Chapter 12 Bioenergy - data.daff.gov.audata.daff.gov.au/brs/data/warehouse/pe_aera_d9aae... ·...

26
AUSTRALIAN ENERGY RESOURCE ASSESSMENT 309 Chapter 12 Bioenergy 12.1.1 World bioenergy resources and market Current global bioenergy resources used for generating electricity and heat are dominated by forestry and agriculture residues and organic waste streams. A small proportion of sugar, grain and vegetable oil crops are used for biofuel production. Bioenergy represents around 10 per cent of the world’s primary energy consumption. Around 81 per cent of world bioenergy consumption occurs in non-OECD countries, where it is mostly used for direct burning. In 2007, the global share of bioenergy in total electricity generation was only 1.3 per cent. However, world electricity generation from bioenergy resources is projected by the IEA in its reference case to increase by 5 per cent per year to 2030 and its share of bioenergy generation is projected to reach 2.4 per cent in 2030. Biofuels currently represent 1.3 per cent of global use of transport fuels. By 2030, the share of biofuels in total transport fuels is projected by the IEA to increase to 4.0 per cent. 12.1.2 Australia’s bioenergy resources Currently Australia’s bioenergy use for generating heat and electricity is sourced mainly from bagasse (sugar cane residue), wood waste, and capture of gas from landfill and sewage facilities (figure 12.1). Biofuels for transport represent a small proportion of Australia’s bioenergy. Ethanol is produced from sugar by-products, waste starch and grain. Biodiesel is produced from used cooking oils, tallow from abattoirs and oilseeds. There is potential to expand Australia’s bioenergy sector with increased utilisation of wood residues from plantations and forests, waste streams and non-edible biomass. 12.1.3 Key factors in utilising Australia’s bioenergy resources The proportion of biomass potentially available for bioenergy is dependent on a wide range of factors such as feedstock prices, seasonal availability and the relative value of biomass for the production of other commodities. A key consideration in the expansion of the bioenergy industry is to ensure sustainable use of resources to avoid any potential negative environmental and social impacts. The commercialisation of second generation technologies will open up a range of new feedstocks from non-edible biomass (e.g. woody parts of plants) for biofuels and electricity generation. These second generation feedstocks can be produced on less fertile agricultural lands and can potentially provide environmental benefits. Some second generation feedstocks, such as algae, can be grown with saline or waste water rather than utilising freshwater resources. 12.1 Summary KEY MESSAGES Bioenergy is a form of renewable energy derived from biomass (organic materials) to generate electricity and heat and to produce liquid fuels for transport. The potential bioenergy resources in Australia are large and diverse. Unused biomass residues and wastes are a significant under-exploited resource. Bioenergy offers the potential for considerable environmental benefits. At the same time, good management of the resource is needed to ensure that problems associated with use of land and water resources are avoided. Commercialisation of second generation technologies will result in a greater availability of non- edible biomass, reducing the risk of adverse environmental and social impacts. Australia’s bioenergy use is projected to increase by 60 per cent from 2007–08 to 2029–30.

Transcript of Chapter 12 Bioenergy - data.daff.gov.audata.daff.gov.au/brs/data/warehouse/pe_aera_d9aae... ·...

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

309

Chapter 12Bioenergy

12.1.1 World bioenergy resources and market • Currentglobalbioenergyresourcesusedfor

generating electricity and heat are dominated by forestryandagricultureresiduesandorganicwastestreams.Asmallproportionofsugar,grainandvegetableoilcropsareusedforbiofuelproduction.

• Bioenergyrepresentsaround10percentoftheworld’sprimaryenergyconsumption.Around81percentofworldbioenergyconsumptionoccurs innon-OECDcountries,whereitismostlyused fordirectburning.

• In2007,theglobalshareofbioenergyintotalelectricitygenerationwasonly1.3percent.However,worldelectricitygenerationfrombioenergyresourcesisprojectedbytheIEAinitsreferencecasetoincreaseby5percentperyearto2030anditsshareofbioenergygenerationisprojectedtoreach2.4percentin2030.

• Biofuelscurrentlyrepresent1.3percentofglobaluseoftransportfuels.By2030,theshareofbiofuelsintotaltransportfuelsisprojectedbytheIEAtoincreaseto4.0percent.

12.1.2Australia’sbioenergyresources• CurrentlyAustralia’sbioenergyuseforgenerating

heatandelectricityissourcedmainlyfrombagasse(sugarcaneresidue),woodwaste,andcaptureofgasfromlandfillandsewagefacilities(figure12.1).

• BiofuelsfortransportrepresentasmallproportionofAustralia’sbioenergy.Ethanolisproducedfromsugarby-products,wastestarchandgrain.Biodieselisproducedfromusedcookingoils,tallowfromabattoirsandoilseeds.

• ThereispotentialtoexpandAustralia’sbioenergysectorwithincreasedutilisationofwoodresiduesfromplantationsandforests,wastestreamsandnon-edible biomass.

12.1.3KeyfactorsinutilisingAustralia’sbioenergy resources• Theproportionofbiomasspotentiallyavailable

forbioenergyisdependentonawiderangeoffactorssuchasfeedstockprices,seasonalavailabilityandtherelativevalueofbiomassfortheproductionofothercommodities.

• Akeyconsiderationintheexpansionofthebioenergy industry is to ensure sustainable use ofresourcestoavoidanypotentialnegativeenvironmental and social impacts.

• Thecommercialisationofsecondgenerationtechnologieswillopenuparangeofnewfeedstocksfromnon-ediblebiomass(e.g.woodypartsofplants)forbiofuelsandelectricitygeneration.Thesesecondgenerationfeedstockscanbeproducedonlessfertileagriculturallands and can potentially provide environmental benefits.Somesecondgenerationfeedstocks,suchasalgae,canbegrownwithsalineorwastewaterratherthanutilisingfreshwaterresources.

12.1Summary

K e y m e s s a g e s

• Bioenergyisaformofrenewableenergyderivedfrombiomass(organicmaterials)togenerateelectricityandheatandtoproduceliquidfuelsfortransport.

• ThepotentialbioenergyresourcesinAustraliaarelargeanddiverse.Unusedbiomassresiduesandwastesareasignificantunder-exploitedresource.

• Bioenergyoffersthepotentialforconsiderableenvironmentalbenefits.Atthesametime,goodmanagementoftheresourceisneededtoensurethatproblemsassociatedwithuseoflandandwaterresourcesareavoided.

• Commercialisationofsecondgenerationtechnologieswillresultinagreateravailabilityofnon-ediblebiomass,reducingtheriskofadverseenvironmentalandsocialimpacts.

• Australia’sbioenergyuseisprojectedtoincreaseby60percentfrom2007–08to2029–30.

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

310

12.2Backgroundinformationandworldmarket

12.2.1DefinitionsBioenergydenotestheuseoforganicmaterial(biomass)asasourceofenergyforpowergenerationand direct source heat applications in all energy sectorsincludingdomestic,commercialandindustrialpurposesaswellastheproductionofliquidfuels fortransport.

Bioenergyisaformofrenewableenergy.Biomassreleasescarbondioxide(CO

2)andsmallamountsof

othergreenhousegaseswhenitisconvertedintoanotherformofenergy.HoweverCO

2 is absorbed

duringtheregrowthoftherestoredvegetationthrough photosynthesis process.

Biomass is vegetable and animal derived organic materials,whicharegrown,collectedorharvested forenergy.Examplesincludewoodwaste,bagasseandanimalfats.

A conventional combustion process converts solid biomass through direct burning to release energy intheformofheatwhichcanbeusedtogenerate

12.1.4Australia’sbioenergymarket• Bioenergyaccountedforonly4percentof

Australia’sprimaryenergyconsumptionin

2007–08,butitrepresented78percentof

Australia’srenewableenergyuse.

• ThemajorityofAustralia’sbioenergyuseis

sourcedfrombagasseandwoodwaste,which

represents92percentofbioenergyusefordirect

heatandelectricitygeneration.Biogasrepresents

6percentofbioenergyuseandtheremaining2

percentisbiofuelsfortransportfuel.

• ABARE’slatestAustralianenergyprojectsinclude

theRenewableEnergyTarget(RET),a5percent

emissions reduction target and other government

policies.BioenergyuseinAustraliaisprojected

toincreaseby2.2percentperyearto340

petajoules(PJ)in2029–30(figure12.2).

• Electricitygenerationfrombioenergyisprojected

toincreasefrom2terawatthours(TWh)in2007–

08to3TWhby2029–30growingatanaverage

rateof2.3percentperyear(figure12.3).

Figure 12.1 LanduseandbioenergyfacilitiesinAustraliaNote: Areasdepictedasunderirrigationareexaggeratedforpresentation

source: GeoscienceAustraliaandBureauofRuralSciences

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

311

generate electricity and heat include agricultural and forestresidues,andmunicipalwastesandresidues.Biofuelsareproducedfromwasteproducts,grain(sorghum) and oil-bearing crops. Australian bioenergy production is mainly consumed domestically.

Thereisarangeoftechnologiescurrentlyavailableforconvertingbiomassintoenergyforelectricity andheatgenerationand/ortransportbiofuels. Thetechnologiesarebasedoneitherthermalorchemical conversion processes or a combination.

Thefueltype(inparticulartheheatingvalueandmoisture) and the conversion technology have an effectonenergyconversionefficiency.Theenergyconversionefficiencyforwoodwasteinadirectcombustionfacilityisabout35percent,comparedtobetween70and85percentefficiencyinacombinedheatandpowerfacility.

electricity and heat generationInAustralia,biomasselectricitygenerationispredominantlyfrombagasse(sugarcaneresidues) bysteamturbine,withsomecogenerationinstallation.Severalwoodwastebioenergyfacilitiesuse steam turbines and fluidised bed combustion technologies.Thereisminorelectricitygenerationfromco-firingwithcoal,andfacilitiesusingurbanwaste.

Biogasfromlandfillandsewagefacilitiesarelocatedin urban centres and generate electricity bymeansofreciprocatingengineorgasturbine.Somefacilitieshavecogenerationinstallations.

Transport biofuelsAsmallamountofbiofuelsisusedinthetransportsector.InAustralia,firstgenerationbiofuelsconsistofethanolproducedfromC-molassesandwheatstarchby-productsandgrain(mainlysorghum),andbiodieselpredominantlyproducedfromtallow(animalfats)andusedcookingoil.

electricityandheat.Chemicalconversionprocessesbreaksdownthebiomassintofuels,intheformofbiogasorliquidbiofuels,whicharethenusedforelectricity generation and transport.

BiogasiscomposedprincipallyofmethaneandCO

2producedbyanaerobicdigestionofbiomass.

Itiscurrentlycapturedfromlandfillsites,sewagetreatmentplants,livestockfeedlotsandagriculturalwastes.

Biofuelsareliquidfuels,producedbychemicalconversion processes that result in the production ofethanolandbiodiesel.Biofuelscanbebroadlygrouped according to the conversion processes:

• First generation biofuels are based on fermentationanddistillationofethanolfromsugar and starch crops or chemical conversion ofvegetableoilsandanimalfatstoproducebiodiesel. First generation technologies are proven and are currently used at a commercial scale.

• second generation biofuels use biochemical or thermochemical processes to convert lignocellulosicmaterial(non-ediblefibrousorwoodyportionsofplants)andalgaetobiofuels.Secondgenerationtechnologiesandbiomassfeedstocksareintheresearch,developmentanddemonstration(RD&D)stage.

• Third generation biofuels are in research anddevelopment(R&D)andcompriseintegratedbiorefineriesforproducingbiofuels,electricity generation and bioproducts (such as petrochemical replacements).

12.2.2BioenergysupplychainFigure12.4providesaconceptualrepresentationofAustralia’scurrentbioenergyindustry.Currently,thereisawiderangeofbioenergyresourcespotentiallyavailableforbioenergyutilisation.Biomassusedto

350

100

150

200

250

300

0

50

0

0.6

1.3

1.9

2.5

3.1

3.8

4.4

5.0

%PJ

1999-00

2000-01

2001-02

2002-03

2003-04

2004-05

2005-06

2006-07

2007-08

2029-30

Year

AERA 12.2

Bioenergyconsumption (PJ)

Share oftotal (%)

Figure 12.2 Projectedprimaryconsumptionofbioenergyin Australia

source: ABARE2009a;ABARE2010

0

1

2

3 1.0

0.5

0

AERA 12.3

Bioenergy electricitygeneration (TWh)

Share oftotal (%)

1999-00

2000-01

2001-02

2002-03

2003-04

2004-05

2005-06

2006-07

2007-08

2029-30

Year

TWh

%

Figure 12.3 Projectedelectricitygenerationfrombioenergy in Australia

source: ABARE2009a;ABARE2010

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

312

ResourcesGlobalbioenergyresourcesaredifficulttoquantifyduetotheresourcesbeingcommittedtofood,animalfeedandmaterialforconstruction.Theavailabilityofbiomassforenergyisalsoinfluencedbypopulationgrowth,diet,agriculturalintensity,environmentalimpacts,climatechange,waterandlandavailability(IEABioenergy2008).

