Chapter 10 Solar Energy - Solar Energy - Australian ... · PDF fileChapter 10 Solar Energy...

24
AUSTRALIAN ENERGY RESOURCE ASSESSMENT 261 Chapter 10 Solar Energy 10.1 Summary KEY MESSAGES Solar energy is a vast and largely untapped resource. Australia has the highest average solar radiation per square metre of any continent in the world. Solar energy is used mainly in small direct-use applications such as water heating. It accounts for only 0.1 per cent of total primary energy consumption, in Australia as well as globally. Solar energy use in Australia is projected to increase by 5.9 per cent per year to 24 PJ in 2029–30. The outlook for electricity generation from solar energy depends critically on the commercialisation of large-scale solar energy technologies that will reduce investment costs and risks. Government policy settings will continue to be an important factor in the solar energy market outlook. Research, development and demonstration by both the public and private sectors will be crucial in accelerating the development and commercialisation of solar energy in Australia, especially large-scale solar power stations. 10.1.1 World solar energy resources and market The world’s overall solar energy resource potential is around 5.6 gigajoules (GJ) (1.6 megawatt-hours (MWh)) per square metre per year. The highest solar resource potential is in the Red Sea area, including Egypt and Saudi Arabia. Solar energy accounted for 0.1 per cent of world total primary energy consumption in 2007, although its use has increased significantly in recent years. Government policies and falling investment costs and risks are projected to be the main factors underpinning future growth in world solar energy use. The International Energy Agency (IEA) in its reference case projects the share of solar energy in total electricity generation will increase to 1.2 per cent in 2030 – 1.7 per cent in OECD countries and 0.9 per cent in non-OECD countries. 10.1.2 Australia’s solar energy resources The annual solar radiation falling on Australia is approximately 58 million petajoules (PJ), approximately 10 000 times Australia’s annual energy consumption. Solar energy resources are greater in the northwest and centre of Australia, in areas that do not have access to the national electricity grid. Accessing solar energy resources in these areas is likely to require investment in transmission infrastructure (figure 10.1). There are also significant solar energy resources in areas with access to the electricity grid. The solar energy resource (annual solar radiation) in areas of flat topography within 25 km of existing transmission lines (excluding National Parks), is nearly 500 times greater than the annual energy consumption of Australia. 10.1.3 Key factors in utilising Australia’s solar resources Solar radiation is intermittent because of daily and seasonal variations. However, the correlation between solar radiation and daytime peak electricity demand means that solar energy has the potential to provide electricity during peak demand times. Solar thermal technologies can also operate in hybrid systems with fossil fuel power plants, and, with appropriate storage, have the potential to provide base load electricity generation. Solar thermal technologies can also potentially provide electricity to remote townships and mining centres where the cost of alternative electricity sources is high. Photovoltaic systems are well suited to off-grid electricity generation applications, and where costs of electricity generation from other sources are high (such as in remote communities).

Transcript of Chapter 10 Solar Energy - Solar Energy - Australian ... · PDF fileChapter 10 Solar Energy...

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

261

Chapter 10Solar Energy

10.1Summary

K E y m E S S a g E S

• Solarenergyisavastandlargelyuntappedresource.Australiahasthehighestaveragesolarradiationpersquaremetreofanycontinentintheworld.

• Solarenergyisusedmainlyinsmalldirect-useapplicationssuchaswaterheating.Itaccountsforonly0.1percentoftotalprimaryenergyconsumption,inAustraliaaswellasglobally.

• SolarenergyuseinAustraliaisprojectedtoincreaseby5.9percentperyearto24PJin 2029–30.

• Theoutlookforelectricitygenerationfromsolarenergydependscriticallyonthecommercialisationoflarge-scalesolarenergytechnologiesthatwillreduceinvestmentcostsandrisks.

