Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons...

69
Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publish Courtesy Tim Flach/Stone/Getty Images

Transcript of Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons...

Page 1: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Chapter 12: Solids, Liquids, and Especially Gases

The States of Matter

© 2003 John Wiley and Sons Publishers

Courtesy Tim Flach/Stone/Getty Images

Page 2: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.1: “Squeezing” air out of a bottle.

© 2003 John Wiley and Sons Publishers

Courtesy Ken Karp

Page 3: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.2: Solid, liquid, and gas.

© 2003 John Wiley and Sons Publishers

Page 4: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.3: At its melting point, the chemical particles of a crystalline solid leave the orderly lattice and achieve a greater freedom of movement in the liquid melt.

© 2003 John Wiley and Sons Publishers

Page 5: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.4: Liquids evaporate as molecules with high translational energies escape from the liquid into the vapor.

© 2003 John Wiley and Sons Publishers

Page 6: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Particles of a gas Move rapidly in straight lines. Have kinetic energy that increases with an

increase in temperature. Are very far apart. Have essentially no attractive (or repulsive)

forces. Have very small volumes compared to the

volume of the container they occupy.

Kinetic Theory of Gases

Page 7: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.9: Molecular motion in an ideal gas.

© 2003 John Wiley and Sons Publishers

Page 8: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

• Gases are described in terms of four properties: pressure (P), volume (V), temperature (T), and amount (n).

Properties of Gases

Page 9: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

• A barometer measures the pressure exerted by the gases in the atmosphere.

• The atmospheric pressure is measured as the height in mm of the mercury column.

Barometer

Page 10: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

A. The downward pressure of the Hg in a barometer is _____ than/as the weight of the atmosphere.

1) greater 2) less 3) the same

B. A water barometer is 13.6 times taller than a Hg barometer (DHg = 13.6 g/mL) because

1) H2O is less dense

2) H2O is heavier

3) air is more dense than H2O

Learning Check

Page 11: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

A.The downward pressure of the Hg in a barometer is 3) the same as the weight of the atmosphere.

B. A water barometer is 13.6 times taller than a Hg barometer (DHg = 13.6 g/mL) because

1) H2O is less dense

Solution

Page 12: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

A gas exerts pressure, which is defined as a force acting on a specific area.

Pressure (P) = Force Area

One atmosphere (1 atm) is 760 mm Hg. 1 mm Hg = 1 torr

1.00 atm = 760 mm Hg = 760 torr

Pressure

Page 13: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

• In science, pressure is stated in atmospheres (atm), millimeters of mercury (mm Hg), and Pascals (Pa).

Units of Pressure

Page 14: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

A. What is 475 mm Hg expressed in atm?1) 475 atm2) 0.625 atm3) 3.61 x 105 atm

B. The pressure in a tire is 2.00 atm. What is this pressure in mm Hg?1) 2.00 mm Hg2) 1520 mm Hg3) 22,300 mm Hg

Learning Check

Page 15: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

A. What is 475 mm Hg expressed in atm?2) 0.638 atm485 mm Hg x 1 atm = 0.638 atm

760 mm HgB. The pressure of a tire is measured as 2.00 atm.

What is this pressure in mm Hg?2) 1520 mm Hg2.00 atm x 760 mm Hg = 1520 mm Hg

1 atm

Solution

Page 16: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.5: Composition of dry air.

© 2003 John Wiley and Sons Publishers

Page 17: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.6: The regions of the atmosphere.

© 2003 John Wiley and Sons Publishers

Page 18: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.7 Atmospheric pressure at sea level, 760 mm-Hg, 14.7 lb/in.2

© 2003 John Wiley and Sons Publishers

Page 19: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.8: The Torricelli barometer.

© 2003 John Wiley and Sons Publishers

Page 20: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

• Gases are described in terms of four properties: pressure (P), volume (V), temperature (T), and amount (n).

Properties of Gases

Page 21: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Pumping air into a tire increases its pressure.

© 2003 John Wiley and Sons Publishers

Courtesy Pat Lanza Field/Bruce Coleman, Inc.

Page 22: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Pressure and Volume (Boyle’s Law)

Page 23: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

The pressure of a gas is inversely related to its volume when T and n are constant.

If volume decreases, the pressure increases.

Boyle’s Law

Page 24: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.10: The effect of pressure on a gas.