Currentbioenergyresourcesconsistofresiduesfromforestryandagriculture,variousorganicwastestreamsanddedicatedbiomassproductionfrompastureland,woodplantationsandsugarcane.

12.2.3WorldbioenergymarketAround10percentoftheworld’sprimaryenergyconsumptioncomesfrombioenergy(table12.1). Theshareofbioenergyinprimaryenergyconsumptionishigherinnon-OECDcountriesthaninOECDcountries.InAustralia,thebioenergyshareiscomparabletotheOECDaverage,ataround4percent.Themajorityoftheworld’sbioenergyisuseddirectlyforheatproductionthroughtheburningofsolidbiomass;only4percentisusedforelectricitygenerationandanother2.5percentisintheformofbiofuelsusedinthetransport sector.

End Use MarketProcessing, Transport,

Storage

Industry

Commercial

Residential

Development andProduction

Resourcepotential

Developmentdecision

Resources

Biogasprojects

Biomassprojects

AERA 12.4

Biofuelsprojects TransportStorage

DirectBurning

Electricityand Heat

Generation

ExportProcessing

Processing(biofuels)

Figure 12.4 Australia’sbioenergysupplychainsource: ABAREandGeoscienceAustralia

Table 12.1 Keybioenergystatistics

unit australia 2007–08

OeCD 2008

World 2007

Primary energy consumption PJ 226 9317 48980

Shareoftotal % 3.9 4.1 9.7

Averageannualgrowth,since2000 % 0.3 3.0 1.9

electricity generation

Electricity output TWh 2.2 214 255

Shareoftotal % 0.9 2.0 1.3

Averageannualgrowth,since2000 % 8.7 4.8 6.0

Electricity capacity GW 0.87 1.6 na

Transport PJ 4.9 987 1207

Shareoftotal % 0.4 1.9 1.3

Averageannualgrowth,since2000 % - 29.9 22.9

source: IEA2009a;ABARE2009a

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

313

Unusedresiduesandwasteareasignificantunder-exploitedresource.

Atpresent,themainbiomassfeedstocksforelectricityandheatgenerationareforestryandagriculturalresiduesandmunicipalwasteincogenerationandco-firingpowerplants.In2007, fuelwooddominates(67percent)theshareofbiomasssourcesinthebioenergymix(figure12.5).Fuelwoodisusedinresidentialapplicationsininefficientstovesfordomesticheatingandcooking,whichisalsoconsideredamajorhealthissueindevelopingcountries(IEABioenergy2009a).Thistraditionaluseisexpectedtogrowwithincreasingpopulation,howeverthereisscopetoimproveefficiencyandenvironmentalperformance.

ThemaingrowthmarketsforpowergenerationfrombioenergyaretheEuropeanUnion,NorthAmerica,CentralandEasternEuropeandSoutheastAsia(IEABioenergy2007).Chinacontinuestoincreasepowergenerationfromindustry-scalebiogas(mainlylivestockfarms)andstrawfromagriculturalresidues.Thesugarindustryinmanydevelopingcountriescontinuestobuildbagasse-fuelledpowerplants(REN212009).

Asmallshareofsugar,grainandvegetableoilcropsisusedfortheproductionofbiofuels.ThereisincreasinginterestintransportbiofuelsinEurope,Brazil,NorthAmerica,Japan,ChinaandIndia(IEABioenergy2007).Thereispotentialtoexpandtheuseofconventionalcropsforenergy;howevercarefulconsiderationoflandavailabilityandfooddemandisrequired.

Thereisamaturecommercialmarketforfirstgenerationbiofuels.Biofuelsfromcommerciallyavailable technology are more prospective in regionswhereenergycropproductionisfeasible:forexample,sugarcaneinsubtropicalareasofSouthAmericaandsub-SaharanAfrica,andsugarbeetinmoretemperateregionssuchastheUnitedStates,ArgentinaandEurope.Inthelongerterm,lignocellulosic crops could provide bioenergy resourcesforsecondgenerationbiofuelswhichareconsideredmoresustainable,providelanduseopportunitiesandwillreducethecompetitionwithfoodcrops.

Primary energy consumptionWorldprimaryconsumptionofbioenergywas48980PJin2007(table12.1).From2000to2007worldbioenergyuseincreasedatanaveragerateof1.9percentperyear.OECDcountriesaccountedfor19percent(9317PJ)ofworldbioenergyconsumption;howevertheaveragerateofgrowthinconsumptionwas3percentperyearfrom2000to2008,fasterthantheworldaverage.

In2007,Chinawasthelargestuserofbioenergy,consuming8145PJ,followedbyIndia(6771PJ)andNigeria(3582PJ)(figure12.6).Themajorityof

Animalby-products

3%

Agriculturalby-products

4%

Energycrops3%

Charcoal7%

Forest residues1%

Wood industryresidues 5%

Agriculture10%

Recoveredwood 6%

Black liquor 1%

AERA 12.5

Municipal solidwaste andlandfill gas

3%

Fuel wood67%

Figure 12.5 Shareofbiomasssourcesintheworldprimarybioenergymixin2007

source: IEABioenergy2009a

Australia

Indonesia

United States

China

India

Nigeria

Brazil

Pakistan

Vietnam

Germany

Ethiopia

Australia

Indonesia

United States

China

India

Nigeria

Brazil

Pakistan

Vietnam

Germany

100

0 2000 4000 6000 8000

PJ

0 20 40 60 80%

AERA 12.6

a) Bioenergy use

Ethiopia

9000

b) Share in total primary energy consumption

Figure 12.6 Primaryconsumptionofbioenergy, bycountry,2007

source: IEA2009a

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

314

Whilebioenergyuseishigherinnon-OECDcountries,itisofconsiderablymoresignificanceforelectricitygenerationinOECDcountries.Bioenergyforelectricitygenerationrepresents17percentoftotalbioenergyconsumptioninOECDcountries,comparedtoonly 1percentinnon-OECDcountries(IEA2009a).

Worldwideprimarysolidbiomassisthemajorbioenergyfuelusedforelectricitygeneration.In2007,electricitygeneratedfromsolidbiomassrepresented62percentofbioenergyelectricity,whilebiogasrepresented11percentandwasterepresentedtheremaining27percentofelectricityfrombioenergy.

Transport biofuelsTheUnitedStatesistheworld’slargestconsumerofbiofuels,using619PJin2007(figure12.8).However,biofuelsrepresentonly2.3percentoftotaltransportfuelsuseintheUnitedStates.GermanyandBrazilfollowtheUnitedStatesaslargebiofuelsusers.BiofuelsrepresentalargershareoftotaltransportfuelsuseinGermanyandBrazil,7.2percentand6.0percent,respectively.

TradeTheincreaseindemandforbiomassfeedstock(e.g.woodchips,vegetableoilsandagriculturalresidues)

bioenergyuseinChina,IndiaandNigeriaissolidbiomassusedintheresidentialsector.BioenergyrepresentedarelativelysmallproportionofChina’stotalprimaryenergyconsumption,withashareof10percent,whileNigeria’sbioenergyuserepresented80percentofitstotalprimaryenergyconsumptionandEthiopia’sbioenergyuserepresented90percentofitsenergyconsumption(figure12.6).

electricity generationAsmallproportionoftheworld’selectricitygenerationissourcedfrombioenergy.In2007,theglobalshareofbioenergyintotalelectricitygenerationwasonly1.3percent(table12.1).Despiteitssmallshare,electricitygeneratedfrombioenergyincreasedatanaveragerateof6percentperyearfrom2000to2007,toreach255TWh.

Insomecountries,theshareofbioenergyintotalelectricitygenerationissignificantlyhigherthantheworldaverage.Finlandhadabioenergyshareofelectricitygenerationofmorethan12percentin2007(figure12.7).TheUnitedStatesisthelargestcontributortototalworldelectricitygenerationfrombioenergy,followedbyGermanyandJapan.

Australia

United States

Germany

Brazil

Sweden

France

Australia

United States

Germany

Sweden

Canada

France

0 2 4 6 8 10 12%

0 10 20 30 40 50TWh

AERA 12.7

b) Share in total electricity generation

Japan

United Kingdom

Finland

Canada

Italy

Japan

Brazil

United Kingdom

Finland

Italy

60 70

14

80

a) Electricity generation from bioenergy

Figure 12.7 Electricitygenerationfrombioenergy, bycountry,2007

source: IEA2009a

Australia

United States

Germany

Brazil

France

Canada

Spain

Sweden

China

Netherlands

United Kingdom

Australia

United States

Germany

Brazil

France

Canada

Spain

Sweden

China

Netherlands

United Kingdom

700

PJ

%

600500400300200100

0 1 2 3 4 5 6 7 8

0

a) Biofuels use

b) Share in total transport fuels use

AERA 12.8

Figure 12.8 Biofuelsusefortransport,bycountry,2007source: IEA2009a

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

315

oilseedcrops,aswellasutilisingthelargevolumesofunusedresiduesandwastes.Lignocellulosiccropsareexpectedtocontributeinthemedium-tolong-term.Algaecouldmakeasignificantcontributioninthelongerterm(IEABioenergy2009b).

Electricity and heat generationTheIEAprojectsworldelectricitygenerationfrombioenergytoincreaseto839TWhby2030,growingatanaveragerateof5.3percentperyear(table12.2).Theshareofbioenergyinelectricitygenerationisnotprojectedtoincreasesignificantly,reachingonly2.4percentin2030,from1.3percentcurrently.Electricitygenerationfrombioenergyisprojectedtoincreaseatafasterrateinnon-OECDcountriesthaninOECDcountries,althoughfromasmaller base.

ThebiggestincreasesinelectricitygenerationfrombioenergyareprojectedtooccurintheUnitedStates,EuropeandChina.Thecostsofpowergenerationfromrenewables,includingbioenergy,areexpected tofallovertimeasaresultofincreaseddeployment.

Transport biofuelsWorldwideuseofbiofuelsisprojectedtoincreaseatanaveragerateof6.9percentperyearto5568PJby2030(table12.3).Innon-OECDcountries,biofuelsuseisprojectedtoincreaseatanaveragerateof11.2percentperyear,whereasitisprojectedtoincrease

andbioenergycommodities(e.g.ethanol,biodieselandwoodpellets)hasseentherapidgrowthininternationaltrade(IEABioenergy2009b).Themainbiomassfeedstocksandbioenergycommoditiestraded and the trade routes include:

• ethanolfromBraziltoJapan,UnitedStatesandwesternEurope;

• woodpelletsfromCanada,UnitedStatesandeasternEuropetowesternEurope;and

• palmoilandagriculturalresiduesfromBrazilandSoutheastAsiatowesternEurope.

Inaddition,thereisasubstantialamountoftradewithinEurope.

World market outlook for bioenergy to 2030BioenergyuseisprojectedbytheIEAtoincreasemoderatelyto2030,withtransportbiofuelsgrowingataslightlyfasterratethanelectricitygenerationfrombioenergy.Amongnon-transportuses,anincreasingproportionofbioenergyisprojectedtobedevoted to electricity generation rather than direct burningofbiomass,inlinewithgrowingelectricitydemand,particularlyinnon-OECDcountries.

Globaldemandforbioenergyresourcesisexpectedtoincreasewiththeprojectedgrowthinbioenergyuse.Intheshort-term,demandforbioenergyresourcesarelikelytobemetbysugar,starchand

Table 12.2 IEAreferencecaseprojectionsforworldbioenergyelectricitygeneration

unit 2007 2030

OeCD TWh 217 492

Shareoftotal % 2.0 3.7

Averageannualgrowth,2007–2030 % - 3.6

Non-OeCD TWh 41 347

Shareoftotal % 0.5 1.6

Averageannualgrowth,2007–2030 % - 9.7

World TWh 259 839

Shareoftotal % 1.3 2.4

Averageannualgrowth,2007–2030 % - 5.2

source: IEA2009b

Table 12.3 IEAreferencecaseprojectionsfortransportbiofuelsconsumption

unit 2007 2030

OeCD PJ 963 3056

Shareoftotal % 1.9 5.8

Averageannualgrowth,2007–2030 % - 5.1

Non-OeCD PJ 461 2512

Shareoftotal % 1.0 2.9

Averageannualgrowth,2007–2030 % - 7.6

World PJ 1424 5568

Shareoftotal % 1.5 4.0

Averageannualgrowth,2007–2030 % - 6.1

source: IEA2009b

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

316

12.3Australia’sbioenergyresources and market

12.3.1BioenergyresourcesBioenergyresourcescurrentlyused,potentialfutureresources and the bioenergy outputs are summarised intable12.4.Thereisarangeofbioenergyresources(feedstocks)availableformultipleconversiontechnologies to generate electricity and heat and producebiofuels.Bioenergyresourcesaredifficultto estimate due to their multiple and competing uses.Thereareproductionstatisticsforcurrentcommoditiessuchasgrain,sugar,pulpwoodandsawlogs;howeverthesecommoditiesarecurrentlylargelycommittedtofood,animalfeedandmaterialsmarkets.Theycouldbeswitchedtothebioenergymarketincertainconditions,butthismaynotbethehighestorderuseforthem.