• Governmentpolicysettingswillcontinuetobeanimportantfactorinthesolarenergymarketoutlook.Research,developmentanddemonstrationbyboththepublicandprivatesectorswillbecrucialinacceleratingthedevelopmentandcommercialisationofsolarenergyinAustralia,especiallylarge-scalesolarpowerstations.

10.1.1 World solar energy resources and market • Theworld’soverallsolarenergyresourcepotential

isaround5.6gigajoules(GJ)(1.6megawatt-hours(MWh))persquaremetreperyear.ThehighestsolarresourcepotentialisintheRedSeaarea,includingEgyptandSaudiArabia.

• Solarenergyaccountedfor0.1percentofworldtotalprimaryenergyconsumptionin2007,althoughitsusehasincreasedsignificantlyinrecentyears.

• Governmentpoliciesandfallinginvestment costsandrisksareprojectedtobethemainfactorsunderpinningfuturegrowthinworld solar energy use.

• TheInternationalEnergyAgency(IEA)initsreferencecaseprojectstheshareofsolarenergyintotalelectricitygenerationwillincreaseto1.2percentin2030–1.7percentinOECDcountriesand0.9percentinnon-OECDcountries.

10.1.2Australia’ssolarenergyresources• TheannualsolarradiationfallingonAustralia

isapproximately58millionpetajoules(PJ),approximately10000timesAustralia’sannualenergyconsumption.

• SolarenergyresourcesaregreaterinthenorthwestandcentreofAustralia,inareasthatdonothaveaccesstothenationalelectricitygrid.Accessingsolarenergyresourcesintheseareas

islikelytorequireinvestmentintransmissioninfrastructure(figure10.1).

• Therearealsosignificantsolarenergyresourcesinareaswithaccesstotheelectricitygrid.Thesolarenergyresource(annualsolarradiation)inareasofflattopographywithin25kmofexistingtransmissionlines(excludingNationalParks),isnearly500timesgreaterthantheannualenergyconsumptionofAustralia.

10.1.3KeyfactorsinutilisingAustralia’s solar resources• Solarradiationisintermittentbecauseofdaily

andseasonalvariations.However,thecorrelationbetweensolarradiationanddaytimepeakelectricitydemandmeansthatsolarenergyhasthepotentialtoprovideelectricityduringpeakdemandtimes.

• Solarthermaltechnologiescanalsooperateinhybridsystemswithfossilfuelpowerplants,and,withappropriatestorage,havethepotentialtoprovidebaseloadelectricitygeneration.Solarthermaltechnologiescanalsopotentiallyprovideelectricitytoremotetownshipsandminingcentreswherethecostofalternativeelectricitysourcesishigh.

• Photovoltaicsystemsarewellsuitedtooff-gridelectricitygenerationapplications,andwherecostsofelectricitygenerationfromothersourcesarehigh(suchasinremotecommunities).

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

262

DARWIN

BRISBANE

PERTH

ADELAIDE SYDNEY

MELBOURNE

HOBART

150°140°130°120°

10°

20°

30°

40°

AERA 10.1

Annual Average Solar Radiation

0 750 km

Existing solar power> 100 kW

1000 - 2000 kW

Transmission lines

100 - 300 kW300 - 600 kW

600 - 1000 kW

Megajoules/m² per day

12

13

14

15

16

17

18

19

20

21

22

24

Figure 10.1 Annualaveragesolarradiation(inMJ/m2)andcurrentlyinstalledsolarpowerstationswithacapacity ofmorethan10kW

Source: BureauofMeteorology2009;GeoscienceAustralia

• Relativelyhighcapitalcostsandrisksremaintheprimarylimitationtomorewidespreaduseofsolarenergy.Governmentclimatechangepolicies,andresearch,developmentanddemonstration(RD&D)byboththepublicandprivatesectorswillbecriticalinthefuturecommercialisationoflargescalesolarenergysystemsforelectricitygeneration.