© 2003 John Wiley and Sons Publishers

Page 25: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Robert Boyle, discoverer of the relationship between the pressure and volume of a gas.

© 2003 John Wiley and Sons Publishers

Courtesy Science Photo Library/Photo Researchers

Page 26: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.11: Boyle’s Law: the pressure-volume relationship for a fixed quantity of gas maintained at constant temperature.

© 2003 John Wiley and Sons Publishers

Page 27: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

PV in Breathing Mechanics

• When the lungs expand, the pressure in the lungs decreases.

• Inhalation occurs as air flows towards the lower pressure in the lungs.

Page 28: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

PV in Breathing Mechanics

• When the lung volume decreases, pressure within the lungs increases.

• Exhalation occurs as air flows from the higher pressure in the lungs to the outside.

Page 29: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Temperature and Volume

Page 30: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.15: Charles’ Law and the kinetic-molecular theory of gases: At constant pressure, as the temperature increases, so does the volume.

© 2003 John Wiley and Sons Publishers

Page 31: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

• The Kelvin temperature of a gas is directly related to the volume (P and n are constant).

• When the temperature of a gas increases, its volume increases.

Charles’ Law

Page 32: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

William Thomson, Lord Kelvin, devised the Kelvin temperature scale, in which temperature measurement begins at absolute zero and moves upward in Celsius degrees.

© 2003 John Wiley and Sons Publishers

Courtesy Science Photo Library/Photo Researchers

Page 33: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.13: Celsius and Kelvin (absolute) temperature scales.

© 2003 John Wiley and Sons Publishers

Page 34: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.14: Charles’ Law: the temperature-volume relationship for a fixed quantity of gas maintained at a constant pressure.

© 2003 John Wiley and Sons Publishers

Page 35: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

• The pressure exerted by a gas is directly related to the Kelvin temperature of the gas at constant V and n.

Gay-Lussac’s Law: P and T

Page 36: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Use the gas laws to complete with 1) Increases 2) Decreases A. Pressure _______ when V decreases.

B. When T decreases, V _______.

C. Pressure _______ when V changes

from 12.0 L to 24.0 L.

D. Volume _______when T changes from

15.0 °C to 45.0°C.

Learning Check

Page 37: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Use the gas laws to complete with 1) Increases 2) Decreases

A. Pressure 1) Increases, when V decreases.

B. When T decreases, V 2) Decreases.

C. Pressure 2) Decreases when V changes

from 12.0 L to 24.0 LD. Volume 1) Increases when T changes from 15.0 °C to 45.0°C

Solution

Page 38: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

• The volume of a gas is directly related to the number of moles of gas when T and P are constant.

Avogadro's Law: Volume and Moles

Page 39: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Review

Page 40: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.10: The effect of pressure on a gas.

© 2003 John Wiley and Sons Publishers

Page 41: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.15: Charles’ Law and the kinetic-molecular theory of gases: At constant pressure, as the temperature increases, so does the volume.

© 2003 John Wiley and Sons Publishers

Page 42: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

• The volume of a gas is directly related to the number of moles of gas when T and P are constant.

Avogadro's Law: Volume and Moles

Page 43: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Partial Pressure (Dalton’s Law)

Page 44: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

• In a mixture of gases, the partial pressure of each gas is the pressure that gas would exert if it were by itself in the container.

Partial Pressure

Page 45: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

• The total pressure exerted by a gas mixture is the sum of the partial pressures of the gases in that mixture.

PT = P1 + P2 + .....

Dalton’s Law of Partial Pressures

Page 46: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

• The total pressure of a gas mixture depends on the total number of gas particles, not on the types of particles.

Partial Pressures

Page 47: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Henry’s Law

• According to Henry’s Law, the solubility of a gas in a liquid is directly related to the pressure of that gas above the liquid.

Page 48: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.16: The gas laws and a carbonated drink.

© 2003 John Wiley and Sons Publishers

Page 49: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

A combination of the laws of gases, including their low solubility in a warm liquid, causes this to happen when you shake a bottle of warm soda before you open it.

© 2003 John Wiley and Sons Publishers

Courtesy Ken Karp

Page 50: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Because of their higher ratio of surface area to volume, small bubbles of gas transfer their oxygen to water more effectively than large bubbles.

© 2003 John Wiley and Sons Publishers

Courtesy Miller Brooks, Perfecto Manufacturing

Page 51: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

A tank of compressed gas furnishes oxygen at a partial pressure high enough to allow normal breathing underwater.