Australia’spotentialbioenergyresourcesarelarge.Thereareunder-utilisedresourcesincropresidues,

atarateof5percentperyearinOECDcountries.However,theshareofbiofuelsintotaltransportfueluseisprojectedtoremainatlessthan3percentinnon-OECDcountries,whileinOECDcountriesitisprojectedtoincreasetoalmost6percent.

Biofuelsuseisnotexpectedtoincreasesignificantlyintheshortterm.Thefallinoilpricesattheendof2008affectedtheprofitabilityofbiofuelsproductionandledtothecancellingofmanyplannedbiofuelsprojectsaroundtheworld.Manycountrieshavescaledbacktheirbiofuelspoliciesasaresultofconcernsovertheimpactofbiofuelsonfoodprices,landandwaterresourcesandbiodiversity,furtheraffectingtheprofitabilityofbiofuelsproduction.

Biofuelsproductionanduseisprojectedtorecoverinthelongerterm,however,aidedbysecondgenerationproductiontechnologies.Secondgenerationbiofuelsareprojectedtorepresentalmost25percentoftheincreaseintotalbiofuelsproductionovertheperiodto2030(IEA2009b).

Table 12.4 Currentandfuturebioenergyresources

Biomass groups Current resources Bioenergy Future resources Bioenergy

Agricultural related wastesandby-products

Livestockwastes:•manure•abattoirwastessolidsBy-products:•wheatstarch•usedcookingoil

P T Cropandfoodresiduesfromharvesting and processing:•largescale:ricehusks,cottonginning,andcerealstraw

•smallscale:maizecobs,coconut husks and nut shells

P

Sugarcane Bagasse,fibrousresiduesofsugar cane milling process SugarandC-molasses

P T Trash,leavesandtopsfromharvesting

P

Energy crops Highyield,shortrotationcropsgrownspecifically:•sugarandstarchcrops•oilbearingcrops–sunflower,canola,junceaandsoyabeans

T Woody crops (oil mallee)GMcropsTreecropsWoodyweeds(e.g.CamphorLaurel)Newoilseed(Pongamia)andsugar (agave) cropsAlgae (micro and macro)

P T

Forest residues Woodfromplantationforests P Woodfromplantationforestsandnativeforestryoperations

P T

Wood related waste

Sawmillresidues:•woodchipsandsawdustPulp mill residues:•blackliquorandwetwastes

P

Urbansolidwaste P Foodrelatedwastes,gardenorganics,paperandcardboardmaterial and urban timber

P

Landfillgas Methaneemittedfromlandfillsmainlymunicipalsolidwastes andindustrialwastes

P

Sewagegas Methaneemittedfromthesolidorganiccomponentsofsewage

P

Note: P=electricityandheatgeneration;T=transportbiofuelproduction source:BattenandO’Connell2007;CleanEnergyCouncil2008

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

317

Theproportionofbiomasspotentiallyavailable willdependonthevalueofbiomassrelativetocompetinguses,impactoftheirremoval(retentionofbiomassinsitureturnsnutrientstosoil,improvessoilstructureandmoistureretention),andglobal oilprices.Therighteconomicconditionsmayresult insomeofthebiomasspotentiallybeingused forbioenergyproduction.Dependingonthepricepoint,biomassmaybedivertedtobiofuelsorelectricitygeneration–sawmillresiduesotherwisesoldforgardenproducts,forexample,orpulpwoodchippedandexportedorusedforpaperproductionmaybedivertedtobioenergyifitisahighervalueproduct.

electricity and heat generationCurrentbioenergyresourcesusedforgeneratingelectricityandheatarepredominantlyfromagriculturalwastesandby-products,woodwaste,landfillandsewagefacilities(figure12.9).TheCleanEnergyCouncil(2008)identifiedsignificantpotentialforgrowthinbioenergyproductionfromwastestreams,suchaslandfillandsewagegasandurbanwaste.

plantationandforestresiduesandwastestreams.Thereisasignificantexpansionintoanewrangeofnon-ediblebiomassfeedstockswiththedevelopmentofsecondgenerationtechnologies.Potentialfeedstocksofthefutureincludemodifyingexistingcrops,growingofnewtreecropsandalgae.

Therearemanyfactorstobetakenintoaccountforeachbioenergyresource,suchasmoisturecontent,resourcelocationanddistribution,andtypeofconversionprocess.Differentsourcesofbiomasshaveverydifferentproductionsystemsandthereforecaninvolveavarietyofsustainabilityissues.Theserangefromverypositivebenefits(e.g.useofwastematerial,orgrowingwoodybiomassondegradedagricultural land) through to large scale diversion ofhighinputagriculturalfoodcropsforbiofuels(O’Connelletal.2009a).Thereisalsoarangeofpotentialimpactsontheresourcesincludingdrought,flood,fire,climatechangeandenergyprices.Futurebiomassfeedstocksfromagriculturalproductionaredependentonwhetherproductionareasexpandorreduce or yields increase.

Figure 12.9 DistributionofbioenergyelectricityandheatgenerationfacilitiesNote: Areasdepictedasunderirrigationareexaggeratedforpresentation

source: GeoscienceAustraliaandBureauofRuralSciences

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

318

feedstocktoincludesugarcanetrash,topsandleaves.

Otheragriculturalwastestreams,includingmanurefromlivestockraisedoryardedinconcentratedareas,aresuitableforgeneratingbioenergy.Wastematerial can be used to produce stationary energy andassistinreducingenvironmentalproblemsfromwastedisposal,methaneemissionsandpollutionofwatersupplies.

Wood waste and forest residues are only used in afewbioenergyplantsinAustraliaforgeneratingelectricity.Forthepurposesofresourceassessment,itisassumedthatnativeforestwoodwastewillremainconstant;thepotentialfromplantationsmayincreaseinlinewithplantationexpansion.Woodrelatedwasteforenergygeneration,whilehavingeconomicbenefits,alsohastobemanagedintermsofenvironmentalconsiderations.InAustralia,governmentsatalllevels,haveestablishedregulatorymechanisms,includingRegionalForestAgreements,aswellasotherspecificprovisionsundertheRenewableEnergyTargetconcerningtheeligibilityforforestwoodwasteforbioenergyuse

agricultural related wastes in total are a very largeresource.However,theresourcesarewidelydispersedandcanhavearangeofalternativeusesincludingcompostingforgardenproductmanufactureandstockfeedforanimals.Currently,thebulkofbiomassresourcesarenotcollectedasafeedstockforbioenergy.

Thesugarcaneindustryisoneoffewindustriesselfsufficientinenergy,throughthecombustionofbagasseincogenerationplants.Thesugarmill directly consumes the heat and electricity generated and any surplus steam is used to generate electricity andfedintothepowergrid.TheindustryislocatedmainlyincoastalQueensland,withafewmillsinnorthernNewSouthWales.Thetotalannualsugarcanecropisabout35.5milliontonnes(Mt),ofwhich14percentiscanefibre,resultinginatotalavailableenergyofabove90PJ(CleanEnergyCouncil2008).Currently,theenergygenerationisdependentonthecrushingperiodsandtheavailabilityofbagasseresources.Thereispotentialtoincreaseelectricitygenerationefficiencywithintegratedgasificationcombinedcycletechnologyandexpandthebiomass

Figure 12.10 DistributionofbiofuelplantsNote: Areasdepictedasunderirrigationareexaggeratedforpresentation

source: GeoscienceAustraliaandBureauofRuralSciences

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

319

Transport biofuelsAsatlate2009,therearethreemajorethanolplantsandthreemajorbiodieselplantsinoperation,withatotalproductioncapacityofabout330millionlitres(ML)and175ML,respectively(figure12.10).EthanolproductionisfromC-molassesfromsugarprocessing,grain(mainlysorghum)andstarchfromflourmilling.Biodieselproductionisfromtallowandusedcookingoil.Biodieselproductionisconstrainedbyalimitedavailabilityoflowcostfeedstocks,whichareby-productsorwastestreams.

12.3.2Bioenergymarket

Primary energy consumptionBioenergyaccountedfor78percentofAustralia’srenewableenergyusebutonly4percentofAustralia’sprimaryenergyconsumptionin2007–08.Overthedecadefrom1999–2000to2007–08,bioenergyuseincreasedatanaveragerateofonly0.3percentperyear.InAustralia,productionandconsumptionofbioenergyareaboutequal,becausethereiscurrentlyonlyverysmalltradeofbioenergy.Inmid2009Australia’slargestexporterofwoodpelletssecuredtwothree-yearcontracts,totalling$130milliontosupplyEurope.Thewoodpelletswillbeusedinco-firingplantsandhomeheatingmarkets.

ThemajorityofAustralia’sbioenergyisfromwoodandwoodwasteandbagasse.Australia’suseofwoodandwoodwaste,predominatelyfordirectheat

inordertomanagethesustainableuseoftheseproducts.TheseregulatoryframeworksplacesomelimitationsontheuseofwoodwasteinAustraliaforelectricity generation.

Theuseoflandfill gas (mainly methane) to generate electricityisarelativelymaturetechnology,whichinvolvesinstallinganetworkofperforatedpipesintoanexistinglandfillandcapturingthegasgeneratedfromwastedecomposition.Thecapturedgasisused to generate electricity using reciprocating gas engines.Mostfacilitiesarecentrednearthemajorurban centres and used locally.

Bioreactorlandfilltechnologyacceleratestherateofwastedecompositionmaximisinggasproductionbyrecirculatingwaterthroughaspeciallydesignedlandfill.Thistechnologyisbeingusedatthe WoodlawnBioreactor,adisusedopencutmineinNewSouthWales.Thesiteaccepts300000tonnesofsortedresidualwasteperyearandwillultimatelysupportupto25Megawatts(MW)ofgenerationcapacity.

sewage gas can be collected at treatment plants to generateelectricityandheat.Organicwasteisfedinto an anaerobic digester to produce a methane-rich biogas then combusted in customised gas engines or gasturbines.Thermalenergyproducedbytheengineduring combustion is recovered and used to heat the anaerobic digestion process.

Wood, woodwasteLandfill gas

Bagasse

240

220

200

180

160

140

120

100

0

20

40

60

80

PJ

2007-081960-61 1966-67 1972-73 1978-79 1984-85 1990-91 1996-97 2002-03

Year

AERA 12.11

Biofuels

Figure 12.11 Australia’sprimaryconsumptionofbioenergysource: ABARE2009a

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

320

predominantlyforheating.Therearealsosmallamountsofbioenergyusedinthetransportandcommercial and services sectors.

Electricity generationIn2007–08,woodandwoodwasteandlandfillandsewagebiogasfuelinputstopublicelectricitygeneration(excludingcogeneration)were19.7PJ,whichgenerated2.2TWhofelectricity.Inaddition,112PJofbagassewereusedasfuelwithinthefood,beveragesandtextilessector,themajorityofwhichisusedinsugarrefineriesincogenerationplants.

Thecontributionofwood,woodwasteandbiogastoAustralia’selectricitygenerationhasincreasedoverthepasttwodecades.From1989–90to2007–08bioenergyelectricitygenerationgrewatanaveragerateof6percentperyear.Theshareofbioenergyintotalelectricitygenerationincreasedmodestlyfrom0.5percentto0.8percentoverthatperiod(figure12.13).

application,hasdeclinedovertime.Inthe1960swooduserepresentedbetween70and85percentoftotalbioenergyuse,butasbagasseuseexpanded,thissharedeclinedto55–65percentinthe1970sandremainedrelativelyconstantinthe1980sand1990s.

In2007–08,bagasseandwoodrepresented50percentand42percentofbioenergyuse,respectively.Landfillandsewagegasrepresented6percentoftotalbioenergyuseandliquidbiofuelscomprisedtheremaining2percent(figure12.11).

