveryhighherbaceousspeciesrichnessinpartbecauseoftheiruniquefireregime(Ainslie2002).

Riparianforestsalsoprovidehydrological,biogeochemical,andhabitatfunctions.Manystudieshaveshownthatriparianforestshelptostabilizestreambanksandtrappollutantssuchassediment,nutrients,bacteria,fertilizers,andpesticidesfromrunoff(AndersonandMasters1992,BinkleyandBrown1993,delaCrétazandBarten2007,KlapprothandJohnson2000,Naimanandothers2005,USDANationalAgroforestryCenter2008,Vellidis1999).Inparticular,Naimanandothers2005foundthat“Thehydraulicconnectivityofriparianzoneswithstreamsanduplands,coupledwithenhancedinternalbiogeochemicalprocessingandplantuptake,makeriparianzoneseffectivebuffersagainsthighlevelsofdissolvednutrientsfromuplandsandstreams,whilegeomorphologyandplantstructuremakethemeffectiveattrappingsediments.”However,anintactripariancorridordoesnotensurestreamprotectionasthisrelationshipisdependentonotherfactorsincludingresidencetimeofpollutantsinthebuffer,depthandvariationofwatertable,uplandlandusepractices,climate,andwatershedcharacteristicssuchastopography,hydrology,soils,andvegetation(delaCrétazandBarten2007,Groffmanandothers2003,Tomerandothers2005,Walshandothers2005).

Habitatfunctionsprovidedbyriparianforestsincludelowerwatertemperaturesforaquaticanimalsduetoshadingfromtrees,alongwithshelterforbirdsandwildlife(AndersonandMasters1992,BinkleyandBrown1993,Naimanandothers2005,Vellidis1999).Ripariaaresourcesoflargewoodydebris,whichcreateshabitatheterogeneity,actsasasubstrateforcolonization,andprovidesnutrientstotheaquatic(and

Table 13.3—Southern wetland types and characteristics

Wetland type characteristics Sources

Riverine (bottomland hardwood wetlands)

Occurring in floodplains or riparian corridorsAinslie 2002, Brinson 1993, Palmer 1994, Childers and Gosselink 1990, National Research Council 1995, Naiman and others 2005, Walbridge 1993, Meyer 1992, Dennis 1988

Many connections between wetland and stream channel (overbank flow and subsurface connections)Including cypress stands, sloughs, and hardwood swamps associated with brown-, black-, and red-water streams in Atlantic and Gulf Coastal Plains

Depressional

Named for their depressional topography which promotes surface water accumulation

Ainslie 2002, Brinson 1993, Duryea and Hermansen 1997, Dennis 1988Cypress trees predominant

Including cypress domes (Gulf Coastal Plain) and Carolina bays (Atlantic Coastal Plain)

Wet flats

Can have either organic soils (pocosins) on plateaus or mineral soils in the Atlantic Coastal Plain between rivers or floodplain terraces Ainslie 2002, Brinson 1993,

Gresham 1989Pocosins characterized by dense evergreen shrub vegetation Mineral flats characterized by a closed canopy of hardwoods or an open savannah with some pines

Page 7: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

315chAPTeR 13. Forests and Water

riparian)community(Naimanandothers2005).Inputsoforganicmatterfromriparianforestssupplyanallochthonousenergysourcetostreamecosystems,therebylinkingtheriparianandaquaticfoodwebs.Additionally,ifBestManagementPracticesareimplementedappropriately,riparianforestscanalsoprovidewoodproducts,pastureforlivestock,andrecreationalopportunities(AndersonandMasters1992).

hydrologic effects of Forest conversion to other land uses

Harvestingforestsreducesevapotranspirationandinfiltration;creatingimpervioussurfacesincreasesoverlandflow(PaulandMeyer2001).Similarly,forestconversiontoagriculturallandmaycompactsoils,reduceevapotranspirationandinfiltration,andincreaseoverlandflow.Regardlessofpost-harvestinguse,characteristicchangesinhydrologyfollowingforestremovalincludegreaterstreamflowandpeakflows(BoschandHewlett1982,Crim2007,delaCrétazandBarten2007,Hibbert1967,McMahonandothers2003,Schoonoverandothers2006).Representativehydrographsfortypicalforested,agricultural,andurbanwatershedsareshowninfigures13.2to13.4.Astudyofthe13SouthernStatesshowedthatstreamflowincreasedby69to210mmyr-1followingforestharvesting(Grace2005).Stednick(1996)foundthata20percentchangeinforestcoverproducesaquantifiablechangeinwateryieldintheAppalachians,butthatthethresholdisabout25percenthigherforthePiedmontandCoastalPlain.Sincethe1970sinHouston,impervioussurfaceswereresponsiblefor32percentofthe159percentincreaseinpeakflows,and77percentofthe146percentincreaseinannualrunoff(OliveraandDeFee2007).Similarlysincethe1960sintheWhiteRockCreekwatershedofnortheasternTexas,peakflowsincreasedby20to118percentwithvaryingprecipitationintensitiesinresponsetodramaticincreasesinimperviouscover(Vicars-GroeningandWilliams2007).Streamhydrographsofurbanwatershedsreflectaflashyhydrologywithgreaterpulsesandfasterattainmentofpeakflowsduringstormevents(Beighleyandothers2003,BoggsandSun2011,Calhounandothers2003,Crim2007,Schoonoverandothers2006).However,asaridregionsnaturallyhaveflashyhydrologyduetoinherentprecipitationregimes,urbaneffectsmaybeobscuredonthehydrographsofstreamsinthosepartsoftheSouth(Grimmandothers2004).Flow-durationcurvesalsodepictchangesinhydrologybydisplayingthepercentageoftimestreamflowequalsorexceedsaparticularvalue.Thepre-urbanizationflowdurationcurveexhibitsmoregradualvariationswhilethepost-urbanizationcurveismuchsteeper(fig.13.5).

Inurbanandagriculturalwatersheds,decreasedinfiltrationproduceslessgroundwaterrecharge,possiblyreducingbaseflows(Calhounandothers2003,RoseandPeters2001,Wangandothers2001).Asanexample,intributariesof

Figure13.2—Representativehydrographofaforestedwatershed(Crim2007).Dischargeunitsareliterspersecondperha.

Figure13.3—Representativehydrographofapastoralwatershed(Crim2007).Dischargeunitsareliterspersecondperha.

Figure13.4—Representativehydrographofanurbanwatershed(Crim2007).Dischargeunitsareliterspersecondperha.

Page 8: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

316The Southern Forest Futures Project

theupperChattahoocheeRiver,Calhounandothers(2003)estimatedthatevery1percentincreaseinimpervioussurfacereducesbaseflowby2percent.However,thisisnotalwaysthecaseasillustratedbythelackofbaseflowresponsetoincreasesinimpervioussurfaceintheFloridaPanhandle(Nagyandothers2012);andbyhighermedianbaseflowinpastoralwatershedscomparedtoforestedwatershedsintheGeorgiaPiedmont(Schoonoverandothers2006).ThelessresponsivebaseflowintheCoastalPlainmaybeexplainedbydifferencesbetweentheextentofsurfacewaterandbaseflowrechargezonesinveryflatterrainswherebaseflowzonesmayextendbeyondsurfacecatchmentboundaries.Inthecaseofthepastoralvs.forestedwatershedsinthePiedmont,apparentlyreducedETandadequatesurfaceinfiltrationratesinthepasturesaccountedforthehigherbaseflowsthere.

AlthoughhistoricallytheSouthhasnotexperiencedagreatdeficiencyofwatersupplycomparedtootherregionsintheUnitedStates,withcontinuedforestlossandexpandingurbanization,watersupplymaybecomeamorepressingissueinthisregion.Whenmodelinglanduseeffectsonly,Sunandothers(2008)predictedreducedwaterdeficitsduetoincreasedwateryieldfollowingconversionofforesttourbanlanduses.However,theyfoundthatwaterresourceswouldlikelybeundergreaterpressureinthefuturewhentheeffectsofclimatechangeandpopulationgrowthare

alsotakenintoaccount.Additionally,itshouldbenotedthatdespiteincreasedstreamflowfollowingforestremoval,availablesurfacewatermightdeclineduetounstableflowregimes.AfterincreasingwithdrawalratesfromAlabamastreamsnearBirmingham,surfacewateravailableforhumanuserangedfromabout20to45percentofdischargeforurbanwatershedsand20to60percentforforestedwatersheds;andathigherwithdrawalrateswateravailabilitywassignificantlyhigherinforestedthanurbanwatersheds.2Therefore,althoughtotalwateryieldisoftenreducedinforestedwatershedscomparedtourbanwatersheds,forestedwatershedsmayhaveagreaterpercentageofwateravailableforuse,suggestingthatincreasingurbanizationcontributestogreaterstress.Lastly,degradationofwaterqualityfrompoint-andnon-pointsourcepollutioncanalsoreducetheamountofavailablewater(Sunandothers2008).

effects of Forest conversion on Sediment

Forestsstabilizesoils(Jacksonandothers2004);thereforesoilismorereadilyerodedfollowingremovalofvegetation,andistransportedassedimentintofloodplainsandotherareasoflowertopography(Jacksonandothers2005a,Trimble2008)and/ordirectlyintostreamchannels.Theeffectsofhistoricalagriculturaluse,inparticularrow-cropagriculture,onsoilerosionandsubsequentsedimentdepositionthroughouttheSouthwereprofound(Casarim2009,Jacksonandothers2005a,Trimble2008).Forexample,intheGeorgiaPiedmont,sedimentdepositionfromhistoricalagriculturewasasmuchas1.6mintheMurderCreekfloodplain(Jacksonandothers2005a)andaveraged1.8minBonhamCreekandSallyBranchwatersheds(Casarim2009).Itcanbedifficulttodifferentiatesedimentcontributionsfromcurrentlanduseversushistoricalagriculturalusewithinawatershedbecausethelegacyeffectsofhistoricallandusecanbeobserveddecadeslater.Jacksonandothers(2005a)estimatedthat25to30percentofthesedimentloadofMurderCreekconsistedofre-suspendedlegacysediment.ThismeansthatlanduseconversionsinthePiedmonthavethepotentialtore-suspendlegacysedimentthataccumulatedinthestreambedsdecadesagoinadditiontogeneratingsedimentexportfromterrestrialsources.

Thecombinedeffectsofalteredhydrology,removalofvegetation,andanincreaseinimpervioussurfaceoftencauseurbanwatershedstoexhibitstreamsedimentconcentrationsmuchhigherthanforestedwatersheds(ClintonandVose2006,LenatandCrawford1994,Schoonoverandothers2005).IntheSouthernAppalachians,totalsuspendedsolidsconcentrationswere4to5timesgreaterinanurban

2L.Kalin,unpublisheddata;AuburnUniversity,SchoolofForestryandWildlifeSciences,602DuncanDr.,Auburn,Alabama,36849;[email protected].