• TheAustralianGovernmenthasestablishedaSolarFlagshipsProgramatacostof$1.5billionaspartofitsCleanEnergyInitiativetosupporttheconstructionanddemonstrationoflargescale(upto1000MW)solarpowerstationsinAustralia.

10.1.4Australia’ssolarenergymarket• In2007–08,Australia’ssolarenergyuse

represented0.1percentofAustralia’stotalprimaryenergyconsumption.Solarthermalwaterheatinghasbeenthepredominantformofsolarenergyusetodate,butelectricitygenerationis increasingthroughthedeploymentofphotovoltaic

andconcentratingsolarthermaltechnologies.

• InABARE’slatestlong-termenergyprojections,

whichincludetheRenewableEnergyTarget,a5

percentemissionsreductiontarget,andother

governmentpolicies,solarenergyuseinAustralia

isprojectedtoincreasefrom7PJin2007–08

to24PJin2029–30(figure10.2).Electricity

generationfromsolarenergyisprojectedto

increasefrom0.1TWhin2007–08to4TWhin

2029–30(figure10.3).

10.2Backgroundinformationandworldmarket

10.2.1DefinitionsSolarpowerisgeneratedwhenenergyfromthesun

(sunlight)isconvertedintoelectricityorusedtoheatair,

water,orotherfluids.Asillustratedinfigure10.4,there

aretwomaintypesofsolarenergytechnologies:

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

263

CHAPTER 10: SOLAR ENERGY

• Solar thermalistheconversionofsolarradiationintothermalenergy(heat).Thermalenergycarriedbyair,water,orotherfluidiscommonlyuseddirectly,forspaceheating,ortogenerateelectricityusingsteamandturbines.Solarthermaliscommonlyusedforhotwatersystems.Solarthermalelectricity,alsoknownasconcentratingsolarpower,istypicallydesignedforlargescalepowergeneration.

• Solar photovoltaic (PV)convertssunlight directlyintoelectricityusingphotovoltaiccells.PVsystemscanbeinstalledonrooftops,integratedintobuildingdesigns andvehicles,orscaleduptomegawatt scalepowerplants.PVsystemscanalsobeusedinconjunctionwithconcentratingmirrorsorlensesforlargescalecentralisedpower.

24

20

16

12

8

4

0

0.30

0.25

0.20

PJ 0.15 %

0.10

0.05

0

Solar energy consumption (PJ)

Share of total (%)

1999- 2000- 2001- 2002- 2003- 2004- 2005- 2006- 2007- 2029-00 01 02 03 04 05 06 07 08 30

YearAERA 10.2

Figure 10.2 ProjectedprimaryconsumptionofsolarenergyinAustralia

Source: ABARE2009a,2010

%

AERA 10.3

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

1.1

0.9

0.8

0.6

0.5

0.3

0.2

01999-

002000-

012001-

022002-

032003-

042004-

052005-

062006-

072007-

08

TWh

2029-30

Solar electricity generation (TWh)

Share of total (%)

Year

Figure 10.3 ProjectedelectricitygenerationfromsolarenergyinAustralia

Source: ABARE2009a,2010

Electricity

Solar Radiation

Photovoltaics (PV) Solar ThermalSolar cells, photovoltaic arrays Heat exchange

Solar Hot WaterConcentrating Solar ThermalParabolic trough, power tower,parabolic dish, fresnel reflector

AERA 10.4

Process HeatSpace heating, food processing

and cooking, distillation,desalination, industrial

hot water

Figure 10.4 SolarenergyflowsSource: ABAREandGeoscienceAustralia

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

264

SolarthermalandPVtechnologycanalsobecombinedintoasinglesystemthatgeneratesbothheatandelectricity.FurtherinformationonsolarthermalandPVtechnologiesisprovidedinboxes10.2and10.3insection10.4.

