Chapter 12 Complex Numbers and Functions

74
Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung Chapter 12 Complex Numbers and Functions 複複 (complex numbers) 複複複複 (complex variables) 複複 (complex numbers) : z = a + i b , 複複 a 複 b 複複複複 , . 1 i 複複複 (complex variables) : z = x + i y , 複複 x 複 y 複複複複複 , 1 i 複複複複複複 : 複複 (equality) : z 1 = z 2 x 1 = x 2 , y 1 = y 2 複複 (addition) : z 1 + z 2 = (x 1 , y 2 ) + (x 2 , y 2 ) = (x 1 + x 2 , y 1 +y 2 ) 複複 (multiplication) : z 1 z 2 = (x 1 , y 2 ) · (x 2 , y 2 ) = (x 1 x 2 - y 1 y 2 , x 1 y 2 + x 2 y 1 ) 複複 (division) : 2 2 2 2 2 1 1 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 y x y x y x i y x y y x x z z z z z z

description

Chapter 12 Complex Numbers and Functions. 複數( complex numbers) 與複變數( complex variables). 複數( complex numbers) : z = a + i b , 其中 a 與 b 均為實數,. 複變數( complex variables) : z = x + i y , 其中 x 與 y 均為實變數,. 複數運算規則 :. 相等( equality) :. z 1 = z 2. x 1 = x 2 , y 1 = y 2. - PowerPoint PPT Presentation

Transcript of Chapter 12 Complex Numbers and Functions

Page 1: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Chapter 12 Complex Numbers and Functions

複數 (complex numbers) 與複變數 (complex variables)

複數 (complex numbers) : z = a + i b , 其中 a 與 b 均為實數 , . 1i

複變數 (complex variables) : z = x + i y , 其中 x 與 y 均為實變數 , . 1i

複數運算規則 :

相等 (equality) : z1 = z2 x1 = x2 , y1 = y2

加法 (addition) : z1 + z2 = (x1 , y2) + (x2 , y2) = (x1+ x2 , y1+y2)

相乘 (multiplication) :

z1 z2 = (x1 , y2) · (x2 , y2) = (x1 x2 - y1y2 , x1 y2 + x2y1)

相除 (division) :

22

22

211222

22

2121

22

21

2

1

yx

yxyxi

yx

yyxx

zz

zz

z

z

Page 2: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複數平面化

(x,y)

x

y

r

x

y

複數平面

z = x + i y

x = r cosθ y = r sinθ z = r (cosθ + i sinθ)

z = r eiθ

Polar representation

r : the modulus or magnitude of z

θ : the argument or phase of z

挪威人 – Caspar Wessel

相乘 (multiplication) :

相除 (division) :

)]sin(i)[cos(rr

)]sini(cosr)][sini(cosr[zz

212121

22211121

)]sin(i)[cos(r

r

)sini(cosr

)sini(cosr

z

z2121

2

1

222

111

2

1

2121zzzz

2121zargzarg)zzarg(

2

1

2

1

z

z

z

z 212

1 zargzarg)z

zarg(

Euler’s Formula : zsinizcoseiz

Chapter 12 Complex Numbers and Functions

Page 3: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

De Moivre’s ( 隸美弗 ) Formula

nin )sini(cose n)sini(cosnsinincos

二項式定理展開

...sincos)4

n(

sincos)2

n(cosncos

44n

22nn

...sincos)5

n(

sincos)3

n(sincos)

1

n(nsin

55n

33n1n

)nsinin(cosrerz ninnn Q : 試證明 cos3cos43cos 3

3sini3cos)sini(cos 3 A :

...sincos)4

n(

sincos)2

n(cosncos

44n

22nn

cos3cos4

)cos1(cos3cos

sincos3cos3cos

3

23

23

Chapter 12 Complex Numbers and Functions

Page 4: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Q : 試解 1. 2. 3.

A :

1.

2.

3.

3 1 i1 0z)1z( 33

n2i3 e1z 3/n2iez 1z0n

3/2iez1n 3/4iez2n

)n24/(i2 e2i1z 2/)n24/(i4/1 e2z

8/i4/1 e2z0n

8/9i4/1 e2z1n

0z)1z( 33 0)1zz)(1z2( 2

2/1z 2/)3i1(z

Chapter 12 Complex Numbers and Functions

Page 5: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

x

y

z

θθ

(x,y)

(x,-y)

*z

共軛複數 (Complex Conjugation)

iyxz iyxz*

irez i* rez

複變函數 (complex functions)

Complex function w(z) = u(x,y) + iv(x,y) where u(x,y) and v(x,y) are pure real

w(z) = z2 = (x + iy)2 = (x2 - y2) + i 2xy

22 yx)y,x(u)z(w

xy2)y,x(v)z(w x

y

z - plane

1 2

u

v

w - plane

1 2mapping

For example :

Chapter 12 Complex Numbers and Functions

Page 6: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Q : 某一楔形金屬板 , 其兩面之溫度固定為恆溫 ( 如圖所 示 ), 試求其中之溫度分佈 .

0oC

100oC

π/3

x

π/3

y

u

v

π/3

0oC

100oC

在 u-v 平面上的解為 : , 又v3/

100)v,u(T

)x/y(tanv 1

在 x-y 平面上的解為 : )x/y(tan3/

100)y,x(T 1

A :

Chapter 12 Complex Numbers and Functions

Page 7: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

)n2(irlnirlnrelnzlnw i

主值 (Principle value)

複變對數函數

z = r eiθ

θ : 主幅角 (the principle argument)

w : 多值函數

x

y

z - plane

u = lnr

v = θ + 2nπ

w - plane

mapping

n = 1

n = 0

n = -1

n = -2

Q : 試計算 之值 )i31ln(

A : 假設 3/2ie2)3

2sini

3

2(cos23i1z

)n23/2(i2ln)3i1ln(zlnw

3/2,2r

通解

3/2i2lnw 主值

Chapter 12 Complex Numbers and Functions

Page 8: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變冪函數

azw 其中 a 亦為複數zlnaa ez )n2(irlnzln 為多值函數 azw 亦為多值函數

)]n2(ir[lnaa ezw

Q : 試計算下列之值 i)i1(

)n2i4/i2(lni)i1ln(ii ee)i1(

)2lnsini2ln(cose

ee)n24/1(

n24/2lni

通解

主值)2lnsini2ln(cose)i1( 4/1i

A :

Chapter 12 Complex Numbers and Functions

Page 9: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變指數函數

zsinhzcoshz!3

1z

!2

1z1e 32z zsinizcoseiz

)zz(zz 2121 eee zi2z ee 複變指數函數具有虛週期 i2

複變三角函數

i2

eez

!5

1z

!3

1zzsin

iziz53

2

eez

!4

1z

!2

11zcos

iziz42

122121 zcoszsinzcoszsin)zzsin( 212121 zsinzsinzcoszcos)zzcos(

複變三角函數仍具有週期 , 但為無界函數2複變雙曲函數

2

eez

!5

1z

!3

1zzsinh

zz53

2

eez

!4

1z

!2

11zcosh

zz42

122121 zcoshzsinhzcoshzsinh)zzsinh( 212121 zsinhzsinhzcoshzcosh)zzcosh(

Chapter 12 Complex Numbers and Functions

Page 10: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Q : 1. 試解 2. 求 之值

A : 1.