Figure13.5—Streamflow-durationcurvesincubicfeetpersecondbeforeandafterurbanization.(Source:L.Kalin,unpublisheddata;AuburnUniversity,SchoolofForestryandWildlifeSciences,Auburn,AL,36849;[email protected])

Page 9: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

317chAPTeR 13. Forests and Water

comparedtoareferencestream(ClintonandVose2006).IntheGeorgiaPiedmont,totaldissolvedsolidsconcentrationsweretwiceashighinurbanstreamscomparedtoforestedstreams(Crim2007,Schoonoverandothers2005),buttotalsuspendedsolidsdidnotincreasesignificantlyunderurbancover.IntheCoastalPlain,Wahlandothers(1997)foundatwofoldincreaseintotalsuspendedsolidsinurbancomparedtoforestedstreams(upto200mg/Lduringstormflowintheurbanstream).Erosionassociatedwithurbanlandusescanbeparticularlyhighatconstructionsitesandareasofnewdevelopment(Novotny2003,PaulandMeyer2001).Forexample100-to10,000-foldincreasesovernondevelopedconditionswerereportedbyPaulandMeyer(2001),especiallyinareaswithgreatertopographicvariationsuchastheSouthernAppalachians.

effects of Forest conversion on Water chemistry

Undisturbedforestedwatershedsaregenerallyassociatedwithlowstream-waterconcentrationsofmostions.Sincemostforestsaredeficientinoneormoreelements,forestedsystemsaregenerallyeffectiveinretaininginputsofnutrients.Consequently,netexportofmacronutrients,ornutrientsrequiredinlargequantitiessuchasN,P,andK,fromundisturbedforestedcatchmentsisoftennegative,indicatinganaccretionofforestbiomass(LikensandBormann1995,SwankandDouglass1977).Asanexample,the3600haTableRockReservoirwatershedintheSouthernAppalachiansofSouthCarolinahasbeenhighlyrestrictedintermsofanyhumanactivitysince1930,andwaterqualitythereremainsunchangedsincethattime.3

Increasednutrientconcentrationsandloadshavebeenobservedinurbanandagriculturalstreamscomparedtoforestedstreams.Excessnutrientsmayarisefromfertilizers,wastewatereffluent,andindustrialwasteinurbanareas;andfromanimalwasteandfertilizersinagriculturalareas.ConcentrationsofNO3

-,Cl-,Na+,K+,Ca2+,andMg2+wereallhigherinanurbanstreamthanareferencestreamintheSouthernAppalachiansduringbaseflowandstormflowboth(ClintonandVose2006).Nitrateshadthemostpronouncedincreasewithmeanconcentrationsofabout0.01mg/Linthereferencestreamand0.7mg/Lintheurbanstream(ClintonandVose2006).However,ammoniumconcentrationswerehigherintheforestedstreamduringstormflow.BolstadandSwank(1997),workinginthesamephysiographicsubregion,foundnoincreasesinnitrate,ammonium,orphosphateconcentrationsduringbaseflowasurbanizationindicesincreased.However,duringstormflow,slightincreaseswerenotedfornitrate(from0.05to0.07mg/Lwithasignificantregressionrelationship)andammonium.

3Okun,D.A.1992.PropertiesoftheTableRockandPoinsettReservoirs:theirfuture.Unpublishedreport.24p.Onfilewith:theGreenvilleWatershedsStudyCommittee,P.O.Box728,Greenville,SC29602.

IntheGeorgiaPiedmont,SchoonoverandLockaby(2006)foundresultssimilartothoseofClintonandVose(2006)fordissolvedorganiccarbon,NO3

-,Cl-,andK+,aswellasSO4

2-whencomparingstreamswith<5percentand>24percentimpervioussurface.Theconcentrationsinstreamsofwatershedswith>24percentimpervioussurfaceweregenerallytwo-to-fourtimeshigherthanthoseoflessdevelopedcatchments.Forinstance,medianbaseflownitrateconcentrationswere0.61mg/Lforstreamswith<5percentimpervioussurfaceand1.64mg/Lforstreamswith>24percentimpervioussurface;stormwaterconcentrationswere0.36and1.93mg/Lrespectivelyforthesamecomparison(SchoonoverandLockaby2006).Althoughammoniumconcentrationshavebeenreportedtobehigherinforestedthaninurbanstreams(ClintonandVose2006,Tuffordandothers2003),twoPiedmontstudiesproduceddifferentresults(Crim2007,SchoonoverandLockaby2006).Similarly,dissolvedorganiccarbonconcentrationsareoftenhigherinforestedwatershedsthaninurbanstreams(Wahlandothers1997)althoughthereareexceptions(SchoonoverandLockaby2006).

Unlikemoststudiesofland-use/land-coverimpactsonwaterquality,whichhavesubstitutedspacefortime,Westonandothers(2009)evaluatedwaterqualitychangeswithintheAltamahaRiverBasinoftheGeorgiaPiedmontformorethan30years.Theincreasesinpopulationduringthatperiodexceeded100percentinsomeofthebasin’swatersheds.Duringthatperiod,agriculturallandusedeclinedaspopulationsrose,producingdecreasesinstreamammoniumandorganiccarbonconcentrationsbutincreasesintotalnitrogenandnitrogenoxideconcentrationsandloads.Phosphorusconcentrationsdidnotincreasewithurbanization,whichtheauthorssuggestmayreflecttheeliminationofphosphatesindetergentsafter1972.TheyalsosuggestthatforthePiedmont,elevatedtotalnitrogenandnitrogenoxidesmayserveaswaterqualitysignaturesofurbanizationandelevatedammonium,andthatorganiccarbonmaybeassociatedwithagriculture.Ammoniumandorganiccarbonarealsooftenlinkedwithforestcoverbuttheeffectsofchangesinforestcoverwerebeyondthescopeofthischapter.

Therearefewerstudiesofland-use/land-coverassociatedwiththeCoastalPlainthanwiththePiedmont.Wahlandothers(1997)comparedwaterqualitywithintwocoastalwatersheds:onewithincreasingurbanization(18percentimpervioussurface)andtheotherwithpredominatelyforestcover(noimpervioussurface).Nitratewasconsistentlyhigherintheurbanstream:130ug/Linwinter(90ug/Linsummer)versus42ug/Linwinter(29ug/Linsummer).Ammoniumwashigherintheforestedstreamregardlessofseason(159ug/Lversus70ug/L)asweredissolvedorganiccarbonconcentrations(27ug/Lversus13ug/L).InastudywithintheFloridaPanhandle(Nagyandothers2012),

Page 10: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

318The Southern Forest Futures Project

medianconcentrationsofnitrate,ammonium,calcium,potassium,andsulfatewerehigherinwatershedswithmoreurbanization(impervioussurfaceupto16percent)thanintheirforestedcounterparts.However,nitrateconcentrationsintheCoastalPlainwerewellbelowthosegenerallyobservedinsomestudiesofurbanwatershedsofthePiedmont(0.35mg/Lversus1.78mg/L).Medianconcentrationsoftotalphosphoruswerehighandincreasedfrom0.31mg/Linwatershedswith<5percentimpervioussurfaceto0.43mg/Linwatershedswith>10percentimpervioussurface.Similarly,totalsuspendedsolidsincreasedfrom1.50to2.40mg/Lforimpervious-surfacelevelsabove10percent.Incontrast,dissolvedorganiccarbondeclinedfrom36mg/Linwatershedswithlowimpervioussurfaceto30mg/Linwatershedswith>10percentimpervioussurface.Tuffordandothers(2003)foundthattotalphosphoruswassignificantlyhigherinurbanstreamsthanforestedstreamsintheCoastalPlain(concentrationsofroughly0.06mg/Lversus0.03mg/L).

Ingeneral,increasesinstreamconcentrationsofseveralelementswithinurbanizedwatershedsareverycommonalthoughthemagnitudeofincreaseandsometimestheparticularionsinvolvedvaryconsiderablywithinandamongphysiographicsubregions.Whilenitrateandpotassiumionscommonlyincrease(probablyduetotheirmobilityinwater),responsesoftotalpotassiumorphosphatearemuchmorevariableandmaynotoccuratall.Responsesoftheothermajorelementsfallinbetweenthoseofnitrateandphosphate.Sincedischargeusuallyincreaseswithurbanization,loadsincreaseaswellregardlessofphysiographicsubregion.Consequently,theredonotseemtobecleardistinctionsamongsubregionsintermsofstreamchemistryresponses,whichmayindicatethattheinfluenceoflanduseoverridesthatofphysiographyintheSouth.

Higherloadsofbasecations(K+,Ca2+,andMg2+),Cl-,andtotalnitrogenwerefoundinagriculturalstreamsthaninforestedstreamsintheCoastalPlain(Lowranceandothers1985).IncreasednitrateconcentrationsandloadsinagriculturalstreamscomparedtoforestedstreamsarecommonintheAppalachians(Hagenandothers2006),Piedmont(Crim2007),andCoastalPlain(Lehrter2006,Lowranceandothers1985).Forexample,nitrateloadswere1.5to4.4timeshigherinwatershedswithgreateragriculturallandthanwatershedswithlessagriculturalland(Lowranceandothers1985)andnitrateconcentrationswere2.1to4.4timeshigherinagriculturalversusforestedwatersheds(Hagenandothers2006).

effects of Forest conversion on human health

Urbanandagriculturallandusescontributetoincreasedbacterialconcentrationsinstreamwaters.Connectedstormwaterandseweroverflowsystemsorfailuresin

sewersystems(suchasbrokenpipes,mechanicalfailures,andblockagesfromtreeroots)candirectlyorindirectlyreleaserawsewageintosurfacewaters.Additionally,petandwildlifefecescanbetransportedinrunoffoverlawnsandimpervioussurfacesinurbanareas.FecalcoliformbacteriacountswerehigherinurbanthanforestedorreferencestreamsintheCoastalPlain(DiDonatoandothers2009,Hollandandothers2004,Mallinandothers2000),Piedmont(Crim2007,Schoonoverandothers2005),andSouthernAppalachians(ClintonandVose2006).Forexample,Mallinandothers(2000)reportthatfecalcoliformishighlycorrelatedwithimpervioussurface(r=0.975,p=0.005),percentdevelopment(r=0.945,p=0.015),andpopulation(r=0.922,p=0.026).Similarly,concentrationsofE.colicanbemuchgreaterinurbanwatershedsthanforestedwatersheds(Crim2007,Mallinandothers2000).UrbanwatershedsintheGeorgiaPiedmonthadthehighestmedianE.coliconcentrations(asmeasuredinMPNormostprobablenumber),rangingfrom135to1255MPN/100mL,comparedtomedianrangesof94to169MPN/100mLforpinecoveredwatershedsand59to170MPN/100mLforoak-pinecoveredwatersheds(Crim2007).Becker(2006)reportedthatresidentialareas(2.2percentofthewatershed)didnotappeartobeasourceofbacteriatoTravertineCreeksubbasininOklahoma,butattributedincreasedbacterialconcentrationsinthenearbyRockCreekbasintolivestockgrazingandsewageeffluentinperiodsofhighprecipitation.Andrewsandothers(2009)reportedfecalcoliformcountsashighas10,000colonies/100mLwiththehighestcountsinstormflowfortheportions(42.17percent)oftheIllinoisRiverbasininOklahomaandArkansasthatareinagriculturaluse(pasturesforcattleandconfinedfeedingoperationsforpoultryandswine);theyalsoobservedrapidurbandevelopmentontheupperportionofthisbasinthatmayfurtherimpairwaterresources.