Bioenergy use, by industryAround58percentofAustralia’sbioenergyisused inthefoodandbeveragessector,specificallywithinthesugarindustry,whichusesbagassefromitssugar production to generate electricity and heat. Theresidentialsectoristhesecondlargestbioenergyuser,accountingfor29percentofbioenergyuse(figure12.12).Thisisintheformofwoodused

Food,beverages,

textiles57.6%

Residential29.1%

Wood, paperand printing

9.3%

Other industry1.1%

Roadtransport

1.4%

AERA 12.12

Commercialand services

0.4%

Non-ferrousmetals1.2%

Figure 12.12 Australianbioenergyuse,byindustry,2007–08

source: ABARE2009a

0

0.5

1.0

1.5

2.0

2.5

TWh

0

0.2

0.4

0.6

0.8

1.0

%

Year

Electricitygeneration (TWh)

AERA 12.13

1989-90 1992-93 1995-96 1998-99 2001-02 2004-05 2007-08

Share of total electricitygeneration (%)

Table 12.5 Capacityofelectricitygenerationfrombioenergy(MW),2009

Biogas Bagasse Wood waste

Other bioenergyb

Total bioenergy

NewSouthWalesa 73 81 42 3 199

Victoria 80 0 0 34 114

Queensland 19 377 15 4 415

SouthAustralia 22 0 10 0 32

Western Australia 27 6 6 63 102

Tasmania 4 0 0 0 4

NorthernTerritory 1 0 0 0 1

australia 226 464 73 104 867

Shareoftotalrenewableelectricitycapacity(%) 2.2 4.4 0.7 1.0 8.3

a IncludestheACT.bUnspecifiedbiomassandbiodiesel source:GeoscienceAustralia2009

Figure 12.13 Australianelectricitygenerationfrombioenergy

source: ABARE

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

321

Incontrast,biogas-fuelledplantsatlandfillandsewagefacilitiesarecentrednearmajorurbancentresacrossallstatesandterritories.Thesesitescompriseatotalinstalledcapacityof226MW.Woodwastefacilitiesrepresent0.7percentofrenewableenergycapacityandhaveatotalcapacityof73MW(table12.5).

Transport biofuelsBiofuelscomprisedabout0.5percentofAustralia’stransportfuelsupplyin2007–08.Australianbiofuelsproductiondecreasedbyabout40percentfrom2002–03to2004–05to1.3PJ.However,from2004–05to2007–08biofuelsproductionincreasedalmostfourfoldto4.9PJ(figure12.14).

In2007–08,Australia’sethanolproductionisestimatedat149MLandbiodieselproductionat50ML.EthanolproductionhasincreasedasaresultofthenewDalbyplantinQueenslandandasmallexpansionattheManildraplantinNewSouthWales.In2008–09ethanolproductionincreasedto209ML.Biodieselproductionfellslightlyfrom2006–07to2007–08,duetothreeplantstemporarilyhaltingproductionin2007and2008(table12.6).In2008–09,biodieselisestimatedtohaveincreasedtoabout85ML.

Therearecurrentlythreemajorethanolplantsinoperation.ThelargestoperatorisManildraGroupinNewSouthWaleswithtotalproductioncapacityof 180ML.Threemajorbiodieselplantsareinproductionwithatotalproductioncapacityof175ML.ThetotaloperatingbiofuelsproductioncapacityinAustraliaisaround600MLayear(table12.7).

Thetotalcapacityofelectricitygenerationfrombioenergyrepresented1.6percentofallelectricitygenerationcapacityin2008.Bagasse-fuelledelectricitygenerationfacilitiesrepresent54percentoftotalbioenergycapacity,at464MW.ThesefacilitiesarelocatedpredominantlyinQueenslandwheresugarproductionplantsarelocated(table12.5).

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0PJ

2007-082006-072005-062004-052003-042002-03

YearAERA 12.14

Table 12.6 BiofuelsproductioninAustralia

2005–06 2006–07 2007–08 2008–09

mL mL mL mL

Biodiesel 21 54 50 85

Ethanol 42 84 149 209

Total 63 138 199 294

source: DepartmentofResources,EnergyandTourism

Figure 12.14 Australianbiofuelsproductionsource: ABARE2009a

Table 12.7 LiquidbiofuelsproductionfacilitiesinAustralia,2009

Location Capacity mL/yr

Feedstocks

Fuel ethanol

ManildraGroup,Nowra,NSW 180 Wastewheatstarch,somelowgradegrain

CSRDistilleries,Sarina,Qld 60 C-molasses

DalbyBiorefinery,Dalby,Qld 90 Sorghum

Total 330

Biodiesel

BiodieselIndustriesAustralia,Maitland,NSW 15 Usedcookingoil,vegetableoil

BiodieselProducersLimited,Wodonga,Vic 60 Tallow,usedcookingoil

SmorgonFuels,Melbourne,Vic 100 Drylandjuncea(oilseedcrop),tallow,usedcookingoil,vegetable oil

Various small producers 5 Usedcookingoil,tallow,industrialwaste,oilseeds

Total 180

Biodiesel plants with limited production

AustralianRenewableFuels,Adelaide,SA 45 Tallow

AustralianRenewableFuels,Picton,WA 45 Tallow

Total 90

Biodiesel plants not in production

Eco-TechBiodiesel,Narangba,Qld 30 Tallow,usedcookingoil

source: DepartmentofResources,EnergyandTourism

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

322

willdependonthecostofresources(bothbioenergyandalternatives),conversiontechnologiesandrelevantgovernmentpolicies,particularlythose thataffectboththeavailabilityofresourcesand their price.

Costfactorsaside,thegrowthofthebioenergyindustrywillbeinfluencedbythecommercialisationofsecondgenerationtechnologies,whichwillalsoincreasetherangeofbioenergyresourceoptionsandreducecompetitionforresourcesbetweenbioenergyfeedstocksandagricultural/forestrycommodities.Developmentofeffectiveharvestingandprocessingmethodsandimprovedtransportationandstoragewillalsobeimportantfactorsinachievingefficienciesinbioenergy production.

Availabilityofbiomasswillbecentraltotheexpansionofthebioenergysector.Theavailabilityofbiomassisinfluenced by:

• diversionofcurrentbiomassproductionandwasteandresiduesstreams.Biomassresiduesfromforestry,agriculturalharvestandprocessing,andwastestreams,suchaslandfillandsewagegas,offeralargeunder-utilisedenergyresource,whichcanalsoassistinwastedisposalissues;

• changeinharvestingregimesforcropsorforests(e.g.stubblefromagriculturallandsandthinningsfromforests);and

• newproductionsystemswhichmayincludelandusechange,inturninfluencedbyavailableland,croporforesttypesandproductivity.Theamountoflandavailableforbiomassdependsontheamountoflandusedforagriculturalandforestryproducts and that devoted to nature reserves. Thedemandforfood,whichisafunctionofpopulationanddiet,hasadirectimpactonland

Recent bioenergy projectsEleven bioenergy electricity projects have been commissionedinAustraliasince2001,withacombinedcapacityof240.2MW(table12.8).Bagasse-fuelledbioenergyplantsaccountedfor mostofthecommissionedcapacity.Australia’slargestrecentlycommissionedbioenergyplantisCSRSugarMillsinQueenslandwithacapacityof63MW.

Australia’sfirstgraintoethanolplantatDalby,QueenslandcommencedoperationinDecember2008.Theplantprocesses220000tonnesofdrygrain(sorghum)asitsfeedstockwithacapacityof 90MLofethanolperyear.

12.4Outlookto2030forAustralia’sresourcesandmarketThereissignificantpotentialtoexpandtheuseofbiomassforelectricity,heatandtransportbiofuelsproduction.Thereisadiversityofbioenergyresources and conversion technologies that can provide greenhouse gas emissions savings and reducewastedisposalissues.Theremaybeopportunitiesforthebioenergysectortosupportagricultural industries and rural communities through growingcomplementaryenergycropsand indevelopingregionalenergyfacilities.

12.4.1KeyfactorsinfluencingtheoutlookThefuturegrowthofAustralia’sbioenergyindustrywilldependonitscompetitivenessagainstotherenergysources,thecommercialisationofefficientconversiontechnologiesandavailabilityofbioenergyresources.

Thecostcompetitivenessofbioenergywithalternativeelectricitygenerationandtransportfuels

Table 12.8 Bioenergyprojectsrecentlydeveloped,asatSeptember2009

Project Company state Type start up Capacity (mW)

electricity and heat generation

Tumut Visy Paper NSW Woodwaste 2001 17.0

RockyPoint NationalPowerandBabcockandBrownJointVenture

QLD Bagasse 2001 30.0

Stapylton GreenPacificEnergy QLD Woodwaste 2003 5.0

SouthCardup LandfillManagementServicesLtd WA Landfillmethane 2005 6.0

Werribee (AGL) AGL VIC Sewagemethane 2005 7.8

Pioneer 2 CSRSugarMills QLD Bagasse 2005 63.0

Woodlawn WoodlawnBioreactorEnergyPtyLtd NSW Landfillmethane 2006 25.6

CarrumDowns1&2 MelbourneWater VIC Sewagemethane 2007 17.0

EasternCreek2 LMSGenerationPtyLtd NSW Landfillmethane 2008 8.8

Condong SunshineElectricity NSW Bagasse 2008 30.0

Broadwater SunshineElectricity NSW Bagasse 2008 30.0

Transport biofuels

Dalby DalbyBiorefineryLtd QLD Ethanol 2008 90.0

source: GeoscienceAustralia;ABARE

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

323

Electricity and heat generationElectricity and heat generation through biomass

combustionisamature,efficientandreliable

technology.Incaseswherelowcostfeedstocksare

availableforco-firingschemes,electricityandheat

productionfrombioenergyiscostcompetitivewith

fossilfuels(IEABioenergy2007).

Anassessmentoftheelectricitygenerationcosts

frombiomasswasundertakenbyIEABioenergy

(2007),whichprovidesacomparisonforthree

biomasstypes.Itshouldbenotedthattheactual

costsmaynotbedirectlyapplicabletoAustralia.In

theshortterm(about5years)thecostsofgenerating

electricityrangefrom�0.03–0.15(US$0.04–0.21)/kilowatthour(kWh)(in2007dollars),depending

onthebiomassfeedstock,technologyandscale

ofgenerationplant(table12.9).Inthelongerterm

(morethan20years)biomasselectricitycostsare

expectedtodeclineto�0.02–0.08(US$0.03–0.11)/kWh(in2007dollars)withadvancesintechnologies.

Themainvariabilityincostswillarisefromthecostof

biomass supply.

Arelativelylowcapitalcostoptionforimproving

systemefficiencyandreducingcarbonemissionsis

retrofittingofco-firingboilerswithbiomassdelivery

systems.Totalcostsvarydependingonthetype

andconditionoftheboilerbeingmodifiedandthe

biomassdeliverysystem,withseparatefeedsystems

costinguptofourtimesasmuchasablended

deliverysystem(Grabowski2004).IntheUnited

States,theannualfuelcostsareoftenlowerinco-

firingplantsthaninplantsburningpurecoal.These

annual savings can result in payback periods on

initialinvestmentoflessthan10yearsandreduce

productioncostsbetween$US0.02–0.22/kWh.In

addition,theuseofbiomassasasupplementary

fuelincoal-firedplantsreducessulphurdioxideand

nitrogenoxidesemissions(EESI2009a).

useandavailabilitytogrowprimarybiomassresourcesforbioenergy.Theamountofbiomassproducedisafunctionofthequalityoftheland,theclimate,wateravailabilityandmanagementpractices.

Therearepotentialrisksintheexpansionofbiomass production into areas that provide valuable ecosystems that support high biodiversity and may result in nutrient pollution.

Cost competitivenessBioenergyproductioncostsareafunctionofbiomassfeedstock,labour,transportation,capitalandoperating costs.

Thecostoffeedstocksdependsonwhetheritisaprimary biomass (energy crop) or residue biomass fromanagricultural,forestryorurbanactivity.Costvariationsareduetoinputandharvestcostsfromproductionsystems.Solidbiomasscanbebulky,difficulttohandleandtransport,andmaydecayovertime.Onsitepre-processingofmaterials,suchaschipsorwoodpellets,mayincreasethelabourandprocessingcosts,butreducetransportandstoragecosts.

Bioenergybecomesacompetitivealternativeinsituationswherecheapor‘negative-cost’residues orwastesareavailableandusedonsite(IEABioenergy2007).Themosteconomicalbioenergyproductionmodelistheproductionofenergyatthebiomasslocationsuchasatlandfillandsewagesites,papermills,sawmillsorsugarmills. InAustralia,alargeproportionofbioenergyproduction occurs in small to medium cogeneration plantsbuiltatsugarmillsandotherfoodprocessingplantsthathaveaccesstosignificantlowcostbiomasswastestreams.

Largescalebioenergyproductionrequiresfurtherdevelopment in conversion technologies and biomass productiontobecompetitivewithfossilfuels(IEABioenergy2007).