10.2.2SolarenergysupplychainArepresentationoftheAustraliansolarindustryisgiveninfigure10.5.Thepotentialforusingsolarenergyatagivenlocationdependslargelyonthesolarradiation,theproximitytoelectricityloadcentres,andtheavailabilityofsuitablesites.Largescalesolarpowerplantsrequireapproximately2hectaresoflandperMWofpower.Smallscaletechnologies(solarwaterheaters,PVmodulesandsmall-scalesolarconcentrators)canbeinstalledonexistingstructures,suchasrooftops.Onceasolarprojectisdeveloped,theenergyiscapturedbyheatingafluidorgasorbyusingphotovoltaiccells.Thisenergycanbeuseddirectlyashotwatersupply,convertedtoelectricity,usedasprocessheat,orstoredbyvariousmeans,suchasthermalstorage,batteries,pumpedhydroorsynthesisedfuels.

10.2.3WorldsolarenergymarketTheworldhaslargesolarenergyresourceswhichhavenotbeengreatlyutilisedtodate.Solarenergycurrentlyaccountsforaverysmallshareofworldprimaryenergyconsumption,butitsuseisprojectedtoincreasestronglyovertheoutlookperiodto2030.

ThehighestsolarresourcepotentialperunitlandareaisintheRedSeaarea.Australiaalsohashigherincidentsolarenergyperunitlandareathananyothercontinentintheworld.However,thedistributionofsolarenergyuseamongstcountriesreflectsgovernmentpolicysettingsthatencourageitsuse,ratherthanresourceavailability.

World solar resourcesTheamountofsolarenergyincidentontheworld’slandareafarexceedstotalworldenergydemand.Solarenergythushasthepotentialtomakeamajorcontributiontotheworld’senergyneeds.However,largescalesolarenergyproductioniscurrentlylimitedbyitshighcapitalcost.

Theannualsolarresourcevariesconsiderably aroundtheworld.Thesevariationsdependon severalfactors,includingproximitytotheequator,cloudcover,andotheratmosphericeffects. Figure10.6illustratesthevariationsinsolar energyavailability.

TheEarth’ssurface,onaverage,hasthepotentialtocapturearound5.4GJ(1.5MWh)ofsolarenergypersquaremetreayear(WEC2007).ThehighestresourcepotentialisintheRedSeaarea,includingEgyptandSaudiArabia(figure10.6).AustraliaandtheUnitedStatesalsohaveagreatersolarresourcepotentialthantheworldaverage.Muchofthispotentialcanbeexplainedbyproximitytotheequatorandaverageannualweatherpatterns.

Development and Processing, Transport,Resource Exploration End Use Market

Production Storage

Industry

Solar photovoltaic

Electricity

Solar collection Thermalstorage

CommercialPower plants

Resource potentialSolar thermal Electricity

Water heating Residential

AERA 10.5

Batterystorage

Developmentdecision

Figure 10.5 Australia’ssolarenergysupplychainSource: ABAREandGeoscienceAustralia

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

265

CHAPTER 10: SOLAR ENERGY

Primary energy consumptionSincesolarenergycannotcurrentlybestoredformorethanseveralhours,nortradedinitsprimaryform,solarenergyconsumptionisequaltosolarenergyproduction.Longtermstorageofsolarenergyiscurrentlyundergoingresearchanddevelopment,buthasnotyetreachedcommercialstatus.

SolarenergycontributesonlyasmallproportiontoAustralia’sprimaryenergyneeds,althoughitsshareiscomparabletotheworldaverage.Whilesolar energyaccountsforonlyaround0.1percentofworldprimaryenergyconsumption,itsusehasbeen

increasingatanaveragerateof10percentperyearfrom2000to2007(table10.1).Increasedconcernwithenvironmentalissuessurroundingfossilfuels,coupledwithgovernmentpoliciesthatencouragesolarenergyuse,havedrivenincreaseduptakeofsolartechnologies,especiallyPV.

From1985to1989,worldsolarenergyconsumptionincreasedatanaveragerateof19percentperyear(figure10.7).From1990to1998,therateofgrowthinsolarenergyconsumptiondecreasedto5percentperyear,beforeincreasingstronglyagainfrom1999to2007(figure10.7).