Inadditiontothedangerofelevatedconcentrationsofbacteriainsurfacewaters,otherhealthrisksfromurbanandagriculturallandusesincludemetals,pesticides,andpersonalcareproducts(KlapprothandJohnson2000,PaulandMeyer2001).Tracemetalsedimentconcentrationscanbe2to10timeshigherinstreamsnearurbanandindustrialareasthaninforestedwatershedsorsuburbanwatersheds(Hollandandothers2004);theytendtoaccumulate,ratherthandegrade,overtimeinsedimentsandplantandanimaltissue(KlapprothandJohnson2000).Metalconcentrationsmaybeinverselyrelatedtosedimentparticlesize(PaulandMeyer2001)andthuswemightexpecthighconcentrationsofmetalstobemoreproblematicintheSouthernAppalachiansorPiedmontwithmoresiltyandclayeysoilsthanintheCoastalPlain.Pesticidesenterstreamsthroughrunofffromagriculturalandurbanareas(KlapprothandJohnson2000,PaulandMeyer2001)againunderscoringtheimportanceofriparianbuffersandotherforestedareasinslowingrunoffandenhancinginfiltrationbeforecontaminantscanreach

Page 11: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

319chAPTeR 13. Forests and Water

thestream.Personalcareproductsincludingdeodorants,perfumes,andpharmaceuticalsmaynotberemovedbytraditionalwatertreatmentmethodsandarenotaswidelyregulatedasothersubstances(Kolpinandothers2002).

effects of Forest conversion on Aquatic communities

Alteredhydrologyandchannel-morphologyandhigherstreamtemperaturescausedbyforestconversioncandramaticallyaffectaquaticcommunities.Withincreasingurbanand/oragriculturaluses,speciesrichnessandabundanceoftendeclineasreportedforalgae(Sponsellerandothers2001),macroinvertebrates(Helms2008,LenatandCrawford1994,MaloneyandFeminella2006,PaulandMeyer2001,Royandothers2003),fish(Onoratoandothers1998,Walshandothers2005),andamphibians(HoulahanandFindlay2003,OrserandShure1972,Priceandothers2006,Wangandothers2001).Theseeffectsmaybeoffsetsomewhatforalgaebyadditionalstreamnutrients(Biggs1996,Chessmanandothers1999)andformacroinvertebratesbyperennialflows(Chadwickandothers2006).Musselshavevirtuallydisappearedfromsomesouthernstreamsasaresultofincreasedconversionoflandtourbanuses(GangloffandFeminella2007,Gilliesandothers2003).ThesedetrimentaleffectsonaquaticorganismsareparticularlyevidentintheSouthernAppalachians(Scottandothers2002,Waltersandothers2003)wherebothdiversityandendemismareveryhigh(Wallaceandothers1992).Cuffneyandothers(2010)foundahighcorrelationofmacroinvertebrateassemblageswithurbanmetricsineasternmetropolitanareas(includingRaleigh,NC;Atlanta;andBirmingham,AL),butnotincentralmetropolitanareassuchasDallas-FortWorth.Additionally,speciescompositionmayshiftassensitivespeciesarereplacedbymoretolerantspeciesorspeciesbettersuitedforthenewconditions(LenatandCrawford1994,Onoratoandothers1998,Priceandothers2006,Royandothers2005,Sutherlandandothers2002,Waltersandothers2003,WeaverandGarman1994).Forexample,inurbanstreamsofthewesternGeorgiaPiedmont,reptilespeciesrichnessincreasedatthesametimethattherichnessofsalamandersandotheramphibianspeciesdecreased(BarrettandGuyer2008).

Fishcommunitiesmayalsobestronglyaffectedbychangesinhydrologyandwaterqualitythatarederivedfromlandusechanges.Highervelocitiesanddischargeaswellasincreasedsedimentloadsmaydegradestreamhabitattoasignificantdegree(Nagyandothers2011).Inparticular,higherdepositionofsedimentinstreamchannelsmayreducediversityofhabitatwithnegativeimplicationsforsomefishspecies.Reducedabundanceofbenthicfeedersandlowerspawningsuccessingeneralmayaccompanysuchchanges(Nagyandothers2011).Inaddition,nearColumbus,GA,Helmsandothers(2005)notedindicatorsofreducedfish

healthsuchasoccurrenceoflesionsandtumorsinfishfromurbanstreamsandanegativecorrelationbetweenbioticintegrityoffishandtheproportionofimpervioussurfacewithinwatersheds.

implications of land use change Projections on Water Quality

Thedecreasesinforestcoverandincreasesinurbanizationthatareprojectedby2060carryimportantimplicationsforwaterresourcesintheregion.LossesofforestcoveracrossmuchofthePiedmontofNorthCarolina,SouthCarolina,Georgia,and,toalesserextent,Alabama(chapter5)implythatfurtherdegradationofwaterqualityanddestabilizationofsurfacewaterhydrologyarelikelyinlocalizedcatchmentswithinthatsubregion.Inaddition,itislikelythatthealterationsinthehydrologiccycleswithintheheadwatersofmajorriverbasins(fig.13.6)willaffectconditionsdownstream.Riverbasinsandwatershedswillundergoreductionsinevapotranspirationduetolowerleafareaindicesaswellasincreasesinimpervioussurfaces.Consequently,responsestodeforestation—reducedinfiltration,increasedrunoff,reducedbaseflow,andincreaseddischargeandvelocity—thatalreadyexistonthePiedmonttosomeextent(butaremoreoftenassociatedwithsteeperterrains)willlikelybeexacerbated.

Thesehydrologicresponses,combinedwiththeincreasedquantitiesofpotentialpollutantsinurbanizingwatersheds,willincreasestreamwaterconcentrationsand/orloadsofsediment,nutrients,pathogens,andvariouschemicals.Theresultcouldbesignificantdegradationofwaterqualitywithinriverbasinsandstreamsystems,andconcurrentnegativeeffectsondiversityofaquaticorganisms.Althoughresponseswillbemanifestedthroughoutriverbasins,cumulativeeffectswillmagnifythetrendsalongtheirlowerreaches.Ifstreamsremainconnectedtothefloodplainforeststhatliebelowthephysiographicfallline,somefractionofpollutantloadsmaybefilteredassedimentisdepositedbyspreadingfloodwaters.However,althoughuppercoastalforestsareprojectedtobeclearedtoalesserextentthanPiedmontforests,theyremainatsomeriskofconversionwithsubsequentreductionofpollutantfiltrationpotentialonfloodplains.Inaddition,theincreasedvelocityofstreamsandriversdraininghighlyurbanizedupperreacheswilltendtoincreasechannelincisement,therebyreducingthefilteringbenefitsofoverbankfloodingandsedimentdeposition.Althoughreservoirscreatedbydamsmaytrapsignificantamountsofsedimentandothersubstances,theyhaveafinitecapacityforsedimentfilling,whichisalreadybeingapproachedinsomeareas.Consequently,loadsofsediment,nutrients,andpathogenswilllikelyincreaseinlowerreachesofriverbasins,withexportsofthesematerialsexpectedtoelevatelevelsincoastalestuariesaswell.

Page 12: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 13: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

321chAPTeR 13. Forests and Water

forestland(15to27millionacres)thatwouldberequiredtosubstantiallyreducenonpointsourcepollutantexports(Mitschandothers2001).IncreasedforestcoveragewillalsobecharacteristiconmanyinlandCoastalPlainareasofVirginia,NorthCarolina,SouthCarolina,Georgia,Alabama,Mississippi,andLouisiana(chapter5),atrendthatcouldprotectfloodplainforestsandmaintainwaterqualityofthosesystems.

AnotherlocationthatisanticipatedtoundergomajorincreasesinurbanizationisthesouthernhalfofFlorida,whereforestedwetlands(bothripariananddepressional)areprevalentandassociatedwaterqualityfunctionsareatrisk.Atatimewhenadditionalnonpointsourcepollutantexportsareoriginatingfromnewlyurbanizedlandscapes,aportionofthenaturalsystemswithpotentialtofilterpollutantloadswilldisappearwiththedemiseofforestedwetlands.

effects of expanded intensive Forest management on Water

TheestablishmentofpineplantationshasresultedinvastacreagesofintensivelymanagedpineforestsintheSouth.Plantationbasedforestry–usingpineandfastgrowinghardwoodspecies–islikelytoincreaseinthefuture(chapter9),anddemandfromashrinkinglandbaseandemergingwoodfibermarketsforbioenergyislikelytoincreasemanagementintensityonnewandestablishedplantations.ConsiderableinformationisavailableontheimpactsofforestmanagementonstreamflowthroughouttheUnitedStates(Brownandothers2005,JonesandPost2004).Forexample,

removingtheforestcanopyincreasesstreamflowforthefirstfewyears,butthemagnitude,timing,anddurationoftheresponsevariesconsiderablyamongecosystems.Insome,streamflowreturnstopreharvestlevelswithin10to20years;whereasinothers,streamflowremainshigherforseveraldecadesaftercutting,orcanevendroplowerthanpre-harvestlevels(Jacksonandothers2004).Thiswidevariationinresponsesisattributabletothecomplexinteractionsbetweenclimate,whichcanvaryconsiderablyfromdrytowetregimes,andvegetation,whichcanvaryinstructureandphenology(coniferousversusdeciduousforest).

Informationontherelationshipsbetweenspecificecosystemsorforesttypesandstreamflowcanbeinferredfromstudiesquantifyingannualevapotranspiration.Atannualtimescales,streamflowisapproximatedbythedifferencebetweenprecipitation(PPT)andevapotranspiration(ET),streamflow=PPT-ET.Therefore,foragivenamountofprecipitation,managementactionsthatalterevapotranspirationwillalsoalterstreamflow.Itiswellestablishedthatconiferousforests,withtheirgreatercapacityforinterceptionandtranspiration,havehigherevapotranspiration(andhencelowerstreamflow)thandeciduoushardwoodforests(Fordandothers2011,SwankandDouglass1974).Averagedacrossseveralclimateregimesandforesttypes,thedifferencebetweenconiferousandhardwoodforestsisabout55percentat1200mmyr-1precipitationandincreasingprecipitationwidensthisdifferenceinthetwoforesttypes.Evapotranspirationalsovariesconsiderablybetweenmanagedandunmanagedsouthernforests(table13.4).Thisvariationisimportantforevaluatingtheimplications

Table 13.4—Mean annual transpiration (mm yr-1) for southern forest types

Vegetation type Transpiration SourceLongleaf pine savanna 244 Ford and others 2008Old field 250 Stoy and others 2006Oak-pine-hickory forest 278 Oren and Pataki 2001Upland oak forest 313 Wullschleger and others 2001Mixed pine hardwood 355 Phillips and Oren 2001Mixed pine hardwood 442 Stoy and others 2006Planted loblolly pine 490 Stoy and others 2006Mixed pine hardwood 523 Schafer and others 2002

Slash pine flatwoodsEucalyptus hybrid plantation

563882

Powell and others 2005Estimated for Baker County, southwestern Georgia in 2006 for an average climate and rainfall yeara

Planted loblolly pine (early rotation) 328 Domec and others 2012; Sun and others 2010Planted loblolly pine (mid-rotation) 777 Domec and others 2012; Sun and others 2010

aDerived from a model that used data collected in 2006 by the Joseph W. Jones Ecological Research Center, 3988 Jones Center Drive, Newton, GA 39870. Model assumed no soil water limitation; all trees at age 5; 1,111 trees ha-1; and a leaf area index of 6 m2 m-2 (Mielke and others 1999).

Page 14: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

322The Southern Forest Futures Project

ofincreasingpineplantationforestsintheSouthbecausethemagnitudeoftheeffectsonstreamflowdependsonthespecies,foresttype,orlandusebeingreplaced.Forexample,pineplantationsmayconsumenearlytwicethewaterconsumedbylongleafpinesavannas(table13.4).

Implicationsofincreasingmanagementintensityonwaterresourceswilldependonthespecificmanagementactivity.Increasingacreagesoffastgrowingspeciesforbioenergyproductionorcarbonsequestrationmayhavenegativeconsequencesforwateryield(Farleyandothers2005,Jacksonandothers2005b).Toillustrate,amatureeucalyptusplantation(age5,1,111treesha-1,leafareaindexof6m2m-2)growinginsouthwesternGeorgiacouldpotentiallyconsume882mmyr-1ofwater,exceedingotherforesttypesbyafactorof2.5(table13.4).Nitrogenfertilizationimprovesproductivityprimarilythoughincreasedleafarea(VoseandAllen1988),andevapotranspirationishighlycorrelatedwithleafareaindex(Sunandothersinpress).Shorteningrotationtimesusuallyincreasesstreamflowbydecreasingtheamountoftimethatthestandisatcanopyclosure,whenleafareaindexishighestandstreamflowislowest.Foranygivenleafarea,youngerorshortertreesalsohavehigherstomatalconductancethanolderortallertrees(Mooreandothers2004,Novickandothers2009,Schaferandothers2000).Althoughtranspirationperunitleafareaislessthanforyoungerforests,olderforestshavelargerleafareaandcaninterceptmorewater,andthereforehavegreaterevapotranspiration.Thismeansthatmanagingforolderforestsislikelytodecreasestreamflow.