2.

5zsin )icos(

ysinhxcosiycoshxsiniysinxcosiycosxsin)iyxsin(zsin

0ysinhxcos 0y or 2

)1n2(x

1ycosh 5xsin

n)1(xsin ycosh 恆為正n 為偶數

2

)1n4(x

5ycosh

)5(coshi2

)1n4(iyxz 1

2

ee

2

ee2

eeee

2

ee)icos(

11

ii1)i(i)i(i

Chapter 12 Complex Numbers and Functions

Page 11: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

映射轉換 (mapping transformation)平移 (translation)

x

y

u

v

x0

y0

z-plane w-plane 0zzw

)yy(i)xx(ivu 00

0xxu 0yyv

旋轉 (rotation)

x

y

u

v

θ0

z-plane w-plane

i0 ezzw

irez 0i00 erz

)(i0

i 0erre

0rr 0

Chapter 12 Complex Numbers and Functions

Page 12: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

映射轉換 (mapping transformation)

放大 (enlargement)

x

y

u

vz-plane w-plane

innn erzw

ncosru n

)nsinr(i)ncosr(ivu nn

nsinrv n

反轉 (inversion)

x

yz-plane

v

u

w-plane

ii

er

1

re

1

z

1w

)sinr

1(i)cos

r

1(ivu

cosr

1u sin

r

1v

Chapter 12 Complex Numbers and Functions

Page 13: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

映射轉換 (mapping transformation)

x

yz-plane

y = c1 1 2 3 4

iyx

1ivu

反轉 (inversion)

z

1)z(f 22 yx

xu

22 yx

yv

22 vu

ux

22 vu

vy

line circle

122c

vu

vy

222 ryx 22

22

r

1vu

)v2

vu(

c2

1 22

1

v2

uv)

v2

vu(v

c2

1v

2222

1

2

1

2

1

2 )c2

1()

c2

1v(u

w-plane

u

v

)c2

1,0(

1

1

2

34

Chapter 12 Complex Numbers and Functions

Page 14: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

映射轉換 (mapping transformation)

2i22 erzw

two-to-one correspondence

非線性轉換 : 係數平方 , 幅角變兩倍

Upper half-plane of z, 0 θ < π whole plane of w, 0 φ < 2π

Lower half-plane of z, π θ < 2π whole plane of w, 0 φ < 2π Cover by two times

0z 0i

0 zez ,

20zw For example : two-to-one correspondence

w(z) = z2 = (x + iy)2 = (x2 - y2) + i 2xy22 yx)y,x(u xy2)y,x(v

122 cyx

2cxy2

x

yz-plane

u

v1cu

2cv

w-plane

Chapter 12 Complex Numbers and Functions

Page 15: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

映射轉換 (mapping transformation)

i2/i2/12/1 eerzw

one-to-two correspondence

, two-to-one correspondence

2

w-plane z-plane

How to make the function of w a singled-values function ?

2,

z-plane w-plane

, 在 z 平面上某一點映射到 w 平面時 , 可以有兩個值 .

one-to-one correspondence

x

yz-plane

cut line 20

限制 z 的幅角branch point singularities

z = 0 的點除外

Chapter 12 Complex Numbers and Functions

Page 16: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

映射轉換 (mapping transformation)

iiyxiyxz eeeeew y,ex

many-to-one correspondence

z-plane w-plane

)n2y(ix any points the same point

ivu)n2(irln)reln(zlnw )n2(i also

If 1r

x

y

The Riemann surface for ln z

cut line

x

y

Chapter 12 Complex Numbers and Functions

Page 17: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變函數的微分—直角座標

)z(fdz

)z(df

z

)z(flim

z)zz(

)z(f)zz(flim '

0z0z

yixz viuf yix

viu

z

f

x

y

z0δx0

δy = 0 δx = 0δy0

δx0

δy = 0

x

vi

x

u)

x

vi

x

u(lim

z

)z(flim

0x0z

δx = 0

δy0

First approach

Secondapproach y

v

y

ui)

y

v

y

ui(lim

z

)z(flim

0y0z

y

v

x

u

x

v

y

u

Cauchy-Riemann conditions : if exists, then ,

dz

)z(df

f (z) is analytic at z = z0

if does not exist at z = z0, then z0 is labeled a singular point .dz

)z(df

holomorphic

regular

Chapter 12 Complex Numbers and Functions

Page 18: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變函數的微分—極座標

),r(iv),r(u)z(f irez

r

vi

r

u

dz

dfe

r

z

dz

df

r

)z(f i

v

iu

dz

dfire

z

dz

df)z(f i

實部對實部 , 虛部對虛部

f

r

1

r

fi

v

r

1

r

u

u

r

1

r

v

Cauchy-Riemann conditions

)r

vi

r

u(e

dz

df i

極座標 )

x

vi

x

u(

dz

df

直角座標

Chapter 12 Complex Numbers and Functions

Page 19: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變函數的微分性質

複變函數的微分性質與實變函數相同

)z(fc)z(fc)]z(fc)z(fc[ '22

'11

'2211

)z(f)z(f)z(f)z(f)]z(f)z(f[ '212

'1

'21

1.

2.

)z(f

)z(f)z(f)z(f)z(f]

)z(f

)z(f[ 2

2

'212

'1'

2

1 3.

dz

)z(dg

)z(dg

)]z(g[df

dz

)]z(g[df4.

zz eedz

d

zsinzcosdz

d zcoszsindz

d

zcoshzsinhdz

d zsinhzcoshdz

d

z

1zln

dz

d

For any points

1aa azzdz

d

Except for branch points and cut lines

Chapter 12 Complex Numbers and Functions

Page 20: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變解析 (analytic) 函數

定義 : 若複變函數 f (z) 在 z0 處以及包圍 z0 點的小封閉曲線範圍內均可微分 , 則稱 f (z) 為複變解析函數 .

複變全 (entire) 函數

定義 : 若複變函數 f (z) 在整個複數平面均可微分 , 則稱 f (z) 為複變全(entire) 函數 .