AERA 10.6

Nil

1.0 - 1.9

2.0 - 2.9

3.0 - 3.9

4.0 - 4.9

5.0 - 5.90 5000 km6.0 - 6.9

120°W 60°W 0° 60°E 120°E

60°N

Hours ofsunlightper day 30°N

30°S

Figure 10.6 Hoursofsunlightperday,duringtheworstmonthoftheyearonanoptimallytiltedsurfaceSource: SunwizeTechnologies2008

Table 10.1 Keystatisticsforthesolarenergymarket

unit australia OECD World 2007–08 2008 2007

Primary energy consumptiona PJ 6.9 189.4 401.8

Shareoftotal % 0.12 0.09 0.08

Averageannualgrowth,from2000 % 7.2 4.3 9.6

Electricity generation

Electricityoutput TWh 0.1 8.2 4.8

Shareoftotal % 0.04 0.08 0.02

Averageannualgrowth,from2000 % 26.1 36.3 30.8

Electricitycapacity GW 0.1 8.3 14.7

a Energyproductionandprimaryenergyconsumptionareidentical Source:IEA2009b;ABARE2009a;Watt2009;EPIA2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

266

Themajorityofsolarenergyisproducedusing solarthermaltechnology;solarthermalcomprised 96percentoftotalsolarenergyproductionin 2007(figure10.7).Aroundhalfisusedforwaterheatingintheresidentialsector.Mostof

theremainderisusedforspaceheatingeitherresidentiallyorcommercially,andforheatingswimmingpools.Alloftheenergyusedfor thesepurposesiscollectedusingsolarthermaltechnology.

400

350

300

250

PJ

200

150

100

50

01985 1988 1991 1994 1997 2000 2003 2006

Year

PJ

Solar thermal

AERA 10.7

450

Figure 10.7 Worldprimarysolarenergyconsumption, bytechnology

Source: IEA2009b

1985 1988 1991 1994 1997 2000 2003 2006

YearAERA 10.9

TWh

2.0

1.0

0

5.0

4.0

3.0

PV

Solar thermal

Figure 10.9 Worldelectricitygenerationfromsolarenergy,bytechnology

Source: IEA2009b

Australia

Japan

Brazil

China

Israel

Turkey

Germany

Greece

India

China

Israel

Japan

Turkey

Germany

Greece

Australia

India

Brazil

0

PJ50 100 150 200

%0

United States

United States

AERA 10.8

1 2 3 4

a) Solar thermal use

b) Share in primary energy consumption

Figure 10.8 Directuseofsolarthermalenergy, bycountry,2007

Source: IEA2009b

0 1 2 3 4

TWh

0%

a) Solar electricity generation

Germany

United States

Spain

ChinaRepublic of

KoreaItaly

Netherlands

Switzerland

Canada

Portugal

Australia

b) Share in total electricity generation

Germany

United States

Spain

ChinaRepublic of

KoreaItaly

Netherlands

Switzerland

Canada

Portugal

Australia AERA 10.10

0.2 0.4 0.6

Figure 10.10 Electricitygenerationfromsolarenergy,majorcountries,2007

Source: IEA2009b

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

267

CHAPTER 10: SOLAR ENERGY

Solar thermal energy consumptionThelargestusersofsolarthermalenergyin2007wereChina(180PJ),theUnitedStates(62PJ),Israel(31PJ)andJapan(23PJ).However,Israelhasasignificantlylargershareofsolarthermalinitstotalprimaryenergyconsumptionthananyothercountry(figure10.8).Growthinsolarthermalenergyuseinthesecountrieshasbeenlargelydrivenbygovernmentpolicies.

Electricity generationElectricitygenerationaccountsforaround5percentofprimaryconsumptionofsolarenergy.Allsolarphotovoltaicenergyiselectricity,whilearound

3percentofsolarthermalenergyisconvertedtoelectricity.Until2003,moresolarthermalenergywasusedtogenerateelectricitythansolarphotovoltaicenergy(figure10.9).