ImpactsonwaterqualitywilldependonthetypeofmanagementactivityandtheeffectivenessofestablishedBestManagementPractices,whichwereoriginallydevelopedforlessintensivemanagement.Forexample,inreviewoftheimpactsofforestsfertilization,Foxandothers(2007)concludedthatcorrectlyappliedfertilizerrarelydegradeswaterquality.Incontrast,increasingthefrequencyofharvestforshorterrotationsmayhaveimpactsonsedimentyield,especiallyiftheharvestsresultingreatersoildisturbance(Ursic1986)orrequiremoreroadsandmorefrequentroadusage(Swift1988).

implications of climate change, land use change, and Population on Water Resources

Climate change impacts on water resources—Becauseofthecombinationofbiologicalandphysicalcontrolsonhydrologicprocesses,climatechangewillbothdirectlyandindirectlyimpactsouthernwaterresources(Brianandothers2004,Sunandothers2008).Thedirectimpactswilldependonhowtheamountandtimingofprecipitationarealteredandhowthisinfluencesbaseflow,stormflow,groundwaterrecharge,andflooding.Long-termU.S.GeologicalSurvey

streamflowdatasuggestthataverageannualstreamflowhasincreasedandthatthisincreasehasbeenlinkedtogreaterprecipitationineasternStatesoverthepast100years(IPCC2007,KarlandKnight1998,LinsandSlack1999);however,fewerthan66percentofallGeneralCirculationModelscanagreeonthedirectionofpredictedprecipitationchange,whetherwetterordrier(IPCC2007).Annualprecipitationwithinayearorfromoneyeartothenextisanaturalphenomenonrelatedtolarge-scaleglobalclimateteleconnections,suchasElNiñoSouthernOscillation,PacificDecadalOscillation,andNorthAtlanticOscillationcycles.ManyregionsoftheUnitedStateshaveexperiencedanincreasedfrequencyofprecipitationextremesoverthelast50years(Easterlingandothers2000,Huntington,2006,IPCC2007).AstheclimatewarmsinmostGeneralCirculationModels,thefrequencyofextremeprecipitationeventsincreasesacrosstheglobe(O’GormanandSchneider2009);however,thetimingandspatialdistributionofextremeeventsareamongthemostuncertainaspectsoffutureclimatescenarios(AllenandIngram2002,KarlandKnight1998).Despitethisuncertainty,recentexperiencewithdroughtsandlowflowsinmanyareasoftheUnitedStatesindicatethatevensmallchangesindroughtseverityandfrequencywillhaveamajorimpactonsociety,amongthemareductionindrinkingwatersupplies(Easterlingandothers2000,LuceandHolden2009).

Theindirectimpactsofclimatechangearerelatedtochangesintemperatureandatmosphericcarbondioxide.Intheshortterm,highertemperatureshavethepotentialtoincreaseevaporationandplantwateruseviatranspiration(astemperaturesincrease,theenergyavailableforevapotranspirationincreases),andthereforedecreaseexcessprecipitationavailableforstreamfloworgroundwaterrecharge.Warmertemperatureswillalsoinfluencethedurationandtimingofsnowmelt,acriticalfactorinecosystemswheresnowmeltdominateshydrologicprocesses.Theimpactsoftemperaturemaybeoffset(orexacerbated)bychangesinotherfactorsthatinfluenceevapotranspirationsuchasvaporpressure(warmairholdsmorewater),windpatterns(whichimpactboundarylayerresistance),increasesincarbondioxide(whichdecreasestomatalconductance),andchangesinnetradiation(influencedbychangesincloudcoverandaerosols).Inthelongerterm,awarmerclimateincombinationwithchangesinprecipitationwilllikelyshiftdistributionsoftreespecies,whichdifferconsiderablyintheamountofannualandseasonalwatertheyuseviatranspirationandinterception(Fordandothers2011,Sunandothers2011).Forexample,insomegeographicareas,ashiftfromhardwoodtopineforestsmayresultinyear-roundtranspirationandinterceptionandgreaterwateruse.Controlledstudieshavedemonstratedthatincreasedatmosphericcarbondioxidereducestranspirationinmanytreespecies,whichmaytranslateintoincreasedstreamflow

Page 15: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 16: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 17: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 18: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 19: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

327chAPTeR 13. Forests and Water

Onaverage,waterstressduetothecombinedeffectsofpopulationandlandusechangewillincreaseintheSouthby10percent.

6.AllclimatechangescenariospredictedthattheSouthwouldlikelyseeincreasesinairtemperatureinthenext50yearsbutdifferedinpredictionsofprecipitationchangeacrosstheregion.ThecombinedeffectsofchangingtemperatureandprecipitationwillgenerallydecreasestreamflowacrosstheSouth(fig.13.13).Inaddition,streamflowwilllikelybecomemorevariablewithlowerflowsduringdroughtperiodsandhigherflowsduringwetperiodsthanexperiencedinthepast.

7.Watersupplystresswouldlikelyincreasesignificantlyunderallfourclimatechangescenarios(fig.13.14),largelycausedbyincreasesinwaterlossbyevapotranspirationresultingfromhigherairtemperatures,andalsobecauseofdecreasingprecipitationinsomeareas.Theeffectsofchangingclimateonwaterstresswillvarysignificantlyacrosstheregion(fig.13.15).Forexample,theWaSSImodelprojectsthatFrankfort,KYwillhavenegligiblechangeinwaterstressacrossthefourfutureclimatescenarios,whileOklahomaCity,OK,LittleRock,AR,andAustin,TXareprojectedtohavesignificantincreasesinwaterstress.

implications of Sea level change on coastal Areas

Sea-levelmayrisefrom0.4to2.0mbytheendofthe21stcentury(table13.5)(McMullenandJabbour2009,Rahmsorf2007,Solomonandothers2009).AlongtheAtlanticCoastinthestudyregionthereisapproximately7,297squaremiles(~4.6millionacres)ofcoastallandbelowanelevationof1.5meters(NorthCarolinaandFloridahavethemostcoastalareabelow1.5m),withanadditional5,573squaremiles(~3.5millionacres)ofcoastallandbetween1.5and3.5m.AlongtheGulfCoastthereisapproximately13,605squaremiles(~8.7millionacres)oflandbelowanelevationof1.5m(LouisianaandTexashavethemostcoastalareabelow1.5m),withanadditional6,430squaremiles(~4.1millionacres)ofcoastallandbetween1.5and3.5m(fig.13.16).Ifsealevelrose1.5mweestimatethat2,633squaremiles(~1.6millionacres)offorestscouldbeaffectedalongtheAtlanticCoast,and3,352squaremiles(~2.1millionacres)offorestscouldbeimpactedalongtheGulfCoast.Whenphysicalprocessesareconsideredbythecoastalvulnerabilityindex,alongtheAtlanticCoastNorthCarolinaandVirginiahavethemostcoastlineintheveryhigh-riskclass,andalongtheGulfCoast,LouisianaandTexashavethemostcoastlineintheveryhigh-riskclass(fig.13.17).

Projectionsofsealevelchangescanhelpmanagersidentifyportionsofthecoastlinethatcouldbemonitoredmoreclosely.Forexample,figure13.18showsthattheentireLouisianacoastlineisinthehighriskcategorywithcoastalareabelow1.5m,buttheGulfcoastportionofsouthernFloridaisranked

inthemoderateriskcategoryeventhoughitscoastalareaisalsobelow1.5m,suggestingthatitsresponsetoarisingseamaybeslowerthanifpredictedfromelevationalone(ThielerandHammar-Klose2000).Figure13.19showsthatportionsoftheNorthCarolinacoastlineandtheAtlanticcoastofFloridaareinthehighriskcategory,butbecausethosecoastalareasarebetween1.5and3.5m,asea-levelriseof1mmaynotaffectthosehigherelevationareas.

DiScuSSioN AND coNcluSioNS

Forestconversiontoagricultureorurbanlandusesconsistentlycausesincreasesindischarge,peakflow,andvelocityofstreams.Differencesinthenatureofhydrologicresponsestourbanizationamongsubregionsaresubstantial.Asexamples,thepronouncedeffectofurbandevelopmentonpeakflowsandstreamhydrographsfoundintheAppalachiansandPiedmontmaybeobscuredbynaturalprecipitationregimesinaridregions,suchaswesternTexaswherehydrographsfromlessdisturbedstreamsresemblethoseofurbanstreams(Grimmandothers2004).Similarly,thereductionsinbaseflowthatareoftenobservedfollowingincreasesinimperviousareainthePiedmontmaynotoccurintheflatterterrainoftheCoastalPlain.

Forestconversionsalsoresultinincreasesinsediment,waterchemistryindices,fecalcoliformandE.coli,andothersubstances.Becausedischargeandconcentrationsincreaseafterurbanization,loadsaregenerallyhigher.Physiographiccharacteristicssuchasslopeandsoiltexturestronglyinfluencehydrologyandsedimentexport,buttheirimpactonwaterchemistryislessthantheimpactofurbanization.ConversionofforestlandtourbanusesmayresultinhealthrisksforhumansasevidencedbylargeincreasesinfecalcoliformandE.coli,heavymetals,pharmaceuticals,andothersubstancesinstreamwater.Whileeffectivewatertreatmentmayovercomethisrisktodrinkingwater,thereremainssignificantpotentialfordirectcontactwithpollutedwaterasstreamsflowthroughresidentialareaspriortotreatment.

Eachriverbasinhasauniquelandusehistorythatmayhavelong-lastingeffects.Cuffneyandothers(2010)reportedthattheconversionofforesttourbanlandhadmorepronouncedeffectsonbenthicmacroinvertebratesinAtlanta;Birmingham,AL;andRaleigh,NCthantheconversionofagriculturetourbanlandhadinDallas,wherenaturalgrasslandhadalreadybeendegradedbyagricultureintherecentpast(anexampleantecedentlanduseimpactstakingprecedentoverhistoricallanduse).Infact,theirstudyfoundthatantecedentagriculturallandusemaskedtheeffectsofurbanizationinareasofhistoricforestuseaswell.

Physiographiccharacteristicscoulddeterminethethreshold,ortheresiliencetochange,thateachsubregiondisplaysin

Page 20: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 21: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 22: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 23: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 24: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape
Page 25: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

333chAPTeR 13. Forests and Water

responsetochangesinlanduse.Forthisreason,McMahonandHarned(1998)recommendedincorporatingmeasuresofbothnaturalphysiographicvariationandeffectsofhumanactivityinwatershedstudiesandmanagementplans.Additionally,therehavebeensomeindicationsthatimpervioussurfaceincreasesmayhavehigherthresholdsforsignificantwaterdegradationintheCoastalPlainthanthePiedmontorSouthernAppalachians(Helmsandothers2009,MorganandCushman2005,Royandothers2003,Stednick1996,Utzandothers2009);butthisdoesnotappeartobetrueforallmeasures(Nagyandothers2012).

Theconceptofthresholdsofimperviousnessbeyondwhichsignificantdegradationofwaterqualityoccursisvagueandhadpreviouslybeenreportedat10-20percent(ArnoldandGibbons1996,BledsoeandWatson2001).However,somereportshavenotedsignificantchangesinwaterqualityatevenlowerlevelsofdevelopment,suchas<5percentimpervioussurface(Crim2007,Cuffneyandothers2010,Nagyandothers2012).Forinstance,at5percentimpervioussurface,Cuffneyandothers(2010)estimateda13to23percentdegradationofmacroinvertebrateassemblagescomparedtobackgroundconditions.Thissuggeststhatcaremustbetakenfromthefirststagesofdevelopmenttolimitimpactsonwaterresources.BoggsandSun(2011)suggestthatmaintaininghighETofvegetationinthegrowingseasoniskeytoreducingstormflowinurbanwatersheds.Furthermore,onceimpervioussurfacecoverexceeds30percent,deteriorationofwaterqualitybecomessevere(Calhounandothers2003,PaulandMeyer2001).Inareaswheredevelopmentisplannedorabouttobegin,itwouldbeveryusefultoidentifykeybioindicatorsfordetectingtheonsetofsignificantdegradation.