奇異點 (singular point)

有理函數除分母為零的位置外 , 均為解析函數 .

對數函數與冪函數除了在分支點與分支切割外 , 均為解析函數 .

複變多項式函數以及 , , , , , 等均為全函數

ze zcos zsin zcosh zsinh

若複變函數 f (z) 在 z0 處不可微分 , 則稱 z0 處為奇異點 .

Chapter 12 Complex Numbers and Functions

Page 21: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Q : 試問下列函數在何處解析 ?

z)z(f 2z)z(f 2z)z(f *z)z(f z/1)z(f

ireiyxz y

v

x

u

x

v

y

u

Cauchy-Riemann conditions :

A :

v

r

1

r

u

u

r

1

r

v

1. z)z(f

ivu)z(f

r),r(u 0),r(v

均不成立 任何地方皆不解析

v

r

1

r

u

u

r

1

r

v

1. 2

z)z(f 2r),r(u 0),r(v

僅原點成立 原點處解析

v

r

1

r

u

u

r

1

r

v

Chapter 12 Complex Numbers and Functions

Page 22: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

A :

4. x)y,x(u y)y,x(v

均不成立 任何地方皆不解析

v

r

1

r

u

u

r

1

r

v

5. r

cos),r(u

除原點不成立 除原點外均解析

3. 22 yx)y,x(u xy2)y,x(v

均成立 任何地方皆解析

2z)z(f

y

v

x

u

x

v

y

u

*z)z(f

y

v

x

u

x

v

y

u

r

sin),r(v

z/1)z(f

Chapter 12 Complex Numbers and Functions

Page 23: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

共軛座標系 (conjugate coordinates)

複數 z = x + iy 為以實數 x 與 y 為變數的函數

iyxz iyxz* 2

zzx

*

i2

zzy

*

使用 z 及 z* 為變數的座標系 (z , z*) 稱為共軛座標系

複變函數 f (z) = u + iv 在共軛座標系的表示方式時

)i2

zz,

2

zz(iv)

i2

zz,

2

zz(u)y,x(iv)y,x(u)z(f

****

此時 Cauchy-Riemann conditions 為

0z

f*

Chapter 12 Complex Numbers and Functions

Page 24: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

共軛座標系與直角座標系在偏微分的關係

)y

ix

(2

1

yi2

1

x2

1

yz

y

xz

x

z

iyxz iyxz* 2

zzx

*

i2

zzy

*

)y

ix

(2

1

yi2

1

x2

1

yz

y

xz

x

z ***

*zzx

)

zz(i

y *

Chapter 12 Complex Numbers and Functions

Page 25: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

Q : 試將拉式運算子 以共軛座標表示之

2

2

2

22

yx

A: yyxxyx 2

2

2

22

*zzx

)zz

(iy *

*

2

*

2

2

2

2

2

*

2

2

2

2

2

****2

2

2

22

zz4

)zz

2*zz

()zz

2*zz

(

)zz

(i)zz

(i)zz

)(zz

(yyxxyx

Chapter 12 Complex Numbers and Functions

Page 26: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

諧和函數 (harmonic functions)

對於任何實變函數 u (x , y), 若其滿足 Laplace’s equation :

則函數 u (x , y) 稱之為諧和函數 .

0y

u

x

uu

2

2

2

22

若複變函數 f (z) = u (x , y) + i v (x , y) 在某區域內為解析函數 , 則實變函數 u (x , y)

以及 v (x , y) 在此區域內必為諧和函數 , 但反之未必然 .

此證明利用下列定理 :

若複變函數 f (z) = u (x , y) + i v (x , y) 在某區域內為解析函數 , 則複變函數 f (z) 的

各階導數均存在且仍為解析函數 .

Chapter 12 Complex Numbers and Functions

Page 27: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

線積分 (Contour Integrals)

積分路徑

x

y

z2

z0

z1

z0’=zn

ζ1

ζ2

n

1j1jjjn )zz)((fS Consider the sum :

Let n with for all j 0zz 1jj

If the sum exists and is independent of the

details of choosing the points zj and j .

nn

Slim

then

'0

0

z

z

n

1j1jjj

nn

ndz)z(f)zz)((flimSlim

f (z) 沿著特定路徑 C ( 由 z = z0 到 z = z0’) 的線

積分

Chapter 12 Complex Numbers and Functions

Page 28: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

線積分 (Contour Integrals)

22

11

22

11

22

11

'0

0

y,x

y,x

y,x

y,x

y,x

y,x

z

z

]dy)y,x(udx)y,x(v[i]dy)y,x(vdx)y,x(u[

]idydx)][y,x(iv)y,x(u[dz)z(f線積分定義

將複變積分簡化為實變積分的複數和

舉例 : Cndzz 此處 C 是以 z = 0 為中心 , 半徑 r 的圓

我們以極座標來處理 irez diredz i

當 n -1 0e)1n(

rdeirdireerdzz

2

0

)1n(i1n

2

0

)1n(i1n2

0

iinn

C

n

在極座標下另一種做法

當 n = -1 i2didireerdzz

1 2

0

2

0

ii1

C 與 r 無關 !

Chapter 12 Complex Numbers and Functions

Page 29: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

歌西積分定理 (Cauchy’s Integral Theorem)

當一複變函數 f (z) 在某封閉區域中為可解析 (analytic), 且其微分仍為連續的 ,

則對於在此封閉區域的任一封閉路徑 C, f (z) 的線積分為零 .

0dz)z(fdz)z(fCC

記得上一例子中 :

i2dzz

1dz

z

1CC

? 此乃因 f (z) = 1/z 在 z = 0 處為不解析

i2dzz

1dz

z

1dz

z

13z2z1z

0dzz

1dz

z

1dz

z

113z

2

11z12z

含原點

不含原點

Chapter 12 Complex Numbers and Functions

Page 30: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

歌西積分定理 (Cauchy’s Integral Theorem) 證明

利用 Stokes’s theorem 與 Cauchy-Riemann condition 可證明 Cauchy’s Integral Theorem

CCC

)udyvdx(i)vdyudx(dz)z(f

yx VyVxV

Stokes’s theorem : dxdy)y

V

x

V()dyVdxV( xy

C yx

Let u = Vx and v = -Vy

0dxdy)y

u

x

v(dxdy)

y

V

x

V()dyVdxV()vdyudx( xy

C yxC

對於第一項

對於第二項 Let v = Vx and u = Vy

0dxdy)y

v

x

u(dxdy)

y

V

x

V()dyVdxV()udyvdx( xy

C yxC

Cauchy-Riemann condition

If f (z) is analytic

y

v

x

u

x

v

y

u

Chapter 12 Complex Numbers and Functions

Page 31: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

歌西積分定理 (Cauchy’s Integral Theorem)