Thelargestproducersofelectricityfromsolar energyin2007wereGermany(3.1TWh),theUnitedStates(0.7TWh)andSpain(0.5TWh),withallothercountrieseachproducing0.1TWhorless(figure10.10).Germanyhadthelargestshareofsolarenergyinelectricitygeneration,at0.5percent.Itisimportanttonotethattheseelectricitygenerationdatadonotincludeoff-gridPVinstallations,whichrepresentalargepartofPVuseinsomecountries.

Table 10.2 IEAreferencecaseprojectionsforworldsolarelectricitygeneration

unit 2007 2030

OECD TWh 4.60 220

Shareoftotal % 0.05 1.66

Averageannualgrowth,2007–2030 % - 18

Non-OECD TWh 0.18 182

Shareoftotal % 0.00 0.86

Averageannualgrowth,2007–2030 % - 35

World TWh 4.79 402

Shareoftotal % 0.02 1.17

Averageannualgrowth,2007–2030 % - 21

Source: IEA2009a

8000

7000

6000

5000

Peak

cap

acity

(MW

)

4000

3000

2000

1000

9000 8

7

6

5

4

3

% s

hare

of s

olar

PV

mar

ket

2

1

001992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

AERA 10.11

2007Year

Other

Spain Japan

United States Germany

Australia’s share ofsolar PV market (%)

Figure 10.11 WorldPVCapacity,1992–2007,includingoff-gridinstallationsSource: IEA-PVPS2008

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

268

Installed PV generation capacityTheIEA’sestimatesoftotalPVelectricitygenerationcapacity(includingoff-gridgeneration)showthatJapan(1.9GW)andtheUnitedStates(0.8GW)hadthesecondandthirdlargestPVcapacityin2007,followingGermanywith3.9GW(figure10.11).Over90percentofthiscapacitywasconnectedtogrids(WEC2009).

World market outlookGovernmentincentives,fallingproductioncostsandrisingelectricitygenerationpricesareprojectedtoresultinincreasesinsolarelectricitygeneration.Electricitygenerationfromsolarenergyisprojected toincreaseto402TWhby2030,growingatanaveragerateof21percentperyeartoaccountfor1.2percentoftotalgeneration(table10.2).Solarelectricityisprojectedtoincreasemoresignificantlyinnon-OECDcountriesthaninOECDcountries,albeitfromamuchsmallerbase.

PVsystemsinstalledinbuildingsareprojectedtobethemainsourceofgrowthinsolarelectricitygenerationto2030.PVelectricityisprojectedto

increasetoalmost280TWhin2030,while electricitygeneratedfromconcentratingsolar powersystemsisprojectedtoincreasetoalmost124TWhby2030(IEA2009a).

10.3Australia’ssolarenergyresources and market

10.3.1SolarresourcesAsalreadynoted,theAustraliancontinenthasthehighestsolarradiationpersquaremetreofanycontinent(IEA2003);however,theregionswiththehighestradiationaredesertsinthenorthwestandcentreofthecontinent(figure10.12).

Australiareceivesanaverageof58millionPJofsolarradiationperyear(BoM2009),approximately10000timeslargerthanitstotalenergyconsumptionof5772PJin2007–08(ABARE2009a).Theoretically,then,ifonly0.1percentoftheincomingradiationcouldbeconvertedintousableenergyatanefficiencyof10percent,allofAustralia’senergyneedscouldbesuppliedbysolarenergy.Similarly,theenergyfallingonasolar

DARWIN

BRISBANE

PERTH

ADELAIDE SYDNEY

MELBOURNE

HOBART

150°140°130°120°

10°

20°

30°

40°

AERA 10.12

Annual Average Solar Radiation

0 750 km

Megajoules/m² per day

3 Transmission lines

4 - 6

7 - 9

10 - 12

13 - 15

16 - 18

19 - 21

22 - 24

25 - 27

28 - 30

31 - 33

Figure 10.12 AnnualaveragesolarradiationSource: BureauofMeteorology2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

269

CHAPTER 10: SOLAR ENERGY

farmcovering50kmby50kmwouldbesufficienttomeetallofAustralia’selectricityneeds(Stein2009a).Giventhisvastandlargelyuntappedresource,thechallengeistofindeffectiveandacceptablewaysofexploitingit.