Amongthemostdramaticimpactsassociatedwithforestconversiontourbanoragriculturearechangesinaquaticpopulations.Thehighervelocityandchannelscouringassociatedwithurbanhydrologycreatesunstablehabitat,andthisiscompoundedbytheeffectsofdegradedwaterquality.Speciesrichnessandabundancegenerallydecline;andsomegroups,suchasmussels,maybeeliminatedfromparticularlocations.TheseimpactstendtobemostsevereintheAppalachians.Also,speciesthataretolerantofthealteredconditionsmayreplacethosethatareintolerant.AnexamplewasobservedintheGeorgiaPiedmontasreptilespeciesrichnessincreasedafterurbanization,whileamphibianrichnessdecreased(BarrettandGuyer2008).

Increasedintensificationofforestmanagementonasmallerlandbasecouldhaveimpactsonquantityandqualityofwater,especiallyatlocalscales.Ingeneral,anincreaseinpineplantationsorfastgrowinghardwoodspeciesmayresultingreaterwateruseviatranspiration(Fordandothers2011);however,themagnitudeandsignificanceofgreatertranspirationonwaterresourceswilldependonthe

communitytypethatisbeingreplacedandonsitespecifichydrologicprocesses.Inaddition,theimpactofgreaterwaterusemaybeoffsetbyanetreductionofforestcover.Increasedintensificationofforestmanagementactivitiesthatcreatemoresevereorfrequentsoildisturbance—suchassitepreparation,increasedharvestfrequencies,alargerroadnetwork,ormoretraffic—mayresultinincreasedsedimentandreducedwaterqualityifBestManagementPracticesarebypassed.

BasedonWaSSImodelresultsunderthefourfutureclimatescenariosconsideredinthischapter,streamflowsandwatersupplywillgenerallydecreaseandbecomemorevariableoverthenext50to100years.However,magnitudesandeventhesignsofchangesinstreamflowsresultingfromclimatechangewillvaryconsiderablyacrosstheregion,withsomesmallareas,suchaswesternTexas,experiencingincreasesinwatersupply.Otherareaswilllikelyexperiencedecreasesinsupply,particularlyinFlorida,Oklahoma,andnorthernTexas.Overall,climate-induceddecreasesinwatersupplyandincreaseddemandfromagrowinghumanpopulationwilllikelyresultinanincreaseinwatersupplystressintothenextcentury.

Considerablevariabilityofwaterresourcepredictionsamongthefutureclimatescenariosandtheabsenceofoverlappingpredictionsforanyparticularsubregionconfoundthecertaintyoffutureprojections.Despitetheseuncertainties,theimportanceofwaterresourcesforhumanandaquaticlifearguesforfurtherresearchandactivemanagement.

Ourprojectionsindicateagreaterriskofsea-levelriseformanycoastalareasinthiscentury.Thermalinertiadictatesthatoncethewatersrise,curbsinfuturegreenhousegasemissionswillnotproduceaquickreversal.Therefore,unlikeprecipitationdrivenfloodevents,floodingduetosea-levelrisewillhavelong-termconsequences.Coastalinundationisoneofthemostvisibleimpactsofrisingsealevels.Areasthatwereoncedryfurtherinlandwillgraduallyshifttoepisodicallyinundated(duringhightidesandstorms)andthentopermanentlyinundated.Theimpactofsealevelrisetothepointofinundationisobvious,butotherimpactsmaybelessvisible,suchasthesaltwatermarshesthatexemplifyanecosysteminbalancebetweenfreshwaterandsalineenvironments.Theseuniqueplacesprovideimportantbreedinghabitatformanyterrestrialandaquaticanimalspecies.However,rapidlyrisingsealevelswillpermeatenon-salineforestsandgrasslands,causinglossesofexistingvegetationwithoutthepossibilityofreplacementbymoresalttolerantspecies.Oncetheexistingvegetationisdead,therootstructurethatbindsthesoilsystemtogetherandprovidesabufferfromincomingtideswillalsobelost,andcoastalerosionislikelytoaccelerate.Althoughcoastalerosionisanaturallyoccurringprocessinbarrierislandsandmanyotherareas,theincreaseinrateandseverity

Page 26: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

334The Southern Forest Futures Project

thatislikelywithrisingsealevelscouldresultinagreatlyacceleratedlossofvaluablecoastalproperty.

Finally,acombinationofpressureonwaterresourcesfromincreasinghumanpopulationsandrisingsealevelscouldseverelyreducefreshwatersuppliesalongcoastalareas.Asfreshwaterisdrawnoutofshallowgroundwatersystems,adjacentbrackishwaterwouldlikelyfillthevoid,thusraisingtheriskofsaltwatercontaminationtodrinkingwatersupplies.Risesinsealevelwillfurtherincreasetheriskofcontaminationassalinewaterlevelsrise.ThelossofgroundwatersuppliesinplaceslikeFloridawouldhaveenormoussocialandeconomicimplicationsandmaybemoresignificantthancoastalinundationintheneartomediumfuture.

kNoWleDGe AND iNFoRmATioN GAPS

Paststudiesonforest-waterrelationsthathavebeenconductedprimarilyinforestedwatershedsarenotsufficienttoaddressissuesinmorecomplex,humandominatedlandscapes.AkeyissueistherelationshipbetweenincreasingurbanizationanddiminishingavailablewatersupplyforhumansintheSouth.Weneedtounderstandmoreaboutthenatureofthisrelationshipandhowitmaychangeacrossthearrayofsouthernphysiographicfeatures.Complexityincreaseswiththeinteractiveeffectsofmultipledriversincludinglandusechange,climatechange,populationgrowth,andthenaturalvariabilityinthehydrologiccycle.Abetterunderstandingiscriticallyneededinadvanceofthenextmajordrought,whoseimpactsmaybeexacerbatedbyexpectedincreasesinhumanpopulationsandimpervioussurfacesinmanyareasoftheSouth(chapter4).

Theramificationsofurbanizationonsurfacewaterandsubsequently,humanhealthisanothertopicthatdeservesgreaterattention.VeryhighcountsoffecalcoliformandE.colihavebeendocumentedinurbanstreams,butthepotentialriskstohumanhealthhavenotyetbeenassessed.Researchisneededoncoastalareas,whichhavenotbeenadequatelystudiedandareexpectedtoundergohighpopulationgrowthanddevelopmentratesincomingyears.Also,thesensitivitiesofaquaticorganismstourbanizationhavebeendemonstratedbutnotquantified,andshouldbemorefullyunderstoodsothattheycanserveasbioindicatorsofimpendingdegradationtosurfacewaterresources.Thefocusofthischapterwasonsurfacewaterimpactsassociatedwithlanduseconversion,butliteraturesearchesproducedlittleinformationontherelationshipsofgroundwatertolanduseandlandcover.Becausemanysoutherncommunitiesareconsideringexpandeduseofaquifers,believingthemtobe“droughtproof,”theywillneedtounderstandtheextenttowhichchangesinlandusemightaffectgroundwaterresources.

TheWaSSImodelprovidesageneralsummaryofwatersupplyanddemanddynamicsacrosslargeregionsoverextendedperiodsoftime,requiringassimilationandintegrationoflargedatasetsandtheuseofextensiveGISandcomputingresources.Theselargedatarequirementsnecessitateddevelopmentofsimplifyingassumptionstosimulatewaterresourcechangesinresponsetoclimatechange.Forexample,theWaSSImodelusedforthischapterdoesnotincludeprovisionsforwatersupplyreservoirstorageorinterbasinwatertransfers;italsoassumesthatallin-streamsurfacewaterisavailableforhumanuse(noecologicalflowisreserved)andthatriverflowsareroutedthroughtherivernetworkinstantaneouslyduringagivenmonth.Itisimportanttokeepinmindthattheseassumptionsmayimpactwatersupplystresspredictionsforsomeareasacrosstheregion.Futurelandusechangesarelikelytoaffectwaterqualityandextremehydrologysuchaspeakflowrate,issuesthatarenotaddressedyetbytheWaSSImodel.Thetradeoffsbetweenwaterresourcesandcarbonsequestrationarenotwellunderstoodandneedtobequantifiedbeforeembarkingonbioenergydevelopmentandforestmanagementtomitigateclimatewarming.

Comparedtothephysicsofoceanicthermalexpansion,relativelylittleisknownabouttherateofglobalwarming,thechangesinoceansurfacealbedo,ortheinputofwaterfromsnowandicemeltsonland.Manyoftheseunknownsarenotafunctionofsciencegaps,butratheruncertaintyaboutfutureincreasesingreenhousegasemissions.Conversely,thephysicsofthermalexpansionarewellunderstood.Aspredictionsofglobalwarmingratesimprove,theaccuracyofsea-levelrisewillalsoimprovesignificantly.Finally,demographicchangesandassociatedpressuresongroundwaterresourcesarealsounknown.Theseknowledgegapsneedtobeaddressedbeforeamorecompleteassessmentofclimatechangeonsea-levelriseispossible.

liTeRATuRe ciTeD

Ainslie,W.B.2002.Forestedwetlands.In:Wear,D.N.;Greis,J.G.,eds. Southernforestresourceassessment:summaryreport.Gen.Tech,Rep.SRS–54.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation:479–500.

Ainsworth,E.A.;Rogers,A.2007.Theresponseofphotosynthesisandstomatalconductancetorising[CO2]:mechanismsandenvironmentalinteractions.Plant,CellandEnvironment.30:258–270.

Allen,M.R.;Ingram,W.J.2002.Constraintsonfuturechangesinclimateandthehydrologiccycle.Nature.419:224–232.

Amatya,D.M.;Callahan,T.J.;Radecki-Pawlik,A.[andothers].2008.HydrologicandwaterqualitymonitoringonTurkeyCreekwatershed,FrancisMarionNationalForest,SC.In:ProceedingsoftheSouthCarolinawaterresourcesconference.Clemson,SC:ClemsonUniversity.http://www.clemson.edu/restoration/events/past_events/sc_water_resources/t3_proceedings_presentations/t3_zip/williams.pdf.[Dateaccessed:October28,2010].

Page 27: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

335chAPTeR 13. Forests and Water

Amatya,D.M.;Sun,G.;Skaggs,R.W.[andothers].2006.Hydrologiceffectsofglobalclimatechangeonalargedrainedpineforest.In:Williams,T.,ed.Hydrologyandmanagementofforestedwetlands:Proceedingsoftheinternationalconference.St.Joseph,MI:AmericanSocietyofAgriculturalandBiologicalEngineers:583–594.

Anderson,S.A.;Masters,R.E.1992.Riparianforestbuffers.FactSheet5034.Stillwater,OK:OklahomaStateUniversity,CooperativeExtensionService.7p.

Andrews,W.J.;Becker,M.F.;Smith,S.J.;Tortorelli,R.L.2009.Summaryofsurface-waterqualitydatafromtheIllinoisRiverbasininnorthOklahoma,1970–2007.Rev.ScientificInvestigationsReport.2009–5182.Reston,VA:U.S.GeologicalSurvey.39p.

Arnold,C.L.,Jr.;Gibbons,C.J.1996.Impervioussurfacecover:theemergenceofakeyenvironmentalindicator.JournaloftheAmericanPlanningAssociation.62:243–258.

Bailey,R.G.1980.DescriptionoftheecoregionsoftheUnitedStates.Misc.Publ.1391.Washington,DC:U.S.DepartmentofAgricultureForestService.77p.