Table 12.9 Electricitygenerationcostsforthreebioenergyresources

Biomasselectricity generation

short term Longer term

Organicwaste•municipalsolidwaste

Less than �0.03–0.05(US$0.04–0.07)/kWhForstate-of-the-artincinerationand co-combustion technology

SimilarrangeImprovementsinefficiencyandenvironmentalperformance

Residues•forests•agriculture

�0.04–0.12(US$0.05–0.16)/kWhLowercostincombinedheatandpoweroperationsMajorvariableisbiomasssupplycosts

�0.02–0.08(US$0.03–0.11)/kWhMajorvariableisbiomasssupplycosts

Energy crops•oilseeds•sugar/starch•shortrotationcroppingtrees

�0.05–0.15(US$0.07–0.21)/kWhHighcostsforsmallscaleplants, lowercostsforlargescale(over100MW)state-of-the-artcombustion

�0.03–0.08(US$0.04–0.11)/kWhLowcostsduetoadvancedco-firingschemesandintegrationgasificationusingcombinedcycletechnologyover100MW

Note: Costsin2007dollarssource: IEABioenergy2007

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

324

intechniques,up-scalingofproductionfacilities andlowerfeedstockcostusingbiomassresidues(table12.10).

Technology developments – more efficient, using a greater range of non-edible biomass resourcesThereisarangeoftechnologiescurrentlyavailableandindevelopmentforconvertingbiomassintoenergy(box12.1).Energyisreleasedeitherintheformofheatorisconvertedintoanotherenergyformsuchasliquidbiofuelsorbiogas.

Electricity and heat generationElectricityandheataregeneratedbycombustion,cogenerationandgasificationofbiomassandfrommethanegascapturedfromlandfillandsewagefacilities.Theburningofsolidbiomassisthedominantmethodofenergyconversionforelectricityandheatproduction.Increasedefficiencycanbegainedthroughfluidisedbedcombustionandco-firingofbiomass(e.g.woodresidue)withcoal.Thereispotential to increase bioenergy production through utilisationofunder-exploitedbiomassresiduesandwastesfromforestryandwoodprocessingfacilities.Theseresidueandwasteresources,ifusedmoreeffectively,canassistinthereductionofgreenhousegas emissions.

Transport biofuelsFirstgenerationbiofuelsaremainlyproducedfromsugarandstarchby-products,grainoilcrops,usedcookingoiloranimalfat(box12.2).GiventhelimitedsupplyofthesefeedstocksinAustralia,firstgenerationbiofuelswillnotbeabletosupplyalargeproportionoftransportfuelneedsuntilsecondgeneration technologies become commercially viable.

SecondgenerationbiofuelsarethesubjectofactiveRD&D(box12.2).Theyareproducedfromlignocellulosicfeedstockssuchascropandforestresiduesandwoodprocessingwastes,whichdo notcompetedirectlywithfoodcrops.InAustralia,secondgenerationbiofuelsshowpromiseformaking agreatercontributiontotransportfuelsupply,butthisisdependentonsustainableproductionofbiomassatacompetitivecost(Wild2009).

Thefarmingofalgaetoproducebiofuelsisanareaofactiveresearchworldwide.Algaecultivationisnotnewtechnology–ithasbeenusedtoproducefoodsupplementssuchasbeta-carotene,andspirulina.Bothmicroalgaeandmacroalgae(e.g.seaweed)arebeinginvestigatedasfeedstocksforbiofuels.Algaecanbegrownonnon-arableland,insalineandwastewaterandhasahighoilyield.MicroalgaecanfixCO

2

fromtheatmosphere,powerplantsandindustrialprocessesandsolublecarbonate,howeveronlyasmallnumberofmicroalgaearetoleranttohighlevelsofsulphuroxidesandnitricoxidespresentinfluegases.Therearechallengeslimitingthecommercial

Transport biofuelsThemaincomponentofbiofuelsproductioncostsisthecostoffeedstock,whichvariesconsiderablyaccordingtothetypeoffeedstockused.Lowcostbiofuelscanbeproducedfromcropsgrowninthemostsuitableclimatezonesandusingcommerciallyavailabletechnologies,suchasethanolfromsugarcanegrownintropicalregions.BiofuelproductioncostsarelowinBrazil,forexample,largelybecauseoftheavailabilityoflowcostsugarcane.SugarcaneethanolinBrazilhasalowercostthanpetrol(WorldwatchInstitute2006).Ethanolproductioncostsvarysignificantlysubjecttothelocationandthefeedstockused.SugarcaneethanolproducedinBrazilcostsaboutUS$0.20perlitre,whereasintheUnitedKingdomcostswereaboutUS$0.81perlitre(IEA2006b).

TheproductioncostoffirstgenerationbiofuelsinAustralia is highly variable due to variations in the costoffeedstock.EthanolfromstarchwasteandC-molassesandbiodieselfromusedcookingoilcanbeproducedatacostlessthanA$0.45perlitre,in2007dollars(comparativecostofoilatUS$40perbarrel).Ethanolfromsugarandgrainandbiodieselfromtallowandoilseedcrops(canola)canbeproducedfromlessthanA$0.80perlitre,in2007dollars(comparativecostofoilatUS$80perbarrel)(O’Connelletal.2007).

InAustralia,expansionandconstructionoffirstgenerationbiofuelfacilitieswereplannedin2007asaresultofgovernmentsubsidiesandhighoilprices.However,manyoftheseplanswerepostponeddue tohighfeedstockpricesandfallingcrudeoilprices attheendof2008.Uncertaintyaboutfuturechangesinoilandfeedstockpricescontinuestorestrictinvestmentinnewcapacity.

Thedevelopmentofsecondgenerationbiofuelsfromlignocellulosicbiomasswillnotonlyincreasetherangeoflowcostfeedstocksbutwillincreaseconversionefficienciesandlowerproductioncosts(IEABioenergy2007).

ThecostofsecondgenerationlignocellulosicbiofuelproductionisestimatedtobelessthanUS$1.00perlitre.CostisexpectedtodecreasetobetweenUS$0.55andUS$0.70perlitreinthelong-termdepending on the technologies and improvements

Table 12.10 Productioncostsforsecondgenerationbiofuels

second generation technologies

Production cost Us$/litre gasoline equivalent

2010 2030

Biochemicalethanol 0.80–0.90 0.55–0.65

BiomasstoLiquids (BTL)diesel

1.00–1.20 0.60–0.70

source: IEABioenergy2008

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

325

BOx 12.1 BIOENERGyTECHNOLOGIESFORELECTRICITyANDHEATGENERATION

Thermalconversionusesheatasthedominantmechanism to convert biomass to energy. Combustionisthesimplestmethodbywhichbiomasscanbeusedforenergyandhasbeenusedformillenniatoprovideheat.Conventionalcombustion technologies involve biomass being burnt inthepresenceofairinaboilertogenerateheattoproducehotair,hotwaterorsteam,whichisusedina steam turbine to generation electricity.

Combustion technologiesThethreemainbiomasscombustionconversiontechnologiesaregrateboilers,fluidisedbedcombustion(gasification)andco-firinginutilityboilers.

Grate boiler technology is the oldest combustion principleandwasthemostcommondesignofsmall-sizeboilers.Itremainspopularforrelativelysmallboilers(lessthan5MW)incountriesusingfuelssuchaswoodpellets,strawandmunicipalsolidwaste (IEA2008).

Fluidisedbedcombustionusesupwardblowingjetsofairtosuspendsolidfuelsduringthecombustionprocessforincreasedefficiency.Theprocesscontrolsthesupplyofoxygenand/orsteam.Thebiomassisdevolatilised and combusted to produce a biogas thatcanbeburntforheatorusedinagasturbineforelectricity generation.

Therearetwomaintechnologies,bubblingfluidisedbed(BFB)andcirculatingfluidisedbed(CFB)technologies.BFBcombustionoffersbettertemperaturecontrolandismoresuitablefornon-homogeneousbiomass.CFBcombustionusespulverisedfuelthatdoesnotrequireahightemperatureflameandallowsbettercontrolofthefurnacetemperature.

Co-firingreferstothesimultaneouscombustionofabiomassfeedstockandabasefuel(e.g.coal)toproduceenergy.Themostcommonbiomassincludelowvaluewood,cropresiduesandmunicipalwaste.Mostbiomassfeedstockmustundergoprocessingbeforeitcanbeutilisedforco-firing(EESI2009a).Processedsolidbiomassisaddedtotheco-firedboilersalongwiththefossilfuel.IthelpsreducerelianceonafiniteresourceandcanmakeasignificantcontributiontoCO2

emission reductions (MassachusettsTechnologyCollaborative2009;IEA2006a).

Biomassco-firinginmodern,largescalecoal powerplantsisefficientandcanbecosteffective.Thetechniquehasbeensuccessfullydemonstratedinmorethan150installationsworldwide.AboutahundredoftheseareoperatinginEurope,around 40intheUnitedStatesandafewinAustralia. Anumberoffuelssuchascropresidues,energycropsandwoodybiomasshavebeenco-fired. Theproportionofbiomassinthefuelmixhas rangedbetween0.5and10percentinenergy terms(IEA2008).

Forco-firingofupto10percentofbiomassmixedwithcoalorfedthroughthecoalfeedingsystem,onlyminor changes in the handling equipment are needed. Forbiomassexceeding10percentorifbiomassandcoalareburnedseparately,changesinmills,burnersand dryers are needed.

Thedevelopmentofbiomassfuelpreparationanddryingtechnologiessuchastorrefaction(thermochemicaltreatmentthatlowersthemoisturecontent and increases the energy content) and pelletisingofbiomass,increasetheefficiencyofplants.Inaddition,thebiomassisverycompact,stableandeasiertotransport,storeandhandle.

Wood pellets are rapidly becoming an important sourceoffuelforco-firedplants.WoodpelletsorDensifiedBiomassFuel(DBF)aremanufacturedfromlowvaluetreesandfromsawdustandotherpulpwaste.WoodpelletsareincreasinglyusedasarenewablefuelforpowergenerationincountriessuchasJapan,Canada,SouthAfricaandparticularlyinEurope.MuchofthenewgenerationcapacityinEuropeisbasedondedicatedpellet-fuelledcombinedheatandpowerplants.Europeanproductionhasbeenbasedonbothscarcesawmillwasteand,increasingly,imports.InAustralia,woodpelletuseremains limited but supply to the domestic market andexportmarketisexpectedtoincrease.

Cogeneration technologyInthemostefficientelectricitygenerationplantaround30percentoftheenergyinthebiomassisconvertedintoelectricity;therestislostintotheairandwater.Cogenerationorcombinedheatandpower(CHP)plantshavegreaterconversionefficienciesasthey produce both electricity and process heat.

Thereisanumberofdifferenttypesofcogenerationtechnology.Formanyyears,allcogenerationinstallationswerebasedontheuseofconventionalboilers,withsteamturbinesforelectricitygeneration.Gas turbine technology has largely superseded steamturbinetechnologyformediumsizeinstallation(Saddleretal.2004).Bagasse,sludgegasfromsewagetreatmentplantsandmethanefromlandfillsitesareusedasfuelincogenerationplants.Whereacogenerationplantispoweredbywastegases,fugitivegasesarecapturedandutilisedtodrivegasturbineswhichinturngenerateelectricity.InAustralia,sugarmillsruncogenerationplantswhicharefuelledbybagasseleftoveraftercrushingthesugar cane.

Trigeneration technologyTrigenerationtechnologyprovidescoolinginadditiontoheatandelectricitygeneration.Theprocess wasteheatcanbeusefullyappliedforheatinginwinterand,viaanabsorptionchiller/refrigation,

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

326

forcoolinginsummer.Refrigerationandair-conditioning normally require a compressor driven by electricity.Theabsorptionchillerusesaheatsourcetoprovideenergytodrivethecoolingsystem.Thecombinationoftechnologiestoconvertwasteheatinto cooling can reduce peak summer electricity consumptionandgreenhousegasemissionsfromair-conditioningbyabout25percent.

A small scale trigeneration option is an Organic RankineCycle(ORC)enginewhichusesanorganicfluidwithalowboilingpoint,ratherthansteam andhencelowercostinvolvedingatheringheat. Abiomass-firedORCtrigenerationsystemisable to generate electricity and provide heating and cooling demands.

Gasification and pyrolysis technologies (thermochemical processes)Theuseofgasificationismoreefficientforenergyrecoveryintermsofelectricitygenerationthantraditionalcombustion.Ingasification,solidbiomassisheatedtohightemperatures(800–1000°C)inagasifierandconvertedtoasyngasprimarilycomposedofhydrogen,carbonmonoxide,carbondioxide,watervapourandmethane.Thereareloweramountsofsodiumoxides,nitrousoxidesanddioxinsemissions than in a traditional combustion process.

Thesyngascanbeusedincombustionengines(10kWto10MW)withefficiencyof30to50percentingasturbinesorcombinedcycles(IEA2007a).Biomassintegratedgasification/gasturbines(BIG/GT)arebeingdeveloped.Tareliminationisoneoftheareasofresearch,whichisexpectedtobeovercome

inthemediumterm.Thefirstintegratedgasificationcombinedcycle(IGCC)plantrunningon100percentbiomass(straw)hasbeensuccessfullyoperatedinSweden.