當一複變函數 f (z) 在某封閉區域中為可解析 (analytic), 且其微分仍為連續的 ,

則對於在此封閉區域的任一封閉路徑 C, f (z) 的線積分為零 . 0dz)z(fdz)z(fCC

C1

C2

0dz)z(fdz)z(f21 CC

C1

C2

C3

0dz)z(fdz)z(fdz)z(fCCC 31

0dz)z(fdz)z(fdz)z(fCCC 32

21 CC

dz)z(fdz)z(f 與路徑無關

Chapter 12 Complex Numbers and Functions

Page 32: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

全函數之積分 2

1

z

zdz)z(f

假設 )z(f)z(F'

)z(F)z(F)z(dFdz)z(Fdz)z(f 12

z

z

z

z

'z

z

2

1

2

1

2

1

77 交大控制計算 ?dz)1z(

C

2 }20:t)2

tsin

2

t(it{:C

1z)z(f 2 解 為全函數 只考慮端點 0 , 2 + i

3

i148)z

3

z(dz)1z(

i2

0

3

C

2

Chapter 12 Complex Numbers and Functions

Page 33: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

歌西積分公式 (Cauchy’s Integral Formula)

當一複變函數 f (z) 在某封閉區域中為可解析 (analytic), 且其微分仍為連續的 ,

則對於在此封閉區域的任一封閉路徑 C, 則

)z(fdzzz

)z(f

i2

10C

0

其中 z0 位於封閉路徑 C 內

部因為 f (z) 可解析 , 在 z = z0 處不是解析的 , 除非 f (z0) = 0 0zz

)z(f

C1

z0

C2

contour line

0dzzz

)z(fdz

zz

)z(fdz

zz

)z(f21 C

0C

0C

0

22 C

ii

i0

C0

direre

)rez(fdz

zz

)z(f

As r 0 )z(if2d)z(ifdzzz

)z(f0C0C

022

)z(fdzzz

)z(f

i2

10C

0

Chapter 12 Complex Numbers and Functions

Page 34: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

歌西積分公式 (Cauchy’s Integral Formula)

0

)z(f{dz

zz

)z(f

i2

1 0

C0

z0 interior

z0 exterior

f(z) 的微分可利用歌西積分公式來表示

)dzzz

)z(fdz

zzz

)z(f(

zi2

1

z

)z(f)zz(fC

0C

0000

000

C 20

C000

0

00z

0' dz

)zz(

)z(f

i2

1dz

)zz)(zzz(

)z(fz

zi2

1lim)z(f

0

同理

C 3

00

)2( dz)zz(

)z(f

i2

2)z(f

C 1n0

0)n( dz

)zz(

)z(f

i2

!n)z(f

Chapter 12 Complex Numbers and Functions

Page 35: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

歌西積分公式 (Cauchy’s Integral Formula)

計算 之值 2z 2dz

1z

zsin

)iz

1

iz

1(

i2

1

1z

12

]dziz

zsindz

iz

zsin[

i2

1dz

1z

zsin2z2z2z 2

取 z0 = i , f (z) = sinz

0

)z(f{dz

zz

)z(f

i2

1 0

C0

z0 interior

z0 exterior

1sinh21sinhi

1i2isini2dz

iz

zsin2z

取 z0 = -i , f (z) = sinz

1sinh21sinhi

1i2)isin(i2dz

iz

zsin2z

1sinhi2]dziz

zsindz

iz

zsin[

i2

1dz

1z

zsin2z2z2z 2

Chapter 12 Complex Numbers and Functions

Page 36: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

歌西積分公式 (Cauchy’s Integral Formula)

計算 之值 , 其中 C 為單位圓C 3

z

dzz

e

取 z0 = 0 , f (z) = ez

0

)z(f{dz

zz

)z(f

i2

1 0

C0

z0 interior

z0 exterior

C 30

0)2( dz

)zz(

)z(f

i2

2)z(f

iie)0(ifdz)0z(

edz

z

e 0)2(

C 3

z

C 3

z

Chapter 12 Complex Numbers and Functions

Page 37: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變序列 (Complex sequences)

A complex sequence : z1, z2, z3 , z4,…. zn,…

zN

zN+1

zN+3

A complex sequence z1, z2,… is said to converge to the number L if ,given ε > 0, there is some positive integer N such that whenever n N.

zN+2

Lzn

Lzlim nn

Theorem :

Let zn = xn +iyn. Then, zn A + iB if and only if xn A and yn B

Cauchy sequence

nlim

nlim

nlim

Chapter 12 Complex Numbers and Functions

Page 38: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變級數 (Complex series)

Given a complex sequence : z1, z2, z3 , z4,…. zn,…

The complex series : ...zzz 211n

n

The sum : m21

m

1nnm z...zzzS

Theorem :

Let zn = xn +iyn. Then, if and only if andiBAz1n

n

Ax

1nn

By

1nn

Theorem :

If converges, then

1nnz 0zlim n

n

Chapter 12 Complex Numbers and Functions

Page 39: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變級數收斂 (Complex series convergence)

絕對收斂 (absolute convergence) :

1nnz convergence and

條件收斂 (conditional convergence) :

1nnz divergence but

1nnz convergence

要判斷收斂 , 可以利用比例測試法 (ratio test) :

1nnz

1nnz convergence

取)z(z

)z(zlim)z(r

n

1n

n

1. 對滿足 的 z 而言 , 此級數為絕對收斂

2. 對滿足 的 z 而言 , 此級數為發散

3. 對滿足 的 z 而言 , 無法判定收斂性

1)z(r0

1)z(r

1)z(r

Chapter 12 Complex Numbers and Functions

Page 40: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變冪級數 (Complex power series)

複變冪級數 ...)zz(a....)zz(a)zz(aa)zz(a n0n

202010

0n

n0n

利用比例測試法 (ratio test) 判斷收斂 :

0

n

1n

n0n

0n

1n01n

n

zz

a

alimzz

)zz(a

)zz(alim)z(r

where

1n

n

n a

alim

對滿足 的 z 而言 , 此冪級數為絕對收斂1)z(r0

0zzz0

ρ

展開中心

收斂區域

1n

n

n a

alim

收斂半徑

Chapter 12 Complex Numbers and Functions

Page 41: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變冪級數 (Complex power series)

複變冪級數在其收斂範圍內 可以逐項微分及積分 , 且其收斂範圍不會因積分或微分而改變 .