Barrett,K.;Guyer,C.2008.DifferentialresponsesofamphibiansandreptilesinriparianandstreamhabitatstolandusedisturbancesinwesternGeorgia,USA.BiologicalConservation.141:2290–2300.

Becker,C.J.2006.WaterqualityandpossiblesourcesofnitrogenandbacteriatoRockandTravertineCreeks,ChickasawNationalRecreationArea,Oklahoma,2004.ScientificInvestigationsReport.2005–5279.Reston,VA:U.S.GeologicalSurvey.24p.

Beighley,R.E.;Melack,J.M.;Dunne,T.2003.ImpactsofCalifornia’sclimaticregimesandcoastallandusechangeonstreamflowcharacteristics.JournaloftheAmericanWaterResourcesAssociation.39:1419–1433.

Biggs,B.J.F.1996.Patternsinbenthicalgaeofstreams.In:Stevenson,R.J.;Brothwell,M.L.;Lowe,R.L.,eds.Algalecology:freshwaterbenthicecosystems.SanDiego:AcademicPress:31-56.

Binkley,D.;Brown,T.C.1993.Managementimpactsonwaterqualityofforestsandrangelands.Gen.Tech.Rep.RM–239.FortCollins,CO:U.S.DepartmentofAgricultureForestService,RockyMountainForestandRangeExperimentStation.114p.

Bledsoe,B.P.;Watson,C.C.2001.Effectsofurbanizationofchannelinstability.JournaloftheAmericanWaterResourcesAssociation.37:255–270.

Blevins,D.W.2004.HydrologyandcyclingofnitrogenandphosphorousinLittleBeanMarsh:aremnantriparianwetlandalongtheMissouriRiverinPlatteCounty,Missouri,1996–97.ScientificInvestigationsReport2004–5171.Reston,VA:U.S.GeologicalSurvey.78p.

Boggs,J.;Sun,G.2011.UrbanizationalterswatershedhydrologyinthePiedmontofNorthCarolina.Ecohydology.4:256-264.

Bolstad,P.V.;Swank,W.T.1997.CumulativeimpactsoflanduseonwaterqualityinaSouthernAppalachianwatershed.JournaloftheAmericanWaterResourcesAssociation.33(3):519–533.

Bosch,J.M.;Hewlett,J.D.1982.Areviewofcatchmentexperimentstodeterminetheeffectofvegetationchangesonwateryieldandevapotranspiration.JournalofHydrology.55:3–23.

Brian,H.H.;Callaway,M.;Smith,J.;Karshen,P.2004.ClimatechangeandU.S.waterresources:frommodeledwatershedimpactstonationalestimates.JournaloftheAmericanWaterResourcesAssociation.40:129–148.

Brinson,M.M.1993.Ahydrogeomorphicclassificationforwetlands.Tech.Rep.WRP–DE–4.Vicksburg,MS:U.S.ArmyCorpsofEngineers,WaterwaysExperimentStation.101p.

Brown,A.E.;Zhang,L.;McMahon,T.A.[andothers].2005.Areviewofpairedcatchmentstudiesfordeterminingchangesinwateryieldresultingfromalterationsinvegetation.JournalofHydrology.310:28–61.

Brown,T.C.;Hobbins,M.T.;Ramirez,J.A.2008.SpatialdistributionofwatersupplyintheconterminousUnitedStates.JournaloftheAmericanWaterResourcesAssociation.44:1474–1487.

Calhoun,D.L.;Frick,E.A.;Buell,G.R.2003.Effectsofurbandevelopmentonnutrientloadsandstreamflow,upperChattahoocheeRiverbasin,Georgia,1976–2001.In:Hatcher,K.J.,ed.Proceedingsofthe2003Georgiawaterresourcesconference.Athens,GA:TheUniversityofGeorgia,InstituteofEcology.[Unnumberedpages].

Casarim,F.2009.LegacysedimentsinSoutheasternUnitedStatesCoastalPlainstreams.Auburn,AL:AuburnUniversity.155p.M.S.thesis.

Chadwick,M.A.;Dobberfuhl,D.R.;Benke,A.C.[andothers].2006.Urbanizationaffectsstreamecosystemfunctionbyalteringhydrology,chemistry,andbioticrichness.EcologicalApplications.16:1796–1807.

Chessman,B.;Growns,I.;Currey,J.;Plunkett-Cole,N.1999.Predictingdiatomcommunitiesatthegenuslevelfortherapidbiologicalassessmentofrivers.FreshwaterBiology.41:317–331.

Childers,D.L.;Gosselink,J.G.1990.Assessmentofcumulativeimpactstowaterqualityinaforestedwetlandlandscape.JournalofEnvironmentalQuality.19:455–464.

Clinton,B.D.;Vose,J.M.2006.VariationinstreamwaterqualityinanurbanheadwaterstreamintheSouthernAppalachians.Water,Air,andSoilPollution.169:331–353.

Crim,J.F.2007.Waterqualitychangesacrossanurban-rurallandusegradientinstreamsofthewestGeorgiapiedmont.Auburn,AL:AuburnUniversity.130p.M.S.thesis.

Cuffney,T.F.;Brightbill,R.A.;May,J.T.;Waite,I.R.2010.Responsesofbenthicmacroinvertebratestoenvironmentalchangesassociatedwithurbanizationinninemetropolitanareas.EcologicalApplications.20(5):1384–1401.

Dale,V.H.;Joyce,J.A.;McNulty,S.[andothers].2001.Climatechangeandforestdisturbances.BioScience.51:723–734.

delaCretaz,A.L.;Barten,P.K.2007.LanduseeffectsonstreamflowandwaterqualityintheNortheasternUnitedStates.NewYork:CRCPress.319p.

Dennis,J.V.1988.Thegreatcypressswamps.BatonRouge,LA:LouisianaStateUniversityPress.232p.

DiDonato,G.T.;Stewart,J.R.;Sanger,D.M.[andothers].2009.Effectsofchanginglanduseonthemicrobialwaterqualityoftidalcreeks.MarinePollutionBulletin.58:97–106.

DomecJ.C.,Sun,G.,Noormets,A.[andothers].2012.Acomparisonofthreemethodstoestimateevapotranspirationintwocontrastingloblollypineplantations:age-relatedchangesinwateruseanddroughtsensitivityofevapotranspirationcomponents.ForestScience.58:497-512.

Duryea,M.L.;Hermansen,A.1997.Cypress:Florida’smajesticandbeneficialwetlandstree.CIR1186.Gainesville,FL:UniversityofFlorida,FloridaCooperativeExtensionService,InstituteofFoodandAgriculturalServices.12p.http://edis.ifas.ufl.edu.[Dateaccessed:March15,2009].

Easterling,D.R.;Evans,J.L.;Groisman,P.Y.[andothers].2000.Observedvariabilityandtrendsinextremeclimateevents:abriefreview.BulletinoftheAmericanMeteorologicalSociety.81:417–425.

Ernst,K.A.;Brooks,J.R.2003.Prolongedfloodingdecreasedstemdensity,treesizeandshiftedcompositiontowardsclonalspeciesinacentralFloridahardwoodswamp.ForestEcologyandManagement.173:261–279.

Exum,L.R.;Bird,S.L.;Harrison,J.;Perkins,C.A.2005.EstimatingandprojectingimperviouscoverintheSoutheasternUnitedStates.EPA/600/R–05/061.Athens,GA:U.S.EnvironmentalProtectionAgency,EcosystemsResearchDivision.133p.

Page 28: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

336The Southern Forest Futures Project

Farley,K.;Jobbagy,E.;Jackson,R.B.2005.Effectsofafforestationonwateryield:aglobalsynthesiswithimplicationsforpolicy.GlobalChangeBiology.11:1565–1576.

Faulkner,S.2004.Urbanizationimpactsonthestructureandfunctionofforestedwetlands.UrbanEcosystems.7:89–106.

Ford,C.R.;Brooks,J.R.2002.DetectingecosystemresponsetoincreasingriverflowinsouthwestFlorida,USA.ForestEcologyandManagement.160:45–64.

Ford,C.R.;Hubbard,R.M.;Vose,J.M.2011.QuantifyingstructuralandphysiologicalcontrolsoncanopytranspirationofplantedpineandhardwoodstandspeciesintheSouthernAppalachians.Ecohydrology.4(2):183-195.

Ford,C.R.;Mitchell,R.J.;Teskey,R.O.2008.Watertabledepthaffectsproductivity,wateruse,andtheresponsetonitrogenadditioninasavannasystem.CanadianJournalofForestResearch.38:2118–2127.

Fox,T.R.;Allen,H.L.;Albaugh,T.J.[andothers].2007.ForestfertilizationandwaterqualityintheUnitedStates.BetterCrops.91:5–7.

Gangloff,M.M.;Feminella,J.W.2007.StreamchannelgeomorphologyinfluencesmusselabundanceinSouthernAppalachianstreams,USA.FreshwaterBiology.52:64–74.

Gillies,R.R.;BrimBox,J.;Symanzik,J.;Rodemaker,E.J.2003.EffectsofurbanizationontheaquaticfaunaoftheLineCreekwatershed,Atlanta—asatelliteperspective.RemoteSensingofEnvironment.86:411–422.

Grace,J.M.2005.ForestoperationsandwaterqualityintheSouth.TransactionsoftheASAE.48(2):871–880.

Gresham,C.A.1989.Aliteraturereviewondevelopingpocosins.In:Hook,D.D.;Lea,R.,eds.Proceedingsofthesymposium:theforestedwetlandsoftheSouthernUnitedStates.Gen.Tech.Rep.SE–50.Asheville,NC:U.S.DepartmentofAgricultureForestService,SoutheasternForestExperimentStation:44–50.

Grimm,N.B.;Arrowsmith,J.R.;Eisinger,C.[andothers].2004.Effectsofurbanizationonnutrientbiogeochemistryofaridlandstreams.In:Defries,R.;Asner,G.;Houghton,R.,eds.Ecosysteminteractionswithlandusechange.Geophys.Monogr.Ser.153.Washington,DC:AmericanGeophysicalUnion:129–146.

Groffman,P.M.;Bain,D.J.;Band,L.E.[andothers].2003.Downbytheriverside:urbanriparianecology.FrontiersinEcologyandtheEnvironment.1(6):315–321.

Hagen,E.M.;Webster,J.R.;Benfield,E.F.2006.Areleafbreakdownratesausefulmeasureofstreamintegrityalonganagriculturallandusegradient?JournalofNorthAmericanBenthologicalSociety.25(2):330–343.

Hammar-Klose,E.S.;Thieler,E.R.2001.Coastalvulnerabilitytosea-levelrise:apreliminarydatabasefortheU.S.Atlantic,Pacific,andGulfofMexicoCoasts.[CD–ROM].DigitalDataSer.DDS–68.http://pubs.usgs.gov/dds/dds68.[Dateaccessed:October28,2010].

Helms,B.S.2008.ResponseofaquaticbiotatochanginglandusepatternsinstreamsofwestGeorgia,USA.Auburn,AL:AuburnUniversity.224p.Ph.D.dissertation.

Helms,B.S.;Feminella,J.W.;Pan,S.2005.DetectionofbioticresponsestourbanizationusingfishassemblagesfromsmallstreamsofwesternGeorgia,USA.UrbanEcosystems.8:39-57.

Helms,B.S.;Schoonover,J.E.;Feminella,J.W.2009.SeasonalvariabilityoflanduseimpactsonmacroinvertebrateassemblagesinstreamsofwesternGeorgia,USA.JournaloftheNorthAmericanBenthologicalSociety.28(4):991–1006.

Hibbert,A.R.1967.Foresttreatmenteffectsonwateryield.In:Sopper,W.E.;Lull,H.W.,eds.Foresthydrology:ProceedingsofaNationalScienceFoundationadvancedscienceseminar.NewYork:PergamonPress:527–543.