© 2003 John Wiley and Sons Publishers

Courtesy Frank Viola/Comstock Images

Page 52: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.17: The lungs and the alveoli.

© 2003 John Wiley and Sons Publishers

Page 53: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Blood Gases

• In the lungs, O2 enters the blood, while CO2 from the blood is released.

• In the tissues, O2

enters the cells, which release CO2 into the blood.

Page 54: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Figure 12.19: Partial pressures and gas flows to and from the blood.

© 2003 John Wiley and Sons Publishers

Page 55: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

Blood Gases

• In the body, cells use up O2 and give off CO2.

• O2 flows into the tissues because the partial pressure of O2 is higher (100 mm Hg) in oxygenated blood, and lower (<30 mm Hg) in the tissues.

• CO2 flows out of the tissues because the partial pressure of CO2 is higher (>50 mm Hg) in the tissues and lower (40 mm Hg) in the blood.

Page 56: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

Which of the three common states of matter – solids, liquids, or gasses – (a) maintain their own volumes, no matter what container holds them; (b) maintain their own shapes, no matter what container holds them?

QUESTION

Page 57: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

Name or describe (a) a moving object (other than a fan blade) that possesses rotational energy, (b) a moving object (other than a vibrating spring) that possesses vibrational energy, and (c) a moving object that possesses translational energy. Now name or describe a moving object that possesses simultaneously any two of these three forms of kinetic energy.

QUESTION

Page 58: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

As shown in Table 12.1, sodium chloride and potassium iodide boil at much higher temperatures than do water, ethyl alcohol, and propane. What kind of bonding – covalent or ionic – occurs in each of these compounds? What do these boiling points indicate about the relative strengths of the forces of attraction between ions of ionic compounds and between molecules of covalent compounds?

QUESTION

Page 59: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

What would you expect the average barometric pressure to be at an altitude of 5500 m (18,000 ft)?

QUESTION

Page 60: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

What characteristics would the atoms or molecules of a real gas have to have in order for the gas to behave exactly like an ideal gas?

QUESTION

Page 61: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

The volume of a quantity of a gas held at constant temperature and 760 mm – Hg pressure is 100 mL. What pressure does it take to reduce the volume to 95 mL?

QUESTION

Page 62: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

A gas kept at constant pressure has a volume of 10 L at 25°C. At what Celsius temperature would the gas have a volume of 20 L?

QUESTION

Page 63: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

Suppose we start again with a balloon filled to a volume of 1 L at a pressure of 760 mm –Hg and a temperature of 27 °C – the same initial conditions as in the first example of this section? Now suppose we again reduce the external (or atmospheric) pressure to 300 mm-Hg. To what Celsius temperature would we have to cool the balloon to keep its volume at 1 L?

QUESTION

Page 64: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

When gaseous oxygen and gaseous hydrogen react to form water, in what volume ratio do the hydrogen and the oxygen react? (As in the Example, writing a balanced equation for the reaction helps.)

QUESTION

Page 65: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

Suppose you had 10L of a gas composed of individual hydrogen atoms. Then, at constant temperature and pressure, these individual hydrogen atoms combined to form diatomic hydrogen molecules, H2. What would be the volume of this gaseous H2?

QUESTION

Page 66: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

Fish, which consume oxygen just as all other animals do, survive on atmospheric oxygen that dissolves in water. Name a gas present in water in a greater concentration of oxygen. Explain.

QUESTION

Page 67: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

Aside from temperature, what is one factor that determines how much N2 can dissolve in a given quantity of water? What is one factor that determines how fast the N2 dissolves?

QUESTION

Page 68: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

Two gases constitute 99% of the (dry) air we inhale: nitrogen (78.1%) and oxygen (20.9%). Four gases make up virtually all of the air we exhale: nitrogen (74.9%), oxygen (15.3%), carbon dioxide (3.7%), and another gas that accounts for just over 6% of our exhaled breath. What is this fourth gas that makes up an even larger fraction of our breath than does carbon dioxide, and where does it come from?

QUESTION

Page 69: Chapter 12: Solids, Liquids, and Especially Gases The States of Matter © 2003 John Wiley and Sons Publishers Courtesy Tim Flach/Stone/Getty Images.

© 2003 John Wiley and Sons Publishers

What do you think would happen if you inverted a warm bottle in the water and placed a towel soaked in cold water around it? Explain.

QUESTION