WhiletheareasofhighestsolarradiationinAustraliaaretypicallylocatedinland,therearesomegrid-connectedareasthathaverelativelyhighsolarradiation.WyldGroupandMMA(2008)identifiedanumberoflocationsthataresuitableforsolarthermalpowerplants,basedonhighsolarradiationlevels,proximitytolocalloads,andhighelectricitycostsfromalternativesources.WithintheNationalElectricityMarket(NEM)gridcatchmentarea,theyidentifiedthePortAugustaregioninSouthAustralia,north-westVictoria,andcentralandnorth-westNewSouthWalesasregionsofhighpotentialforsolarthermalpower.TheyalsonominatedKalbarri,nearGeraldton,WesternAustralia,ontheSouth-WestInterconnectedSystem,theDarwin-KatherineInterconnectedSystem,andAliceSprings-TennantCreekaslocationsofhighpotentialforsolar thermalpower.

Concentrating solar powerFigure10.12showstheradiationfallingonaflatplane.ThisistheappropriatemeasureofradiationforflatplatePVandsolarthermalheatingsystems,butnotforconcentratingsystems.Forconcentratingsolarpower,includingbothsolarthermalpowerandconcentratingPV,theDirectNormalIrradiance(DNI)isamorerelevantmeasureofthesolarresource.Thisisbecauseconcentratingsolartechnologiescanonlyfocussunlightcomingfromonedirection,andusetrackingmechanismstoaligntheircollectorswiththedirectionofthesun.TheonlydatasetcurrentlyavailableforDNIthatcoversallofAustraliaisfromtheSurfaceMeteorologyandSolarEnergydatasetfromtheNationalAeronauticsandSpaceAdministration(NASA).ThisdatasetprovidesDNIatacoarseresolutionof1degree,equatingtoagridlengthofapproximately100km.TheannualaverageDNIfromthisdatasetisshowninfigure10.13.

Sincethegridcellsizeisaround10000km2,thisdatasetprovidesonlyafirstorderindicationoftheDNIacrossbroadregionsofAustralia.However,itisadequatetodemonstratethatthespatialdistribution

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

150°140°130°120°

10°

20°

30°

40°

AERA 10.13

Direct Normal Irradiance0 750 km

Megajoules/m² per day

3

4 - 6

7 - 9

10 - 12

13 - 15

16 - 18

19 - 21

22 - 24

25 - 27

28 - 30

31 - 33

Figure 10.13 DirectNormalSolarIrradianceSource: NASA2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

270

ofDNIdiffersfromthatofthetotalradiationshowninfigure10.12.Inparticular,thereareareasofhighDNIincentralNewSouthWalesandcoastalregionsofWesternAustraliathatarelessevidentinthetotalradiation.MoredetailedmappingofDNIacrossAustraliaisneededtoassessthepotential forconcentratingsolarpoweratalocalscale.

Sometypesofsolarthermalpowerplants,includingparabolictroughsandFresnelreflectors,needto beconstructedonflatland.Itisestimatedthat about2hectaresoflandarerequiredperMWofpowerproduced(Stein2009a).Figure10.14showssolarradiation,wherelandwithaslopeofgreaterthan1percent,andlandfurtherthan25kmfromexistingtransmissionlineshasbeenexcluded. LandwithinNationalParkshasalsobeenexcluded.Theseexclusionthresholdsofslopeanddistancetogridarenotpreciselimitsbutintendedtobeindicativeonly.Evenwiththeselimits,theannualradiationfallingonthecolouredareasinfigure10.14is2.7millionPJ,whichamountstonearly500timestheannualenergydemandofAustralia.Moreover,

powertowers,dishesandPVsystemsarenotrestrictedtoflatland,whichrenderseventhisfigureaconservativeestimate.