Holland,A.F.;Sanger,D.M.;Gawle,C.P.[andothers].2004.Linkagesbetweentidalcreekecosystemsandthelandscapeanddemographicattributesoftheirwatersheds.JournalofExperimentalMarineBiologyandEcology.298:151–178.

Houlahan,J.E.;Findlay,C.S.2003.Theeffectsofadjacentlanduseonwetlandamphibianspeciesrichnessandcommunitycomposition.CanadianJournalofFisheriesandAquaticSciences.60:1078–1094.

Huntington,T.G.2006.Evidenceforintensificationoftheglobalwatercycle:reviewandsynthesis.JournalofHydrology.319:83–95.

IntergovernmentalPanelonClimateChange(IPCC).2007.ContributionofworkinggroupsI,II,andIIItothefourthassessmentreportoftheintergovernmentalpanelonclimatechange.In:Pachauri,R.K.;Reisinger,A.,eds.Geneva,Switzerland:Climatechange2007:Synthesisreport.104p.

Jackson,C.R.;Martin,J.K.;Leigh,D.S.;West,L.T.2005a.Asoutheasternpiedmontwatershedsedimentbudget:evidenceforamulti-millennialagriculturallegacy.JournalofSoilandWaterConservation.60:298–310.

Jackson,C.R.;Sun,G.;Amatya,D.M.[andothers].2004.FiftyyearsofforesthydrologyintheSoutheast.In:Ice,G.G.;Stednick,J.D.,eds.Acenturyofforestandwildlandwatershedlessons.Bethesda,MD:SocietyofAmericanForesters:33–112.

Jackson,R.B.;Jobbagy,E.G.;Avissar,R.[andothers].2005b.Tradingwaterforcarbonwithbiologicalcarbonsequestration.Science.310:1944–1947.

Jones,J.A.;Post,D.A.2004.SeasonalandsuccessionalstreamflowresponsetoforestcuttingandregrowthintheNorthwestandEasternUnitedStates.WaterResourcesResearch.40:W05203.

Karl,T.R.;Knight,R.W.1998.Seculartrendsofprecipitationamount,frequency,andintensityintheUSA.BulletinoftheAmericanMeteorologySociety.79:231–241.

Kenny,J.F.;Barber,N.L.;Hutson,S.S.[andothers].2009.EstimateduseofwaterintheUnitedStatesin2005.Circ.1344.Reston,VA:U.S.DepartmentoftheInterior,U.S.GeologicalSurvey.52p.

Klapproth,J.C.;Johnson,J.E.2000.Understandingthesciencebehindriparianforestbuffers:effectsonwaterquality.VirginiaCooperativeExtensionPubl.Blacksburg,VA:VirginiaPolytechnicInstituteandStateUniversity:420–451.

Kolpin,D.W.;Furlong,E.T.;Meyer,M.T.[andothers].2002.Pharmaceuticals,hormones,andotherorganicwastewatercontaminantsinU.S.streams,1999–2000:anationalreconnaissance.EnvironmentalScienceandTechnology.36:1202–1211.

Koren,V.;Smith,M.;Duan,Q.2003.Useofaprioriparameterestimatesinthederivationofspatiallyconsistentparametersetsofrainfall-runoffmodels.In:Duan,Q.;Sorooshian,S.;Gupta,H.[andothers],eds.Calibrationofwatershedmodelswaterscienceandapplications.AmericanGeophysicalUnion:239–254.Vol.6.

Lehrter,J.C.2006.Effectsoflanduseandlandcover,streamdischarge,andinterannualclimateonthemagnitudeandtimingofnitrogen,phosphorus,andorganiccarbonconcentrationsinthreeCoastalPlainwatersheds.WaterEnvironmentResearch.78(12):2356–2368.

Lenat,D.R.;Crawford,J.K.1994.EffectsoflanduseonwaterqualityandaquaticbiotaofthreeNorthCarolinaPiedmontstreams.Hydrobiologia.294:185–199.

Likens,G.E.;Bormann,F.H.1995.Biogeochemistryofaforestedecosystem,2dedition.NewYork:Springer-Verlag.159p.

Lins,H.;Slack,J.R.1999.StreamflowtrendsintheUnitedStates.GeophysicalResearchLetters.26:227–230.

Lowrance,R.R.;Leonard,R.A.;Asmussen,L.E.;Todd,R.L.1985.NutrientbudgetsforagriculturalwatershedsinthesoutheasternCoastalPlain.Ecology.66(1):287–296.

Page 29: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

337chAPTeR 13. Forests and Water

Luce,C.H.;Holden,Z.A.2009.DecliningannualstreamflowdistributionsinthePacificNorthwestUnitedStates,1948–2006.GeophysicalResearchLetters.36:L16401.

Mallin,M.A.;Williams,K.E.;Esham,E.C.;Lowe,R.P.2000.Effectofhumandevelopmentonbacteriologicalwaterqualityincoastalwatersheds.EcologicalApplications.10:1047–1056.

Maloney,K.O.;Feminella,J.W.2006.Evaluationofsingle-andmulti-metricbenthicmacroinvertebrateindicatorsofcatchmentdisturbanceovertimeattheFortBenningMilitaryInstallation,Georgia,USA.EcologicalIndicators.6:469–484.

Martin,W.H.;Boyce,S.G.1993.Introduction:thesoutheasternsetting.In:Martin,W.H.;Boyce,S.G.;Echternacht,A.C.,eds.BiodiversityoftheSoutheasternUnitedStates:LowlandTerrestrialCommunities(Vol.2).NewYork:JohnWiley:1-46.

May,S.K.;Kimball,W.H.;Grady,N.;Dolan,R.1982.CEIS:thecoastalerosioninformationsystem.ShoreandBeach.50:19–26.

McCullen,C.P.;Jabbour,J.2009.Climatechangesciencecompendium.http://www.unep.org/compendium2009/.[Dateaccessed:October28,2010].

McMahon,G.;Bales,J.D.;Coles,J.[andothers].2003.Useofstagedatatocharacterizehydrologicconditionsinanurbanizingenvironment.JournaloftheAmericanWaterResourcesAssociation.39:1529–1546.

McMahon,G.;Harned,D.A.1998.Effectofenvironmentalsettingonsediment,nitrogen,andphosphorousconcentrationsinAlbemarle-PamlicoDrainageBasin,NorthCarolinaandVirginia,USA.EnvironmentalManagement.22(6):887–903.

Meyer,J.L.1992.SeasonalpatternsofwaterqualityinBlackwaterRiversoftheCoastalPlain,SoutheasternUnitedStates.In:Becker,C.D.;Neitzel,D.A.,eds.WaterqualityinNorthAmericanriversystems.Columbus,OH:BartellePress:249–276.

Mielke,M.S.;Oliva,M.A.;deBarros,N.F.[andothers].1999.Stomatalcontroloftranspirationinthecanopyofaclonaleucalyptusgrandisplantation.Trees—StructureandFunction.13:152–160.

Mitsch,W.J.;Day,J.W.;Gilliam,J.W.[andothers].2001.ReducingnitrogenloadingtotheGulfofMexicofromtheMississippiRiverBasin:strategiestocounterapersistentecologicalproblem.BioScience.51(5):373–388.

Moore,G.W.;Bond,B.J.;Jones,J.A.[andothers].2004.Structuralandcompositionalcontrolsontranspirationin40-and450-year-oldriparianforestsinwesternOregon,USA.TreePhysiology.24:481–491.

Morgan,R.P.;Cushman,S.E.2005.UrbanizationeffectsonstreamfishassemblagesinMaryland,USA.JournaloftheNorthAmericanBenthologicalSociety.24:643–655.

Nagy,R.C.;Lockaby,B.G.;Helms,B.2011.Waterresourcesandlanduse/coverinahumidregion:TheSoutheasternUnitedStates.JournalofEnvironmentalQuality.40(3):867-878.

Nagy,R.C.;Lockaby,B.G.;Kalin,L.;Anderson,C.2012.Effectsofurbanizationonstreamhydrologyandwaterquality:theFloridaGulfCoast.HydrologicalProcesses.26(13):2019–2030.

Naiman,R.J.;Décamps,H.;McClain,M.E.2005.Riparia:ecology,conservation,andmanagementofstreamsidecommunities.Burlington,MA:ElsevierAcademicPress.430p.

NationalResearchCouncil.1995.Wetlands:characteristicsandboundaries.Washington,DC:NationalAcademyPress.328p.

Novick,K.;Oren,R.;Stoy,P.[andothers].2009.Therelationshipbetweenreferencecanopyconductanceandsimplifiedhydraulicarchitecture.AdvancesinWaterResources.32:809–819.

Novotny,V.2003.Waterquality:diffusepollutionandwatershedmanagement.NewYork:JohnWiley.888p.

NPADataServices,Inc.1999.Economicdatabases—mid-rangegrowthprojections1967–2050.Arlington,VA:RegionalEconomicProjectionSeries.

NaturalResourcesConservationService(NRCS).2009.Watershedboundarydataset.http://geo.data.gov/geoportal/catalog/search/resource/details.page?uuid=%7B5DE81693-574F-DB99-9B78-048D2B595498%7D.[Dateaccessed:January9,2009].

O’Gorman,P.A.;Schneider,T.2009.Thephysicalbasisforincreasesinprecipitationextremesinsimulationsof21st-centuryclimatechange.ProceedingsoftheNationalAcademyofSciences.106:14,773–14,777.

Oki,T.;Kanae,S.2006.Globalhydrologicalcyclesandworldwaterresources.Science.313:1068–1072.

Olivera,F.;DeFee,B.B.2007.UrbanizationanditseffectonrunoffintheWhiteoakBayouwatershed,Texas.JournaloftheAmericanWaterResourcesAssociation.43:170–182.

Onorato,D.;Marion,K.R.;Angus,R.A.1998.LongitudinalvariationsintheichthyofaunalassemblagesoftheupperCahabaRiver:possibleeffectsofurbanizationinawatershed.JournalofFreshwaterEcology.13:139–154.

Oren,R.;Pataki,D.E.2001.Transpirationinresponsetovariationinmicroclimateandsoilmoistureinsoutheasterndeciduousforests.Oecologia.127:549–559.

Orser,P.N.;Shure,D.J.1972.EffectsofurbanizationonthesalamanderDesmognathusfuscusfuscus.Ecology.53:1148-1154.

Palmer,T.1994.Lifelines:thecaseforriverconservation.Washington,DC:IslandPress.256p.

Parry,M.L.;Canziani,O.F.;Palutikof,J.P.[andothers],eds.2007.ContributionoftheworkinggroupIItothefourthassessmentreportoftheintergovernmentalpanelonclimatechange,2007.Cambridge,UnitedKingdom;NewYork:CambridgeUniversityPress.976p.

Paul,M.J.;Meyer,J.L.2001.Streamsintheurbanlandscape.AnnualReviewofEcology,Evolution,andSystematics.32:333–365.

Phillips,N.;Oren,R.2001.Intra-andinter-annualvariationintranspirationofapineforest.EcologicalApplications.11:385–396.

Powell,T.L.;Starr,G.;Clark,K.L.[andothers].2005.Ecosystemandunderstorywaterandenergyexchangeforamature,naturallyregeneratedpineflatwoodsforestinnorthFlorida.CanadianJournalofForestResearch.35:1568–1580.

Price,S.J.;Dorcas,M.E.;Gallant,A.L.[andothers].2006.Threedecadesofurbanization:estimatingtheimpactofland-coverchangeonstreamsalamanderpopulations.BiologicalConservation.133:436–441.

Rahmstorf,S.2007.Asemi-empiricalapproachtoprojectingfuturesea-levelrise.Science.315:368–370.