Pyrolysisisthermaldegradationofbiomasstoproducebio-oil,syngasandcharcoalatmediumtemperatures(350–800°C)intheabsenceofair.Pyrolysisencounterstechnicaldifficultieswhichhaveprevented its implementation on a commercial-scale. Theseincludeeffectiveheattransferbetweentheheat carrier and biomass particles or the quenching ofvapourstostopfurtherreactionsthatresultin bio-oil quality variations.

Anaerobic digestion technologyAnaerobicdigestionisatechniqueusedfor producingbiogaswhichisusedcommerciallyworldwide,especiallyforwasteeffluentssuchaswastewater,sewagesludgeandmunicipalsolidwaste.Anaerobicbacteriadigestorganicmaterial intheabsenceofoxygenandproducebiogas.Anaerobic processes can be managed in a digester orairtighttankorcoveredlagoon.Thereisincreasinguseofthistechnologyinsmallscale,offgridapplicationsatthedomesticandfarm-scale.

Inmodernlandfillsites,methaneproductionrangesbetween50and100kgpertonofmunicipalsolidwaste(MSW).Ingeneral,some50percentofbiogascanberecoveredandusedforpowerandheatgeneration.Afterpurificationandupgrading,biogascanbeusedinheatplantsandstationaryengines,fedintothenaturalgasgridorusedasatransportfuel(compressednaturalgas)(IEA2007b).

developmentofalgaebiofuelssuchasalgaespeciesthatbalancesrequirementsofbiofuelproduction,equipmentandstructuresneededtogrowlargequantitiesofalgaeandthenegativeenergybalanceafteraccountingforwaterpumping,harvestingandextraction.

Researchisbeingundertakenintoproductionsystems such as open ponds and closed loop systems,algalstrainsandfertilisationwithnutrientsandCO

2.Openpondsystems(e.g.sewageponds)

requireanalgaestrainthatisresilienttowideswingsintemperatureandpH,andcompetitionfrominvasivealgaeandbacteria.Inaclosedsystem(notexposedtoopenair)alsoreferredtoasaphotobioreactor,nutrient-ladenwaterispumpedthroughplastictubesthatareexposedtosunlight.Photobioreactorshaveseveral advantages over open systems by reducing contaminationbyorganismsblowninbytheair,controlledconditions(pH,light,temperatureandCO

2)

andpreventingwaterevaporation.

InAustralia,thereisanumberofR&Dprojectsinvestigatingbiofueltechnologiesfrommicroalgae.

InVictoria,theUniversityofMelbourneisresearchingefficientseparation,processingandutilisationofalgalbiomass.AlgalFuelsConsortiumisdevelopingapilot-scalebiorefineryinSouthAustraliaforsustainablemicroalgalbiofuels.AjointprojectbetweenMurdochUniversity,WesternAustralia,andUniversityofAdelaide,SouthAustraliaisworkingonallstepsintheprocessofmicroalgalbiofuelsproduction,frommicroalgaeculture,harvestingofthealgaeandextractionofoilforbiofuelsproduction.ConstructioncommencedinJanuary2010onapilotplanttotestthewholeprocessonalargerscaleinKarratha,north-westWesternAustralia,andisexpectedtobeoperationalbyJuly2010.

ThirdgenerationtechnologiesareintheR&Dstage.Thetechnologyinvolvesthedevelopmentoflignocellulosicbiorefineriesthatproducelargevolumesoflowcostbiofuelandtheoverallprocessissupportedthroughtheproductionofbioenergyandhighvaluebioproducts.InternationallythereiscommercialandR&Dinterestindevelopingbio-basedproductsfrombiorefineries.DuPontandtheUniversityofTennesseeplantoconstructa

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

327

BOx 12.2 BIOFUELTECHNOLOGIESFORTRANSPORT

thesustainablemanagementofbiomassexploitationandtheavoidanceofpotentialnegativeenvironmentalimpactsofbioenergyfeedstocksproduction.

Theexpansionofthebioenergyindustrycanprovidegreenhouse gas savings and other environmental benefits,suchasimprovedbiodiversityaswellasopportunitiesforsocialandeconomicdevelopmentinruralcommunities.Thegreenhousegassavingsdependonthebiomassfeedstockcultivationmethod,changesinlanduse,thequantityoffossilfuelinputs and the technology used. Waste and residue biomassdoesnotrequiresignificantenergyinputandgenerallyhaslowergreenhouseemissionswhencompared to energy crops.

However,theexpansionofbioenergyproductioncreatessomechallenges,suchaspotentialcompetitionforlanduse,andbiomassuseforfoodandstockfeedandpotentialimpactsonbiodiversity.Asalreadynoted,theavailabilityofbiomassisalsoinfluencedbypopulationgrowth,diet,wateravailability,agriculturaldensityandtheenvironment(Hoogwijk2006).

Energy crops are dependent on land being available thatisnotbeingusedforforestryandagriculturalproducts,environmentalprotectionorurbanareas.Theamountofbiomassproduced(cropproductivity)isafunctionofthequalityoftheland,theclimate,waterresourcesandmanagementpractices.Increaseduseoffertilisersandpestcontrolto

pilot-scalebiorefineryinTennessee,UnitedStates(TheUniversityofTennessee2009).TheNationalRenewableEnergyLaboratoryintheUnitedStatesisinvolvedwithsixmajorbiorefinerydevelopmentprojectsthatarefocusedonintegratingtheproductionofbiomass-derivedfuelsandotherproductsinasinglefacility(NationalRenewableEnergyLaboratory2009).

CurrentlyinAustralia,onlyafewcompaniesarepursuingthelignocellulosicbiorefinerymodel. TheOilMalleeprojectsuccessfullyusesMalleeeucalyptsforproducingeucalyptusoil,activatedcarbonandbioenergyfrom1kWintegratedwoodprocessingdemonstrationplantinNarrogin,WesternAustralia(OilMalleeAssociation2009).TheMalleeeucalypts are planted as a complementary crop on landusedforgrowinggrain.There-sproutingabilityoftheMalleeeucalyptsallowforcoppicing(harvestingofbranches)everysecondyearindefinitelywithoutreplanting.Italsoprovidesanenvironmentalbenefitasthedeepmalleerootssoakupgroundwaterandassistinmitigatingdrylandsalinity(OilMalleeAssociation2009).

Biomass resources – reliable and environmentally sustainable supplyBiomassproductionisasignificantpotentialsourceofrenewableenergythatcanprovidegreenhousegasreductionbenefitswhenreplacingfossilfuels.However,akeyfactorinthegrowthofthebioenergysectoris

Conversiontechnologiesusearangeofbiochemicaland thermochemical processes to convert biomass intobiofuels.

First generation technologies use conventional processes,fermentationofsugarandstarchcropsforethanolproductionandtrans-esterificationofoilseedcrops,usedcookingoiloranimalfat(e.g.beeftallow)forbiodiesel.Thechemicalreaction(trans-esterification)involvesreactionofanoilyfeedstockwithanalcohol(methanolorethanol)andacatalysttoformesters(biodiesel)andglycerol.

Advancesinfirstgenerationbiofuelsarefocusedonfeedstocks,suchasGMcrops,newnon-edibleoilseedsandnewsugar(agave)crops.Theuseofnon-edibleoilseedplants,suchasJatropha,hasbeenexploredaspotentialfeedstockinthePhilippinesandIndia.Jatrophaproductionmaybeexpandedwithoutdirectlycompetingwithnaturalforestsorhigh-valueagriculturelandsusedforfoodproductionasitcangrownonlessfertileland(FAO2008).InAustralia,Jatrophaisbannedasitisaninvasiveplant.However,thereispotentialforusingother non-edible oilseed plants (e.g. Pongamia and Karanja).

second generation technologies use biochemical and thermochemical processes to convert lignocellulosicandalgaefeedstockstobiofuels.Biochemicalprocessesuseenzymesandmicro-organismstoconvertfeedstockstosugarpriortofermentationtoproduceethanol,butanolorpotentiallyotherfuels.Thermochemicalprocessesusespyrolysisandgasificationtechnologies.Pyrolysisprocessesproducebio-oil,syngasandbiochar.Thebio-oilisunstableandrequiresfurtherrefiningtoproducepetrol,biodieselandotherhighvaluechemicals.Gasificationmethodsproducesyngas,whichcanbefurtherprocessedusingFischer-Tropschsynthesistoproducesyndieselandaviationbiofuels.

InAustralia,R&Dintosecondgenerationtechnologiesandfeedstocksforbiofuelsisbeingundertaken(section12.4.3).CSIRO’sEnergyTransformedFlagshipisconductingresearchintothepotentialforasustainableandeconomicallyviablesecondgenerationbiofuelsindustry.Ithasa research program covering sustainable biomass production,thermochemicalconversion,enzymaticconversionandalgalfuels(CSIRO2009).

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

328

alargeproportionofarablelandwouldhavetobedevotedtoenergycropsproduction.In2005,theEuropeanUnion(EU)used3percentofitstotalarablelandforbiofuelfeedstocksproducing4.9billionlitresofbiofuels,whichrepresentedaround1percentofliquidfuelsconsumptionintheEUtransportsector(EuropeanCommission2007;IEA2007b).

Firstgenerationbiofuelsfromenergycropsrequiresustainable agricultural practices to minimise environmentimpacts,theadoptionofcroprotationwithanenergycropdiversifiesthecropsgrown,whichcanimprovethelandfortraditionalcroppingandprovideahighvaluecrop(FAO2008).InAustralia,biofuelproductioniscurrentlytoolowtoaffecttheproductionofagriculturalcommodities.

Secondgenerationbiofuelswillbeproducedfromspecialisedenergycrops,suchastreecropsandalgae,aswellasfromresidueandthewastestreams.Theutilisationofresidueandwastematerialforbiofuelsrequiresnoadditionalland.Secondgenerationbiofuelfeedstocksmayalsobegrownonlessproductivelandsanddegradedagricultural land that do not compete directly withgrowingfood,stockfeedandfibrecrops(IEABioenergy2008).Somesecondgenerationfeedstocks,suchasalgaeandoilmallee,donotcompeteforfreshwaterresources.

Worldwide,investmentinsecondgenerationtechnologies is being undertaken to ensure these characteristics–environmentalandeconomicviabilityandavoidanceofcompetitionforproductivelandwithfoodandfibreproduction–areachievableandthereforethatthefutureproductionofbioenergycanproceedinasustainableway.

12.4.2OutlookforbioenergyresourcesThebioenergysupplychainiscomplexbecauseofitsinteractionwithothersupplychainssuchasagriculturalandforestry.Thereisscopetooptimisecurrentproductionsystemsforthebioenergymarketwithoutdivertingbiomassfromcurrentuses(e.g.plantationthinnings).Theproductionofsecondgenerationfeedstocksonlessproductiveorunder-utilisedlandscouldpotentiallyprovideeconomic,environmentalandsocialbenefits(O’Connelletal.2009a).Theuseofsuchlandmayprovideopportunitiesfor:farmerstodiversifyexistingsystems;thedevelopmentofindustriesinruralregions;andimprovementsinbiodiversity.Currently,secondgenerationbiofuelsarenotcommerciallycompetitiveinanycountry.ThetransitionfromfirsttosecondgenerationtechnologieswillrequiresignificantR&Dinvestmentwhich,inturn,willonlybeattractedbyanindustrywithasignificantandsustainablefuture.Theindustryneedstodemonstratethatthepotentialitoffersmeets these criteria.

improve crop yields may lead to increased pollution fromnutrientandbiocides/pesticides.

Residuesfromforestsandwoodprocessingandorganicwastestreamsarelargeuntappedresources,andeffectiveandsustainableuseoftheseresourcescanmakeacontributiontoenergysupplywhilereducingwastedisposalproblemsandavoidingthepotentialenvironmentalimpactsofdedicatedbioenergy crops.

Electricity and heat generation InAustralia,bioenergyforelectricityandheatgenerationisproducedpredominantlyfromby-productsofsugarproductionandwastestreams.Futureenergycropsmayincludetreecrops,woodyweedsandalgaeaswellasexpansionintocropandfoodresidues.Themainfactorsaretechnologycosts,reliablesupplyandconsistentqualityofbiomass.

Inurbanregions,capturingwastegasfromlandfillandsewagefacilitiesprovidesdualbenefitsofgenerating bioenergy and eliminating methane emissions.Thewastestreamsuppliestothesefacilitiesarerelativelyconstantandifwastegasesarenotcollectedandusedforbioenergyproduction,thegaswouldbeflaredorventedinto theatmosphere.Generationofelectricityandheatfrombiogaswillreduceemissionsandcanreplacetheuseoffossilfuelsasclean,costeffective,renewableenergy.

Similarly,conversionofanimalwastestobiogascan also provide energy and reduce environmental problemsassociatedwithanimalwastes.Theanaerobic digestion process can control manure odourandreduceharmfulwaterrun-off.