0zz

...)zz(a....)zz(aa)zz(a)z(f n0n010

0n

n0n

0zz

...)zz(na....)zz(a2a)zz(na)z(f 1n0n021

0n

1n0n

'

0zz

常數

0n

1n0

n )zz(1n

adz)z(f 0zz

Chapter 12 Complex Numbers and Functions

Page 42: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變冪級數 (Complex power series)

定理 : 若 f(z) 為連續 , 且在區域 D 中存在 R+, 而有 , 則在區域 D 中1)z(f

...)z(f....)z(f)z(f1)z(f1

1 n2

證明 : 對於複變冪級數 ...)z(f....)z(f)z(f1 n2 )z(f)z(r

取 )z(f....)z(f)z(f1)z(S 1n2n

)z(f1

1)z(g

)z(f1

)z(f1)z(S

n

n

)z(f1

)z(f)z(S)z(g

n

n

因為 f(z) 在區域 D 中為收斂且小於 1 0)z(flim n

n

0)z(f1

)z(flim)z(S)z(glim

n

nnn

)z(f1

1)z(g)z(Slim n

n

Chapter 12 Complex Numbers and Functions

Page 43: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變冪級數 (Complex power series)

試求複變冪級數 之收斂區域及其和....)1z

1z(

2

1)

1z

1z(

2

1

1z

1z

2

1 33

22

11z

1z

2

1lim)z(rn

區域內為絕對收斂 1z21z

...)z(f....)z(f)z(f1)z(f1

1 n2 利用

)z(f1

)z(f1

)z(f1

1....)

1z

1z(

2

1)

1z

1z(

2

1

1z

1z

2

1 33

22

3z

1z

2z23z2z2

1z

)1z1z

(21

1

)1z1z

(21

Chapter 12 Complex Numbers and Functions

Page 44: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變泰勒級數 (Complex Taylor series)

複變函數在解析點的無限級數展開形式

考慮單連封閉曲線 C 為圓 , 函數 f(z) 在 C 上及其內部均為解析 ,z 為 C 內部的一點 .

0zz

z0

ρ

C

歌西積分公式 (Cauchy’s Integral Formula)

C0

0C

dszs

zs

zs

)s(f

i2

1ds

zs

)s(f

i2

1)z(f

C

0

00C

0

0

ds

zszz

1

1

zs

)s(f

i2

1ds

zszs

1

zs

)s(f

i2

1

z

z 為 C 內部的一點 , 而 s 在圓上 1zs

zz

0

0

Chapter 12 Complex Numbers and Functions

Page 45: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變泰勒級數 (Complex Taylor series)

...)z(f....)z(f)z(f1)z(f1

1 n2

...)zs

zz(....)

zs

zz(

zs

zz1

zszz

1

1 n

0

02

0

0

0

0

0

0

C

n

0

02

0

0

0

0

0C

0

00

ds...])zs

zz(...)

zs

zz(

zs

zz1[

zs

)s(f

i2

1ds

zszz

1

1

zs

)s(f

i2

1)z(f

...)z(f!n

)zz(....)z(f

!2

)zz()z(f)zz()z(f 0

)n(n

00

''2

00

'00

f(z) 在 z0 點處的複變泰勒級數 (Complex Taylor series) 冪級數

Chapter 12 Complex Numbers and Functions

Page 46: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變泰勒級數 (Complex Taylor series)

ze)z(f

...)z(f!n

)zz(....)z(f

!2

)zz()z(f)zz()z(f)z(f 0

)n(n

00

''2

00

'00

Let and 0z0 z)n( e)z(f

0n

n

0n0

)n(n

0z

!n

z)z(f

!n

)zz(e For all z 得到驗證

試求 在 0 之泰勒展開級數z1

1)z(f

展開中心在 z = 0, f(z) 的奇異點在 z = -1, 因此收斂半徑 ρ = 1

0n

nn

0n

n )z()1()z()z(1

1

z1

1if 10z

Chapter 12 Complex Numbers and Functions

Page 47: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變泰勒級數 (Complex Taylor series)

試求 在 展開之泰勒級數 , 並求收斂半徑 (74 台大化工 )2z

1)z(f

1z

展開中心在 z = 1, f(z) 的奇異點在 z = 2, 因此收斂半徑 ρ = 1

...])1z(...)1z()1z(1[1)1z(1

1

2z

1)z(f n2

...)z(g....)z(g)z(g1)z(g1

1 n2

試求 在 之泰勒展開級數1z

1)z(f

i2z

展開中心在 z = -2i, f(z) 的奇異點在 z = -1, 因此收斂半徑 ρ =5

0n

nn )i21

i2z()1(

)i21(

1]

)i21i2z

(1

1[

)i21(

1

)i2z()i21(

1

1z

1)z(f

0n

n1n

n )i2z()i21(

1)1(

Chapter 12 Complex Numbers and Functions

Page 48: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變勞倫級數 (Complex Laurent series)

C2

C1

r2

z0 r1

z

f(z) 在 區域中為解析201 rzzr

C

][i2

1ds

zs

)s(f

i2

1)z(f

downCupCC

12

取 0

]dszs

)s(fds

zs

)s(f[

i2

1)z(f

12 CC

222 C

0C

0

00C

ds1

1

zs

)s(f

i2

1ds

zszz

1

1

zs

)s(f

i2

1ds

zs

)s(f

i2

1

1zs

zz

0

0

0n

n0n )zz(a

2C 1n

0n ds

)zs(

)s(f

i2

1a

f(z) 在 C2 中並非都解析

Chapter 12 Complex Numbers and Functions

Page 49: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變勞倫級數 (Complex Laurent series)

1111 C

0C

0

00CC

ds1

1

zz

)s(f

i2

1ds

zzzs

1

1

zz

)s(f

i2

1ds

sz

)s(f

i2

1ds

zs

)s(f

i2

1

1zz

zs

0

0

0hC 1h

0

h0

0hC

h

0

0

011 )zz(

1]ds)zs)(s(f

i2

1[ds)

zz

zs(

zz

)s(f

i2

1

1mm

0

m

)zz(

b

1C

1m0m ds)zs)(s(f

i2

1b

1m

m0m

0n

n0nCC

)zz(b)zz(a]dszs

)s(fds

zs

)s(f[

i2

1)z(f

12

2C 1n0

n ds)zs(

)s(f

i2

1a

1C

1m0m ds)zs)(s(f

i2

1b

Chapter 12 Complex Numbers and Functions

Page 50: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變勞倫級數 (Complex Laurent series)

1m

m0m

0n

n0nCC

)zz(b)zz(a]dszs

)s(fds

zs

)s(f[

i2

1)z(f

12

2C 1n0

n ds)zs(

)s(f

i2

1a

1C

1m0m ds)zs)(s(f

i2

1b

此時 z0 是不解析的

m = -n

1C

1m0m ds)zs)(s(f

i2

1b

1C 1n

0n ds

)zs(

)s(f

i2

1b

n

n0n

1n

n0n

0n

n0n )zz(a)zz(b)zz(a)z(f

C 1n0

n ds)zs(

)s(f

i2

1a

201 rzzr C : 區域

Chapter 12 Complex Numbers and Functions

Page 51: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變勞倫級數 (Complex Laurent series)

泰勒級數與勞倫級數主要的差別在於 : 泰勒級數之有效範圍必是一個圓的內部 , 而勞倫級數的有效範圍必定是一個環狀區域 .