Rose,S.;Peters,N.E.2001.EffectsofurbanizationonstreamflowintheAtlantaarea(Georgia,USA):acomparativehydrologicalapproach.HydrologicalProcesses.15:1441–1457.

Ross,M.S.;O’Brien,J.J.;Sternberg,L.D.L.1994.Sea-levelriseandthereductioninpineforestsintheFloridaKeys.EcologicalApplications.4:144–156.

Roy,A.H.;Freeman,M.C.;Freeman,B.J.[andothers].2005.Investigatinghydrologicalterationasamechanismoffishassemblageshiftsinurbanizingstreams.JournaloftheNorthAmericanBenthologicalSociety.24:656–678.

Roy,A.H.;Rosemond,A.D.;Paul,M.J.[andothers].2003.Streammacroinvertebrateresponsetocatchmenturbanisation(Georgia,U.S.A.).FreshwaterBiology.48:329–346.

Schafer,K.V.R.;Oren,R.;Lai,C.;Katul,G.2002.HydrologicbalanceinanintacttemperateecosystemunderambientandelevatedatmosphericCO2concentration.GlobalChangeBiology.8:895–911.

Page 30: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

338The Southern Forest Futures Project

Schafer,K.V.R.;Oren,R.;Tenhunen,J.D.2000.Theeffectoftreeheightoncrownlevelstomatalconductance.PlantCellandEnvironment.23:365–375.

Schoonover,J.E.;Lockaby,B.G.2006.LandcoverimpactsonstreamnutrientsandfecalcoliforminthelowerPiedmontofwestGeorgia.JournalofHydrology.331:371–382.

Schoonover,J.E.;Lockaby,B.G.;Helms,B.S.2006.ImpactsoflandcoveronstreamhydrologyinthewestGeorgiaPiedmont,USA.JournalofEnvironmentalQuality.35:2123–2131.

Schoonover,J.E.;Lockaby,B.G.;Pan,S.2005.Changesinchemicalandphysicalpropertiesofstreamwateracrossanurban-ruralgradientinwesternGeorgia.UrbanEcosystems.8:107–124.

Scott,M.C.;Helfman,G.S.;McTammany,M.E.[andothers].2002.MultiscaleinfluencesonphysicalandchemicalstreamconditionsacrossBlueRidgelandscapes.JournaloftheAmericanWaterResourcesAssociation.38(5):1379–1392.

Solley,W.B.;Pierce,R.R.;Perlman,H.A.1998.Estimateduseofwaterin1995.Circ.1200.Alexandria,VA:U.S.GeologicalSurvey.http://water.usgs.gov/watuse/pdf1995/pdf/summary.pdf.[Dateaccessed:July,2007].

Soloman,S.;Plattner,G-k.;Knutt,R.;Friedlingstein,P.2009.Irreversibleclimatechangeduetocarbondioxideemissions.ProceedingsoftheNationalAcademyofSciencesoftheUSA.106(6):1704–1709.

Sponseller,R.A.;Benfield,E.F.;Valett,H.M.2001.Relationshipsbetweenlanduse,spatialscaleandstreammacroinvertebratecommunities.FreshwaterBiology.46:1409–1424.

Stednick,J.D.1996.Monitoringtheeffectsoftimberharvestonannualwateryield.JournalofHydrology.176:79–95.

Stoy,P.;Katul,G.;Siqueira,M.[andothers].2006.SeparatingtheeffectsofclimateandvegetationonevapotranspirationalongasuccessionalchronosequenceintheSoutheasternUnitedStates.GlobalChangeBiology.12:2115–2135.

Sun,G.;Alstad,K.;Chen,J.[andothers].2011.Ageneralpredictivemodelforestimatingmonthlyecosystemevapotranspiration.Ecohydrology.4(2):245-255.

Sun,G.;McNulty,S.G.;Lu,J.[andothers].2005.RegionalannualwateryieldfromforestlandsanditsresponsetopotentialdeforestationacrosstheSoutheasternUnitedStates.JournalofHydrology.308:258–268.

Sun,G.;McNulty,S.G.;MooreMyers,J.;Cohen,E.C.2008.ImpactsofmultiplestressesonwaterdemandandsupplyacrosstheSoutheasternUnitedStates.JournalofAmericanWaterResourcesAssociation.44(6):1441–1457.

Sun,G.,Noormets,A.;Gavazzi,M.J.[andothers].2010.EnergyandwaterbalanceoftwocontrastingloblollypineplantationsonthelowerCoastalPlainofNorthCarolina,USA.ForestEcologyandManagement.259:1299-1310.

Sun,G.;Riedel,M.;Jackson,R.2004.InfluencesofmanagementofSouthernforestsonwaterquantityandquality.In:Rauscher,H.M.;Johnsen,K.,eds.SouthernForestSciences:past,current,andfuture.Gen.Tech.RepSRS-75.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation.394p.Chapter3.

Sutherland,A.B.;Meyer,J.L.;Gardiner,E.P.2002.EffectsoflandcoveronsedimentregimeandfishassemblagestructureinfourSouthernAppalachianstreams.FreshwaterBiology.47:1791–1805.

Swank,W.T.;Douglass,J.E.1974.Streamflowgreatlyreducedbyconvertingdeciduoushardwoodstandstopine.Science.185:857–859.

Swank,W.T.;Douglass,J.E.1977.NutrientbudgetsforundisturbedandmanipulatedhardwoodforestecosystemsinthemountainsofNorthCarolina.In:Correll,D.L.,ed.WatershedresearchinEasternNorthAmerica.Edgewater,MD:SmithsonianInstitute:343-362.Vol.1.

Swift,L.W.,Jr.1988.Forestaccessroads:design,maintenance,andsoilloss.In:Swank,W.T.;Crossley,D.A.,Jr.,eds.Ecologicalstudies,foresthydrologyandecologyatCoweeta.NewYork:SpringerVerlag:313–324.Vol.66.

Thieler,E.R.;Hammar-Klose,E.S.2000.Nationalassessmentofcoastalvulnerabilitytofuturesea-levelrise:preliminaryresultsfortheU.S.GulfofMexicoCoast.Open-FileReport00-179,1sheet.U.S.GeologicalSurvey.

Thomson,A.M.;Brown,R.A.;Rosenberg,N.J.[andothers].2003.SimulatedimpactsofElNiño/southernoscillationonUnitedStateswaterresources.JournaloftheAmericanWaterResourcesAssociation.39:137–148.

Titus,J.G.;Richman,C.2001.Mapsoflandsvulnerabletosealevelrise:modeledelevationsalongtheU.S.Atlanticandgulfcoasts.ClimateResearch.18(2):205–228.

Tomer,M.D.;Dosskey,M.G.;Burkart,M.R.[andothers].2005.Placementofriparianforestbufferstoimprovewaterquality.[CD-ROM].In:Brooks,K.N.;Folliot,P.F.,eds.Movingagroforestryintothemainstream.Proceedingsofthe9thNorthAmericaagroforestryconference.St.Paul,MN:UniversityofMinnesota,DepartmentofForestResources.

Trimble,S.W.2008.Man-inducedsoilerosiononthesouthernPiedmont.Ankey,IA:SoilandWaterConservationSociety.80p.

Tufford,D.L.;Samarghitan,C.L.;McKellar,H.N.,Jr.[andothers].2003.Impactsofurbanizationonnutrientconcentrationsinsmallsoutheasterncoastalstream.JournaloftheAmericanWaterResourcesAssociation.39(2):301–312.

Ursic,S.J.1986.SedimentandforestrypracticesintheSouth.In:Proceedings,fourthFederalinteragencysedimentationconference.Washington,DC:U.S.GovernmentPrintingOffice:28–37.Vol.1.

U.S.Census.2001.Census2000summaryfile1UnitedStates,productIDV1–D00–S1S1–08–US1.http://www.census.gov/geo/www/gazetteer/places2k.html.[Dateaccessed:October28,2010].

U.S.DepartmentofAgriculture(USDA),NationalAgroforestryCenter.2008.Workingtreesforwaterquality.http://www.unl.edu/nac/workingtrees.htm.[Dateaccessed:June18,2010].

U.S.DepartmentofAgriculture(USDA),NaturalResourceConservationService.2009.Distributionmapsofdominantsoilorders.http://soils.usda.gov/technical/classification/orders/ultisols.html.[Dateaccessed:June15,2009].

Utz,R.M.;Hilderbrand,R.H.;Boward,D.M.2009.Identifyingregionaldifferencesinthresholdresponsesofaquaticinvertebratestolandcovergradients.EcologicalIndicators.9:556–567.

Vellidis,G.1999.WaterqualityfunctionofriparianecosystemsinGeorgiaIn:Hatcher,K.J.,ed.ProceedingsoftheGeorgiawaterresourcesconference.Athens,GA:TheUniversityofGeorgia,InstituteofEcology:207-210.

Vicars-Groening,J.;Williams,H.F.L.2007.ImpactofurbanizationonstormresponseofWhiteRockCreek,Dallas,TX.EnvironmentalGeology.51:1263–1269.

Vose,J.M.;Allen,H.L.1988.Leafarea,stemwoodgrowth,andnutritionrelationshipsinloblollypine.ForestScience.34(3):547–563.

Vose,J.M.;Sun,G.;Ford,C.R.[andothers].2011.Forestecohydrologicalresearchinthe21stcentury:Whatarethecriticalneeds?Ecohydrology.4(2):146-158.

Wahl,M.H.;McKellar,H.N.;Williams,T.M.1997.Patternsofnutrientloadinginforestedandurbanizedcoastalstreams.JournalofExperimentalMarineBiologyandEcology.213:111–131.

Walbridge,M.R.1993.FunctionsandvaluesofforestedwetlandsintheSouthernUnitedStates.JournalofForestry.91(5):15–19.

Page 31: Chapter 13. Forests and Water - US Forest ServiceFunctions of Forested Wetlands and Riparian Forests Forested wetlands can be described by hydrogeomorphic considerations such as landscape

339chAPTeR 13. Forests and Water

Wallace,J.B.;Webster,J.R.;Lowe,R.L.1992.High-gradientstreamsoftheAppalachians.In:Hackney,C.T.;Adams,S.M.;Martin,W.A.,eds.BiodiversityoftheSoutheasternUnitedStates:aquaticcommunities.NewYork:JohnWiley:133-192.

Walsh,C.J.;Roy,A.H.;Feminella,J.W.[andothers].2005.Theurbanstreamsyndrome:currentknowledgeandthesearchforacure.JournaloftheNorthAmericanBenthologicalSociety.24:706–723.

Walters,D.M.;Leigh,D.S.;Bearden,A.B.2003.Urbanization,sedimentation,andthehomogenizationoffishassemblagesintheEtowahRiverbasin,USA.Hydrobiologia.494:5–10.

Wang,L.;Lyons,J.;Kanehl,P.;Bannerman,R.2001.Impactsofurbanizationonstreamhabitatandfishacrossmultiplespatialscales.EnvironmentalManagement.28:255–266.

Weaver,L.A.;Garman,G.C.1994.Urbanizationofawatershedandhistoricalchangesinastreamfishassemblage.TransactionsoftheAmericanFisheriesSociety.123:162–172.

Weston,N.B.;Hollibaugh,J.T.;Joyce,S.B.2009.Populationgrowthawayfromthecoastalzone:thirtyyearsoflandusechangeandnutrientexportintheAltamahaRiver,GA.ScienceoftheTotalEnvironment.407(10):3347–3356.

WorldWildlifeFund.2010.U.S.Southeastriversandstreams:safeguardingAmerica’srichestsourceoffreshwater.http://wwf.panda.org/what_we_do/where_we_work/southeastern_rivers/.[Dateaccessed:June18,2010].

Wullschleger,S.D.;Hanson,P.J.;Todd,D.E.2001.Transpirationfromamulti-speciesdeciduousforestasestimatedbyxylemsapflowtechniques.ForestEcologyandManagement.143:205–213.