TheBerrybankpiggerynearBallarat,Victoriahasa0.225MWplantthathasbeengenerating3.5MWhofelectricityperdayfromanimalmanuresince1991.TheCleanEnergyCouncil(2008)estimatesthatabouthalfoftheexistingpigherdinAustraliaisatpiggeriesofsufficientscaletoalloweconomicimplementationofenergygenerationfromthewastestream,withalong-termpotentialfromthisindustryofabout200Gigawatt-hours(GWh)peryear.

Forestryandagriculturalresidueandwoodwastebioenergy plants rely on a constant supply and consistent gradeofbiomass.Woodwasteforelectricitygenerationispredominantlybyco-firedcoalplants.Forestresidues,woodprocesswastesandmunicipalsolidwasteshavethepotentialtobeusedaslignocellulosicfeedstockinsecond generation technologies.

Transport biofuelsFirstgenerationbiofuelsfromenergycropsareconstrainedbytheamountoflandavailableandthelimitedsupplyofsugarandstarchby-products,animalfatsandusedcookingoilfeedstocks.Forbiofuelstocontributesignificantlytotransportfuelconsumption,

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

329

Table 12.11 PotentialforstationarybioenergygenerationinAustralia

BiomassQuantity

Conversion technologieselectricity generation gWh/yr

2005–06 2010 2020 2050

agricultural related wastes

Poultry 94384000populationAD/RGE - 90 848

P - 207 207

Cattle(feedlots) 870025population AD/RGE;DC/ST - 112 442

Pigs 1801800population AD/RGE 1 22 205

Dairycows 1394000population AD/RGE - 22 89

Abattoirs 1285000t AD/RGE 337 1773

Nutshells - DC/T 1 1

Stubbleresiduesfromgrain and cotton crops

24000000t DC/ST;G/GT;P 47000

Bagasse(sugarcaneresidue)

5000000t DC/ST 1200 3000 4600

Sugarcanetrash,topsandleaves

4000000t DC/ST - 165 3200

energy crops

Algae - AD/RGE;P - -

Oil mallee - DC/ST;G/GT;P 112 484

Woody weeds

Camphorlaurel - DC/ST;G/GT;P 83 20

Forest residues

Nativeforest(public and private)

2200000tAD/RGE;DC/ST;briquettingandpelletising; G/GT;charcoalproduction;Co-firing

79 2442 4554Plantation (public and private)

3800000t

Sawmillandwoodchipresidues

2800000t

Pulp and paper mills wastes

Blackliquor - DC/ST 285 365 365

Woodwaste - DC/ST 60 85 85

Recycledpaperwetwastes - AD/RGE 2 8 8

Paperrecyclingwastes - DC/ST 12 48 48

Urban waste

Food and other organics 2890000tAD/RGE 13 126 565

DC/ST 16 141 189

Garden organics 2250000tP - 37 186

AD/RGE 29 84 275

Paper and cardboard 2310000tDC/ST - - 1548

P - 38 191

Wood/timber 1630000t DC/ST 45 295 1366

Landfillgas 9460000tSparkignitionengine; co-firing;flaring

772 1880 3420

Sewagegas 735454t AD/RGE;DC/ST 57 901 929

AD =anaerobicdigestion;RGE=reciprocatinggasengine;P=pyrolysis;DC=directcombustion;ST=steamturbine;G=gasification; GT=gasturbinesource: CleanEnergyCouncil2008

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

330

environmentalproblemsfromwastedisposal,methaneemissionsandpollutionofwatersupplies.

TheCleanEnergyCouncilestimatedthatthelong-termpotentialforfeedlotcattleandpiggeriesareabout440GWhperyearand200GWhperyear,respectively.However,thereareuncertaintieswithmoisturecontentandsuitabilityforcombustionoranaerobicdigestion.Poultryfarmwasteisestimatedtohavealong-termpotentialintherangeof840GWhperyear.Thisestimatedoesnottakeintoaccountthat some operations may be too small to be viable orthatpoultrymanureisusedforfertiliser.

Inaddition,thereisalsothepotentialofsolidwastesfromabattoirs.TheCleanEnergyCouncilindicatedthatthereareapproximately0.77Mtto1.8Mtperyearofsolidwasteproducedfromabout150abattoirs.Ifby2020,30abattoirsimplementanaerobicdigestioncogenerationplants,these projects have the potential to produce about 340GWhperyear,withalong-termestimateof about1770GWhperyear.

Nativeforestwood waste is assumed to remain relativelyconstant:howeverthepotentialfromplantationwoodwasteshouldincreaseinlinewithplantationexpansion.Australiangovernments,atalllevels,haveestablishedregulatorymechanismsconcerningtheeligibilityforforestwoodwasteforelectricitygenerationinordertomanagethesustainableuseoftheseproducts.

Urban waste,includingfood,garden,urbantimber,paperandcardboardwastes,issteadilygrowingandhassignificantpotentialforenergygeneration.Thedecompositionofthesewastesinlandfillresultsinmethanegeneration,whichisnotappropriatelycapturedandutilised,particularlyinolderandsmallerlandfillsites.In2002–03approximately9.5Mtperyearoforganicurbanwastewassenttolandfill.Thepotentialelectricitygenerationfor9Mtofurbanwasteis103GWh,withalong-termestimateofabout4300GWh(CleanEnergyCouncil2008).

Thereispotentialforgrowthofbiogaspowergenerationfromlandfillsitesandsewagetreatmentplantsinurbanandruralcentresforlocaluse.Convertingbiogastoenergywouldprovidedualbenefitsofenergysupplyandreducedgreenhousegasemissions.Ifthesewastesarenotcollected andusedforbioenergyproduction,thegaswould be flared or vented into the atmosphere.

Thereisanumberofpotentialenergy crops that mayprovidefuelforfuturebioenergyaswellasprovidingenvironmentalbenefits.Theintegrationofcomplementaryenergycropsandwoodyperennialsintoexistingagriculturalsystemsmaybeabletoreduce dryland salinity and land erosion.

TheOilMalleeprojectinWesternAustralia

electricity and heat generationCurrentlyelectricityisgeneratedpredominantlyfrombagasseandlandfillandsewagesitesandtoalesserdegreewoodwaste,pulpandpapermillwaste.TheCleanEnergyCouncil(2008)identifiedsignificantpotentialforgrowthinbioenergyproductionfromwastestreams,suchaslandfillandsewagegasandurbanwaste.

Anappraisalofbioenergyresources,primarilywastestreams,forstationaryenergywasundertakenbytheCleanEnergyCouncilin2008toestimatethepotentialby2020andinthelong-term(2050). Theassessmentisbasedonbiomassquantitiespotentiallyavailablein2005–06.Thebiomassfeedstocksaregroupedintoagriculturalrelatedwastes,energycrops,woodyweeds,forestresidues,pulpandpapermillwastes,andurbanwastes(table12.11).

agricultural related wastes in total are a very large resourcebutcurrentlyarenotusedasfeedstocks.Theresourcesarewidelydispersedandcanhavearangeofalternativeusesincludingcompostingandfeedforanimals.

Thesugarcaneindustry,alreadyoneofthefewindustriesselfsufficientinenergythroughitsuseofbagasse-firedcogeneration,hasthepotentialtoincreaseelectricitygenerationefficiencywithintegratedgasificationcombinedcycletechnologyaswellasbiomassexpansiontoincludesugarcanetrash,topsandleaves.

Cropresiduesfromgrainandcottoncropsareapotentialresource.However,cropscanbesubjecttolargeannualvariationsofquantitiesproducedduetoenvironmentalandclimaticfactors.Anoptiontoreducethevariabilityofresourcesistoprocessawiderangeofbiomassmaterialsuchasresiduesfromgrain,rice,cottoncropsandleft-overplantmatterfromvegetablesandfruits.

Thepotentialestimatedstubbleresiduesthatcanbecollected,takingintoaccountthataproportionofthecropisleftonthelandformaintenanceofsoilhealth,isestimatedtobe24Mtperyear.However,thehighcostoftransportofahighlydispersedresourcemeansthattherewillbelittleornocontributionfromthissectorto2020.Forthissectorto contribute to energy production there needs to be furtherinvestigationofenergyconversionprocesses(e.g.gasificationandpyrolysis)andwaystoreducetransportcosts.Along-termestimateofpotentialenergyis47000GWhperyear(CleanEnergyCouncil2008).

Largescalelivestockfeedlots,piggeries,dairyandpoultryfarmswiththeirmixedwastestreamsofanimalbeddingandmanurearesuitableforgenerating bioenergy. Waste material can be used to produce stationary energy and assist in reducing

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

331

possibilities.Currenttechnologiescanproduce280to560litresofethanolpertonneofbiomassand400litresofbiodieselpertonneofoilseeds.Thesecondgenerationtechnologieswilluseawiderrangeofbiomassfeedstockstoproduceethanol,biodiesel,synfuelandgenerateelectricity.Thatreportestimatedthatapproximately55Mtofstubbleresidue biomass per year can be produced based on20percentofthecurrent45millionhectaresofgrazingandcroppingland,andthatthereispotentiallyabout6tonnesofbiomassperhectareperyear.Thisbiomassresourcecouldproduceapproximately82TWhperyearofelectricityor17GLperyearofsyngasolineandsyndiesel.

12.4.3OutlookforbioenergymarketBioenergyhasthepotentialtomakeagrowingcontributiontoAustralia’senergyuse,andtoelectricitygenerationinparticular.Australia’scurrentbioenergyproductionisprincipallysourcedfromby-productsofproductionprocessesorwasteproducts.Therearestillunder-utilisedwasteproductsthatmaybeusedforbioenergyinthefuture.

InABARE’slatestenergyprojections,whichinclude theRenewableEnergyTarget,a5percentemissionsreductiontarget,andothergovernmentpolicies,bioenergy use in Australia is projected to increase by 60percentto340PJin2029–30,representing anaverageannualgrowthrateof2.2percent (figure12.15).

successfullydemonstratedtheuseofMalleeeucalyptstoproduceeucalyptusoil,activatedcarbonandgenerateelectricity.Woodyweeds,suchasCamphorLaurel,areabundantbuteitherneedresearchintotheirsuitabilityasfeedstock,oraretoodispersed in nature to be economical to harvest.

R&Dintoalgaeisdrawingattentionbecauseofitspotentialhighhydrocarboncontent,highoilyieldsandabilitytobegrowninsalineandwastewater.Algaegrownandharvestedfrompurpose-builtpondsandphotobioreactorshasthepotentialtobeafeedstockforbiofuelsandpowergeneration.

Transport biofuelsFirstgenerationbiofuelsarenotexpectedtomakealargecontributiontoAustralia’sfuturebiofuelssupplyasthereislimitedavailabilityoflowcostfirstgenerationfeedstocks.Secondgenerationtechnologiesmayprovideagreaterrangeofbiomassfeedstocksandpotentialgreenhousegasemissionssavings.Secondgenerationtechnologieswilluselignocellulosicmaterial,specialisedcropssuchasoilmallee,non-foodcomponentsofcropsandalgae.

O’Connelletal.(2009b)estimatedyieldsofbiofuelsandelectricitygenerationfromdifferentfeedstockforthefirstandsecondgenerationtechnologies(table12.12).TheanalysiswasrestrictedtoQueenslandanddidnotprovidespatiallyexplicitanalysisofbiofuelfeedstockproduction.However,itdoesprovideuseful‘firstcut’estimatesofthe

Table 12.12 Estimatedenergyandfuelyieldsfordifferentfeedstocks

Feedstock ethanol L/t Biodiesel L/t synfuel* L/t electricity mWh/t

First generation

Cereals 360

Oilseeds 400

Sugarcane

Molasses 280

Sugar 560

second generation

Cereals 335 246 1.02

Woodwaste 240 246 1.35

Algae 495 0.27

Sugarcane

Whole plant 465 246 0.80

Bagasse 300 246 0.80

Forestry

Sawmillresidues 233 246 1.35

Harvest residues 233 246 1.35

Pulpwood 240 246 1.35

Bioenergyplantations 260 246 1.35

Grasses 323 246 1.02

*Production usinggasification,gasconditionandcleaningfollowedbyFischerTropschsynthesisandrefiningtoproducesyngasolineandsyndieselsource: O’Connelletal.2009b

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

332

Electricity and heat generationThereareseveralproposedbioenergypowerplantsusingarangeofbiomassfeedstocks,suchasanimal,municipalandsawmillandpulpmillwoodwastesandforestryandplantationsresidues.Thereare research projects on methane capture systems fromuncoveredeffluenttreatmentlagoonsandenergygenerationfromintensiveanimalindustriessuchasdairyfarms,beefcattlefeedlotsandpiggeries.