複變泰勒級數 (Complex Taylor series)

C

n

0

02

0

0

0

0

0C

0

00

ds...])zs

zz(...)

zs

zz(

zs

zz1[

zs

)s(f

i2

1ds

zszz

1

1

zs

)s(f

i2

1)z(f

...)z(f!n

)zz(....)z(f

!2

)zz()z(f)zz()z(f 0

)n(n

00

''2

00

'00 n

00n

C 1n0

)zz(]ds)zs(

)s(f

i2

1[

n

n0n

1n

n0n

0n

n0n )zz(a)zz(b)zz(a)z(f

C 1n0

n ds)zs(

)s(f

i2

1a

201 rzzr C : 區域

泰勒級數必定是以解析點為展開中心 , 而勞倫級數的展開中心可以是解析點 ,也可以是不解析點 .

Chapter 12 Complex Numbers and Functions

Page 52: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變勞倫級數 (Complex Laurent series)

試求函數 在原點展開之所有的勞倫級數 (89 清大動機 )

54 zz

1)z(f

對 f(z) 而言 , 不解析點 : z = 0, z = 1

在 1z0

...)zz1(z

1

z1

1

z

1

zz

1)z(f 2

4454

...

z

1

z

1

z

1234

在 1z

...)z

1

z

11(

z

1

z/11

1

z

1

z1

1

z

1

zz

1)z(f

255454

....z

1

z

1

z

1765

Chapter 12 Complex Numbers and Functions

Page 53: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變勞倫級數 (Complex Laurent series)

試求函數 在原點展開之所有的勞倫級數 (89 清大動機 )

54 zz

1)z(f

n

n0n )zz(a)z(f

C 1n

0n ds

)zs(

)s(f

i2

1a

1z0 C : 區域

C 6n5nC 1nC 1n0

n ds])s()s(

1[

i2

1ds

)s(

)s(f

i2

1ds

)zs(

)s(f

i2

1a

0mC m5n

0mC 5n

m

C 5nds

s

1

i2

1ds

s

s

i2

1ds]

s1

1[

s

1

i2

1

4n0

4n1{i2

i2

1

0m1,m5n

0m1,m5n

...zzz)zz(a)z(f 234

n

n0n

Chapter 12 Complex Numbers and Functions

Page 54: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

複變勞倫級數 (Complex Laurent series)

試求函數 在 z = -1 展開之勞倫級數 )i3z)(1z(

1)z(f

)i3z

1)(

10

i31()

1z

1)(

10

i31(

)i3z)(1z(

1)z(f

i3z

1

在 -1 處是可解析的 ,故可用泰勒展開式 i3z

1)z(f

0n1n

n

)i31(

)1z()z(f

2'

)i3z(

1)z(f

3''

)i3z(

2)z(f

i31

1

i31

1)1(f

2'

)i31(

1)1(f

33''

)i31(

2

)i31(

2)1(f

for 101z

1z

1

已是在 -1 處的勞倫展開式 for 01z

)10

i31()

1z

1)(

10

i31(

)i3z)(1z(

1)z(f

0n

1n

n

)i31(

)1z(

for 101z0

Chapter 12 Complex Numbers and Functions

Page 55: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

奇異點 (Singularities)

當 f(z) 在 區域中為解析函數 , 但在 z0 處不為解析函數時 , 我們稱 f(z) 有一孤立奇異點 (isolated singularity) z0..

我們將 f(z) 對 z0 做勞倫級數展開

rzz0 0

1n

n0n

0n

n0n )zz(b)zz(a)z(f rzz0 0

1. 當展開式中沒有 (z-z0) 的負冪次項 , 則稱 z0 為可移除奇異點 (removable singularity).

2. 當展開式中有無窮多個 (z-z0) 的負冪次項 , 則稱 z0 為本質奇異點 (essential singularity).

3. 當展開式中有 (z-z0) 的負冪次項一個以上 , 則稱 z0 為極點 (pole).

4. 當展開式中 (z-z0) 的負冪次項部分稱為主要部份 (principal part).

5. 當展開式中 (z-z0) 的負冪次項部分只到第 k 項 , 則稱 z0 為 k 階極點 (kth order pole).

6. 當展開式中 沒有主要部分 , 且 則稱 z0 為 k 階零點 (kth order zero).0a..aa 1k10

7. b1 稱為 f(z) 在 z0 的殘 ( 留 ) 數(residue).

Chapter 12 Complex Numbers and Functions

Page 56: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

8. 當 z0 為 f(z) 的一個 k 階零點 , 則 z0 為 1/ f(z) 的一個 k 階極點 ,反之亦然 .

當 z0 為 f(z) 的 k 階極點 , 則 f(z) 在 z0 的殘數記為 R(z0):

)]z(f)zz[(dz

dlim

)!1k(

1)z(R k

01k

1k

zz0

0

9. 當展開式中 (z-z0) 的負冪次項只一個 , 則稱 z0 為簡單極點 (simple pole).

若 f(z) 為有理函數 : , 而 z0 是一個簡單極點 :

)z(g

)z(h)z(f 0)z(h,0)z(g 00

)z(g

)z(h]

)zz/()z(g)z(g

)z(h[lim

])zz/()z(g

)z(h[lim]

)z(g

)z(h)zz[(lim)z(R

0'

0

00zz

0zz

0zz

0

0

00

Chapter 12 Complex Numbers and Functions

Page 57: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

找出 以及 在 z = 0 之極點階數與殘數)1e(z

1)z(f

z

z

1sinz)z(g

)z(hz

1

...!3

z!2

z1

1

z

1

...!3

z!2

zz

1

z

1

)1e(z

1)z(f

22232z

h(z) 在 z = 0 處解析 , 且 h(0) 0, 故 f(z) 在 z = 0 處為一個二階極點

2

1...)

!3

z

!2

z1(

dz

dlim)

...!3

z!2

z1

1(

dz

dlim]

1e

z[

dz

dlim)]z(f)z[(

dz

dlim)0(R

2

0z20zz0z

2

0z

...z

1

!5

1

z

1

!3

11...)

z

1

!5

1

z

1

!3

1

z

1(z

z

1sinz)z(g

4253 為本質奇異點

0b)0(R 1

Chapter 12 Complex Numbers and Functions

Page 58: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

z0

r

C當 f(z) 在 區域中為解析函數 , 但在 z0 處不為解析函數時 , 我們稱 f(z) 有一孤立奇異點(isolated singularity) z0.我們將 f(z) 對 z0 做勞倫級數展開

rzz0 0

1n

n0n

0n

n0n )zz(b)zz(a)z(f rzz0 0

...)zz(a)zz(aa)zz(

b

)zz(

b

)zz(

b... 2

020100

12

0

23

0

3

由歌西積分公式 : )z(gdzzz

)z(g

i2

10C

0

1C

bdz)z(fi2

1

)z(iR2ib2dz)z(f 01C

殘數定理

f(z) 在 區域中為解析函數 , 但除了 z0, z1,…, zn 點為不為解析 , 當 C 為包含上述奇異點的單連封閉曲線時 , 則

rzz0 0

])z(R[i2dz)z(fn

0jjC

Chapter 12 Complex Numbers and Functions

Page 59: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

計算 之值 ,C 為包含 z = 1 之單連封閉曲線 . (89 清華動機 )

C 3

2

dz)1z(

2z3z5

3

2

)1z(

2z3z5)z(f

z = 1 處為三階極點

3

2

3

2

)1z(

4)1z(7)1z(5

)1z(

2z3z5)z(f

5)1(R

)z(iR2ib2dz)z(f 01C

i10)1(iR2dz)1z(

2z3z5C 3

2

Chapter 12 Complex Numbers and Functions

Page 60: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

計算 之值 , 曲線 C 為以原點為中心且半徑為 3 的圓

C 22dz

)4z(z

zsin

z = 0 處為簡單極點 , z = 2i, -2i 處為簡單極點)4z(z

zsin)z(f

22

)z(g

)z(h)z(R

0'

00

)z(g

)z(h

)4z(z

zsin)z(f

22

16

)i2sin(i

i16

)i2sin(

)i2(8)i2(4

)i2sin()i2(R

3

16

)i2sin(i

i16

)i2sin(

)i2(8)i2(4

)i2sin()i2(R

3

)z(g

)z(h

)4z(z

...z!3

11

)4z(z

zsin)z(f

2

2

22

4

1

)0(g

)0(h)0(R

'

z = 2i, -2i 處為簡單極點

z = 0 處為簡單極點

)]i2sin(i2[4

)]i2(R)i2(R)0(R[i2dz)4z(z

zsinC 22

Chapter 12 Complex Numbers and Functions

Page 61: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

2

0

d]cos,[sinfI

殘數定理之應用 -- 三角函數的積分

Where f is both finite and single-valued for all values of

Let iez diedz i

z

dzid

i2

zzsin

1

2

zzcos

1

z

dz)

2

zz,

i2

zz(fid]cos,[sinfI

112

0

The path of integration is the unit circle

By the residue theorem

circleunitthewithinz

)z(fofresiduesi2)i(I

circleunitthewithinz

)z(fofresidues2

Chapter 12 Complex Numbers and Functions

Page 62: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

計算 1cos1

dI

2

0

z

dz)

2

zz,

i2

zz(fid]cos,[sinfI

112

0

2

zzcos

1

1z)/2(z

dz2i

z

dz

2)zz(

1

1i

21

分母有兩個根 2111

z

21

11z

單位圓之外 單位圓之內

2zz

'12/2z2

1

)z(g

)z(h)z(R

22 1

2

12

4)z(iR2

2iI

很重要 !

Chapter 12 Complex Numbers and Functions

Page 63: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

計算 之值 , 其中 a > 0 (91 交大物理 )

2/

02sina

dI

0

2/

0

2/

02 cos1a2

d

2cos1a2

d2

sina

dI

1z2

1z1

2

0

dz1z)1a2(2z

1i

iz

dz

2/)zz(1a2

1

2

1

cos1a2

d

2

1

2

zzcos

1

z

dzid

分母有兩個根 aa2)1a2(z 2 aa2)1a2(z 2

單位圓之外單位圓之內

aa4

1

2a4z2

1

)z(g

)z(h)z(R

2zz

'

aa2aa4

12)z(iR2iI

22

Chapter 12 Complex Numbers and Functions

Page 64: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

RCCR

]dz)z(q

)z(pdz

)z(q

)z(p[limdx

)x(q

)x(pdx)x(fI

殘數定理之應用 -- 有理函數的積分

CR

RC

Rdz

)z(q

)z(plim]

)z(q

)z(p[i2 在上半平面之殘數和函數

在 CR

上iRez

0

zC

Rd

)z(q

)z(zpilimdz

)z(q

)z(plim

R

izddReidz i

取 01m

m aza....za)z(p 01n

n bzb....zb)z(q

n0

n11n

m0

m11m

1mnz01

nn

02

11m

m

zz zbzb...b

zaza...a

z

1lim

bzb...zb

zaza...zalim

)z(q

)z(zplim

當 n-m-1 > 0 時 , 上式之極限值將趨近於零

當 q(z) 之次方數 p(z) 之次方數 +2 時 0d)z(q

)z(zpilimdz

)z(q

)z(plim

0z

CR

R

])z(q

)z(p[i2dx)x(fI 在上半平面之殘數和函數

Chapter 12 Complex Numbers and Functions

Page 65: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

2x1

dxI計算 之值

dx)x(q

)x(pdx

x1

1

x1

dxI

22 q(z) 之次方數 p(z) 之次方數 +2

])z(q

)z(p[i2dx)x(fI 在上半平面之殘數和函數

iz

1

iz

1

1z

12

分母有兩個根 iz iz

上半面下半面]

)z(q

)z(p[i2dx)x(fI 在上半平面之殘數和函數

i2

1i2)

z2

1(i2

izz

q(z) 沒有實根 , 以避免函數 p(z)/q(z) 在實軸上出現極點

Chapter 12 Complex Numbers and Functions

Page 66: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

歌西積分主值 (The Cauchy Principal Value : PV)

當線積分路徑上出現極點時

CR

CxC

x

semicircleiniteinfdx)x(fdz)z(fdx)x(fdz)z(f00x

0

Infinite radius semicircle

residuesenclosedi2

當走下面箭頭之路徑時 , 小半球 Cx0 包含x0 點

i0 exz deidz i

)x(Riidie

dei

xz

dz0

2

i

i

0

)x(Riidie

dei

xz

dz0

0

i

i

0

counterclockwise

clockwise

0xC

dz)z(f )x(iR o residuesenclosedi2 )x(iR2 onet

)x(iR o

Chapter 12 Complex Numbers and Functions

Page 67: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

歌西積分主值 (The Cauchy Principal Value : PV)