InVictoria,thereisaproposaltousefire-affectedtreeresiduesfrombushfire-affectedareas. TreePowerAustraliahasundertakenafeasibilitystudyfora1MWbiomassfiredOrganicRankineCyclecogenerationpowerplantnearMarysville,Victoria.Thecompanyisconsideringatrigenerationoption,inwhichsome(orall)oftheheatoutputwoulddriveanabsorptionchillerprocessfor cooling outputs.

Transport biofuelsInAugust2009,theAustralianGovernmentannouncedA$15millionfundingforprojectsundertheSecondGenerationBiofuelsResearchandDevelopmentProgramtodemonstratethesustainabledevelopmentofthebiofuelsindustry. Theprojectsincluderesearchingbiofuelfrommicroalgae,developingapilot-scalebiorefineryforsustainablemicroalgalbiofuelsandvalueaddedproducts,investigatingtheproductionofbiofuelsfrommalleebiomassbypyrolysis,developingasugarcanebiomassinputsystemforbiofuelproduction andcommercialdemonstrationoflignocellulosics to stable bio-oil.

RuralIndustriesResearchandDevelopmentCorporation(RIRDC)hasaBioenergy,Bioproductsand Energy program to conduct research into

Australia’slargepotentialbioenergyresources,theRenewableEnergyTargetandthepotentialcommercialisationofsecondgenerationtechnologiesareallexpectedtodriveanincreaseinelectricitygenerationfrombioenergy.However,growthislikelytobeconstrainedtosomeextentbycompetitionforlandandwaterresourcesandlogisticalissuesassociatedwithhandling,transportandstorage.Somesecondgenerationfeedstockssuchasalgaeandsolidbiomasswastesmaysubstantiallyreducetheproblemsassociatedwithlanduseandwaterresources.

Electricitygenerationfrombioenergy(excludingcogeneration) is projected to increase at an average rateof2.3percentperyearfrom2TWhin2007–08to3TWhby2029–30(figure12.16).Morethan60percentoftheprojectedgrowthintheuseofbioenergyforelectricitygenerationisprojectedtooccur in Queensland.

Bioenergy project developmentsAsatOctober2009,therewerethreeprojectsunderdevelopmentinAustralia(table12.14).InTasmania,Gunns Ltd plans to develop a large cogeneration powerplantof200MWcapacityatitsBellBaypulpmill.WABiomassPtyLtdplanstoconstructandoperatea40MWpowerplantfuelledbyupto380000tonnesperyearofplantationwasteinWesternAustralia.NationalBiodieselLtdplansto construct a soybean processing and biodiesel productionfacilityatPortKembla,NewSouthWales.Thefacilitywillprocessoveramilliontonnesofsoybeanperyearintohighqualitysoybiodiesel®,soybeanmeal(animalfeed)andpharmaceuticalgrade vegetable glycerine.

Inaddition,thereisanumberofR&Dprojectsinvestigating bioenergy technologies and biomass potential across Australia.

350

100

150

200

250

300

0

50

0

0.6

1.3

1.9

2.5

3.1

3.8

4.4

5.0

%PJ

1999-00

2000-01

2001-02

2002-03

2003-04

2004-05

2005-06

2006-07

2007-08

2029-30

Year

AERA 12.2

Bioenergyconsumption (PJ)

Share oftotal (%)

0

1

2

3 1.0

0.5

0

AERA 12.3

Bioenergy electricitygeneration (TWh)

Share oftotal (%)

1999-00

2000-01

2001-02

2002-03

2003-04

2004-05

2005-06

2006-07

2007-08

2029-30

Year

TWh

%

Figure 12.15 Projectedprimaryconsumptionofbioenergy

source: ABARE2009a;ABARE2010

Figure 12.16 Projectedelectricitygenerationfrombioenergy

source: ABARE;ABARE2010

CHAPTER 12: BIOENERGY

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

333

12.5ReferencesABARE(AustralianBureauofAgriculturalandResourceEconomics),2009a,Australianenergystatistics,Canberra,August

ABARE,2009b,Electricitygenerationmajordevelopmentprojects—October2009listing,Canberra,November

ABARE,2010,Australianenergyprojectionsto2029–30,ABAREresearchreport10.02,preparedfortheDepartmentofResources,EnergyandTourism,Canberra

BattenDandO’ConnellD,2007,BiofuelsinAustralia:Someeconomicandpolicyconsiderations,RIRDCPublicationNo07/177,RuralIndustriesResearchandDevelopmentCorporationandCSIRO,Canberra

CleanEnergyCouncil,2008,Australianbioenergyroadmapandbiomassresourceappraisal,<http://cleanenergycouncil.org.au/bioenergy/>

CSIRO,2009,NaturalResearchFlagshipsEnergyTransformed,<http://www.csiro.au/org/EnergyTransformedFlagship.html>

EESI(EnvironmentalandEnergyStudyInstitute),2009a,Issuebrief:Biomassco-firing:Atransitiontoalowcarbonfuture,March

EESI,2009b,IssueBrief:Reconsideringmunicipalsolidwasteasarenewableenergyfeedstock,July

EuropeanCommission,2007,BiofuelsintheEuropeanUnion:Anagriculturalperspective,EuropeanCommissionDirectorate-GeneralforAgricultureandRuralDevelopment,Brussels

FAO(FoodandAgricultureOrganizationoftheUnitedNations),2008,Biofuels:prospects,risksandopportunities,TheStateofFoodandAgriculture,Rome

GeoscienceAustralia,2009,RenewableEnergyGeneratorsinAustralia,onbehalfofDepartmentofEnvironment,Water,HeritageandtheArts<http://www.ga.gov.au/renewable>

GrabowskiP,2004,Biomassco-firing:ApresentationtotheDepartmentofEnergyandUnitedStatesDepartmentofAgricultureTechnicalAdvisoryCommittee,11March

HoogwijkM,2006,Globalbiomassavailability:Assumptionandconditions,IEABioenergyExCo58,4October

anddevelopsustainableandprofitablebioenergy

andbioproductsindustries.Researchhasbeen

completedonidentifyinganddevelopingAustralian

nativespeciesasbiofuelcropsandresearchis

inprogressinevaluatingbiodieselpotentialof

Australiannativeplants,Indianmustardseedand

biofuelproductionofgiantreedgrass.RIRDCis

compilingadetailedlistingofprojectscurrently

underwayinAustralia.

TheNationalCollaborativeResearchInfrastructure

Strategy(NCRIS),anAustralianandStategovernment

partnershipisenhancingAustralia’scapacityto

producebiofuelsderivedfromnon-foodbiomass.

NCRISinvolvesthedevelopmentoffiveintegrated

sitestoprovideresearcherswithaccesstoquality

facilities,technologicallyadvancedequipment,and

technicalexpertise.MacquarieUniversity,University

ofSydneyandUniversityofNewSouthWalesare

providingaccesstofacilitiesfortheconversionof

lignocellulosicandmicroalgaebiomasstobiofuels

(ethanolandbiodiesel).Twopilot-scalemanufacturing

facilitiesarealsobeingestablished:

• abiomassbiorefineryatQueenslandUniversity

ofTechnology,fortheconversionoflignocellulosic

biomasstoethanol,ligninandothercommodities

and;

• aphotobioreactorfacilityatSouthAustralian

ResearchandDevelopmentInstituteforthe

demonstrationofmicroalgaebiomassculture

forbiodieselproduction.

TheBiofuelsCooperativeResearchCentre,an

initiativeoftheBioEnergyResearchInstituteat

SouthernCrossUniversityisresearchingnon-food

cropsthatwillgrowwithareducedrelianceonwater,

suchasAustraliannativespecies,whichhavethe

advantageofadaptableformarginalgrowingareas.

Table 12.14 Bioenergydevelopmentprojects,asatOctober2009

Project Company Location status start up Capacity Capital expenditurea$million

BellBayPowerPlant

Gunns Ltd NorthofLaunceston,Tas

On hold due to uncertainty ofpulpmillconstruction

NA 200MW NA

WABiomassPowerPlant

WABiomassPty Ltd

Manjimup,southwestWA

Feasibility study under way

NA 40MW 110

SoybeanProcessing andBiodieselProduction Facility

NationalBiodieselLtd

PortKembla,NSW

Developmentapproval

NA Soybiodiesel®288MLper

year

240

Note: Onlyincludespowergenerationprojectsforwhichgenerationcapacityisproposedtoexceed30MWsource: ABARE2009b

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

334

ofgreenhousegasmitigationandcarbonbiosequestrationopportunitiesfromrurallanduse,ReporttotheQueenslandstategovernment,June,<http://www.csiro.au/resources/carbon-and-rural-land-use-report.html>

O’ConnellD,BattenD,O’ConnorM,MayB,RaisonJ,KeatingB,BeerT,BraidA,HaritosV,BegleyC,PooleM,PoultonP,GrahamS,DunlopM,GrantT,CampbellPandLambD,2007,BiofuelsinAustralia–anoverviewofissuesandprospects,RuralIndustriesResearchandDevelopmentCorporationandCSIRO,Canberra

OilMalleeAssociation,2009,Theoilmalleeproject,Narroginbioenergyplant,accessedDecember2009,<http://oilmallee.org.au/index.html>

REN21,2009,RenewablesGlobalStatusReport:2009Update,Paris<http://www.ren21.net/pdf/RE_GSR_2009_Update.pdf>

SaddlerH,DiesendorfMandDennissR,2004,AcleanenergyfutureforAustralia,EnergyStrategiesfortheCleanEnergyFutureGroup,<http://www.enerstrat.com.au>

StucleyCR,SchuckSM,SimsRE,LarsenPL,TurveyNDandMarineBE,2004,BiomassenergyproductioninAustralia:Status,costsandopportunitiesformajortechnologies,RIRDCPublicationNo04/031,RuralIndustriesResearchandDevelopmentCorporation,BioenergyAustralia,Canberra

TheUniversityofTennessee,2009,OfficeofBioenergyPrograms,Biorefinerygroundbreaking,accessedDecember2009,<http://www.utbioenergy.org/TNBiofuelsInitiative/Biorefinery+Groundbreaking.htm>

WardenACandHaritosVS,2008,FuturebiofuelsforAustralia:Issuesandopportunitiesforconversionofsecondgenerationlignocellulosics,RIRDCPublicationNo8/117,RuralIndustriesResearchandDevelopmentCorporation,Canberra

WildA,2009,BiofuelsandcompetitioninAustralia,CSIRO,accessedOctober2009,<http://www.csiro.au/science/biofuels-and-competition.html>

WorldwatchInstitute,2006,Biofuelsfortransportation:Globalpotentialandimplicationsforenergyandagricultureinthe21stCentury,<http://www.worldwatch.org/publs/biofuels>

IEA(InternationalEnergyAgency),2006a,Energytechnologyperspectives2006,OECD/IEA,Paris

IEA,2006b,Renewableenergy:R&DprioritiesinsightsfromIEAtechnologyprogrammes2006,OECD/IEA,Paris

IEA,2007a,IEAenergytechnologyessentials:BiomassforpowergenerationandCHP,OECD/IEA,Paris,January

IEA,2007b,IEAenergytechnologyessentials:Biofuelsproduction,OECD/IEA,Paris,January

IEA,2008,Energytechnologyperspectives2008,OECD/IEA,Paris

IEA,2009a,Worldenergybalances2009,OECD/IEA,Paris

IEA,2009b,Worldenergyoutlook2009,OECD/IEA,Paris

IEABioenergy,2007,Potentialcontributionofbioenergytotheworld’sfutureenergydemand,OECD/IEA,Paris

IEABioenergy,2008,From1stto2ndgenerationbiofueltechnologies:AnoverviewofcurrentindustryandRD&Dactivities,OECD/IEA,Paris,November

IEABioenergy,2009a,Bioenergy–asustainableandreliableenergysource:Areviewofstatusandprospects,OECD/IEA,Paris

IEABioenergy,2009b,Bioenergy–asustainableandreliableenergysource:Mainreport,OECD/IEA,Paris,December

MassachusettsTechnologyCollaborative,2009,Bioenergytechnologies,<http://www.masstech.org/cleanenergy/biomass/technology.htm>

NationalRenewableEnergyLaboratory,2009,Biomassresearch:Whatisabiorefinery?<http://www.nrel.gov/biomass/biorefinery.html>

O’ConnellD,BraidA,RaisonJ,HandbergK,CowieA,RodriguezLandGeorgeB,2009a,Sustainableproductionofbioenergy;Areviewofglobalbioenergysustainabilityframeworksandassessmentsystems,RIRDCPublicationNo09/167,RuralIndustriesResearchandDevelopmentCorporationandCSIRO,Canberra,November

O’ConnellD,MayB,FarineD,RaisonJ,HerrA,O’ConnorM,CampbellPK,TaylorJ,DunlopM,PooleMandCrawfordD,2009b,Substitutionoffossilfuelswithproductionofbiofuelandbioenergyfromrenewableresources;InEadyS,BattagliaM,GrundyM,andKeatingB,(eds),Ananalysis