CR

CxC

x

semicircleiniteinfdx)x(fdz)z(fdx)x(fdz)z(f00x

0

Infinite radius semicircle residuesenclosedi2

當走上面箭頭之路徑時 , 小半球 Cx0排除x0 點

0xC

dz)z(f )x(iR o residuesenclosedi2

net

)x(iR o0

dx)x(fPV}dx)x(fdx)x(f{lim

0

0

x

x

0

歌西積分主值

])z(f[i])z(f[i2 在實數軸上之殘數和在上半平面之殘數和

Chapter 12 Complex Numbers and Functions

Page 68: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

dx)axcos()x(f and

dx)axsin()x(f常出現在傅氏轉換(Fourier Transform)

Consider

dxe)x(fdx)axsin()x(fidx)axcos()x(fI iax

CR

RC

iaz

C

iaz

R

iax ]dze)z(q

)z(pdze

)z(q

)z(p[limdxe

)x(q

)x(p

RC

iaz

R

iaz dze)z(q

)z(plim]e

)z(q

)z(p[i2 在上半平面之殘數和函數

在 CR

上iRez izddReidz i

0

cosiaRsinaR

zC

iaz

Rdee]

)z(q

)z(zp[ilimdze

)z(q

)z(plim

R

收斂至零與否取決於 : 在 0 到之間 sin恆為正實數sinaRe a > 0即可

)z(q

)z(zp: q(z) 之次方數 p(z) 之次方數 +1即可Jordan’s Lemma

Chapter 12 Complex Numbers and Functions

Page 69: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

0

dxx

xsinI計算 之值

0

dxx

xsinI sinx 與 x 均為奇函數

dxx

xsin

2

1dx

x

xsinI

0

線積分路徑上出現極點 x = 0 利用歌西積分主值公式

dx)x(gPV ])z(g[i])z(g[i2 在實數軸上之殘數和在上半平面之殘數和

dxx

eix

0

z

e)z(g

iz

1

idxx

eI

ix'

dx)x(gdxx

edxe)x(fI

ixix' ]IIm[

2

1I '

2]IIm[

2

1I '

Chapter 12 Complex Numbers and Functions

Page 70: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

歌西不等式 (Cauchy’s Inequality)

當 f(z) 在 區域中為解析函數時 , 若 M 為 在 上之極大值 , 則

恆有 :

rzz 0 )z(f rzz 0

n0)n(

r

M!n)z(f

rzz:C 0 取

C1n

00

)n( dz)zz(

)z(f

i2

!n)z(f

2

0

i)1n(i1n

i0

C1n

00

)n( direer

)rez(f

i2

!ndz

)zz(

)z(f

i2

!n)z(f

2

0n

2

0

i0n

2

0

ini0n

Mdr2

!nd)rez(f

r2

!nde)rez(f

r2

!n

n

2

0n r

M!nd

r2

M!n

證明

Chapter 12 Complex Numbers and Functions

Page 71: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

理奧維爾定理 (Liouville Theorem)

任何有界 (bounded) 的全函數 , 必然是一個常數函數 .

當 f(z) 為全函數時 ,f(z) 在 區域當然為解析函數 , 假設 m 為 在圓上的極大值 , 則

rzz 0 )z(f

r

m)z(f 0

'

若 f(z) 為有界 , 則必定存在一正實數 M 為 在整個複數平面上的絕對極大值 :

)z(f

r

M

r

m)z(f 0

'

此不等式與 r 的大小無關 , 因此當 r 趨近於無窮大時

0r

Mlimr

0)z(flim 0'

r

0)z(f 0

' f(z) 是一個常數函數

證明

Chapter 12 Complex Numbers and Functions

Page 72: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

最大模數定理 (Maximum Modulus Theorem)

若 f(z) 在單連封閉曲線 C 上及內部為解析函數 , 則 在 C 上及內部的極大值 , 必發生在解析區域的邊界 C 上 , 而不在 C 內部 .

)z(f

dZ0

C 單連封閉曲線 C 的長度為 L, z0距離 C 之最短距離為 d假設 M 為 在曲線 C 上的極大值 .)z(f

C1n

00

)n( dz)zz(

)z(f

i2

!n)z(f

Ld

M

2

1dz

)zz(

)z(f

2

1dz

)zz(

)z(f

i2

1)z(f

n

C 0

n

C 0

nn

0

C 00 dz

)zz(

)z(f

i2

1)z(f

C 0

n

0n dz

)zz(

)z(f

i2

1)z(f

n/10 )

d2

L(M)z(f

當 時n M)z(f 0

z0 為 C 內之任一點 , 因此得證 !

Chapter 12 Complex Numbers and Functions

Page 73: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

最小模數定理 (Minimum Modulus Theorem)

若 f(z) 在單連封閉曲線 C 上及內部為解析函數 , 且 , 則 在 C 上及內部的極小值 , 必發生在解析區域的邊界 C 上 , 而不在 C 內部 .

)z(f0)z(f

試求 在 上之極大與極小模數

zcos)z(f 1z

2

eez

!4

1z

!2

11zcos

iziz42

在 為解析且恆不為零1z Sol.

的極大值與極小值均發生在 上1z sinicosz 222

)sinh(sin)sin(cosi)cosh(sin)cos(cos)sinicos(cos)z(f

)z(f

)(coscos)(sinsinh)(sinsinh)(cossin)(sincosh)(coscos 222222 2

)z(f 的極值發生在 0d

)z(fd2

0sin)sin(cos)cos(cos2cos)cosh(sin)sinh(sin2

2

n

若 n 為偶數 m 1cos)z(f

若 n 為奇數2

n 1cosh)icos()z(f

1cosh)z(f1cos

Example

Chapter 12 Complex Numbers and Functions

Page 74: Chapter 12          Complex Numbers and Functions

Y.M. Hu, Assistant Professor, Department of Applied Physics, National University of Kaohsiung

幅角原理 (The Argument Principle)

在區域 D 中 , 除了幾個極點外 ,f(z) 是可解析的 . 假設單連封閉曲線 C 在區域 D 中沒有通過任何極點或零點時 , 則

C

'

dz)z(f

)z(f

i2

1

曲線 C 中 f(z) 之零點數目 - 曲線 C 中 f(z) 之極點數目

CC

dzzsin

zcoszdzcot zsin)z(f

2 3--2-3 0

在曲線 C 中 ,sinz 包含五個零點 , 且沒有極點

i

-ii10)05(i2dzzsin

zcoszdzcot

CC

Chapter 12 Complex Numbers and Functions