Seasonal variations in resource availabilityTherearealsosignificantseasonalvariationsintheamountofsolarradiationreachingAustralia.WhilesummerradiationlevelsaregenerallyveryhighacrossallofinlandAustralia,winterradiationhasamuchstrongerdependenceonlatitude.Figures10.15and10.16showacomparisonoftheDecemberandJuneaveragedailysolarradiation.Thesamecolourschemehasbeenusedthroughoutfigures10.12to10.16toallowvisualcomparisonoftheamountofradiationineachfigure.

Insomestates,suchasVictoria,SouthAustralia andQueensland,theseasonalvariationinsolarradiationcorrelateswithaseasonalvariationinelectricitydemand.Thesesummerpeakdemandperiods–causedbyair-conditioningloads–coincidewiththehoursthatthesolarresourceisatitsmostabundant.However,thetotaldemandacrosstheNationalElectricityMarket(comprisingallofthe

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

150°140°130°120°

10°

20°

30°

40°

AERA 10.14

Annual Average Solar Radiation(Slope < 1%)

0 750 km

Megajoules/m² per day

3

Transmission lines

4 - 6

7 - 9

10 - 12

13 - 15

16 - 18

19 - 21

22 - 24

25 - 27

28 - 30

31 - 33

Figure 10.14 Annualsolarradiation,excludinglandwithaslopeofgreaterthan1percentandareasfurther than25kmfromexistingtransmissionlines

Source: BureauofMeteorology2009;GeoscienceAustralia

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

271

CHAPTER 10: SOLAR ENERGY

easternstates,SouthAustraliaandTasmania)isrelativelyconstantthroughouttheyear,andoccasionallypeaksinwinterduetoheatingloads(AER2009).

10.3.2SolarenergymarketAustralia’smodestproductionanduseofsolarenergyisfocussedonoff-gridandresidentialinstallations.Whilesolarthermalwaterheatinghasbeenthepredominantformofsolarenergyusetodate,productionofelectricityfromPVandconcentrating

solarthermaltechnologiesisincreasing.

Primary energy consumptionAustralia’sprimaryenergyconsumptionofsolarenergyaccountedfor2.4percentofallrenewableenergyuseandaround0.1percentofprimaryenergyconsumptionin2007–08(ABARE2009a).Productionandconsumptionofsolarenergyarethesame,becausesolarenergycanonlybestoredforseveralhoursatpresent.

Overtheperiodfrom1999–2000to2007–08,Australia’ssolarenergyuseincreasedatanaveragerateof7.2percentperyear.However,asillustrated

infigure10.17,thegrowthratewasnotconstant;therewasconsiderablevariationfromyeartoyear.Thebulkofgrowthoverthisperiodwasintheformofsolarthermalsystemsusedfordomesticwaterheating.PVisalsousedtoproduceasmallamountofelectricity.Intotal,Australia’ssolarenergyconsumptionin2007–08was6.9PJ(1.9TWh),ofwhich6.5PJ(1.8TWh)wereusedforwaterheating(ABARE2009a).

Consumption of solar thermal energy, by stateStatisticsonPVenergyconsumptionbystatearenotavailable.However,PVrepresentsonly5.8percentoftotalsolarenergyconsumption;onthatbasis,statisticsonsolarthermalconsumptionbystateprovideareasonableapproximationofthedistributionoftotalsolarenergyconsumption.

WesternAustraliahasthehighestsolarenergyconsumptioninAustralia,contributing40percentofAustralia’stotalsolarthermalusein2007–08(figure10.18).NewSouthWalesandQueenslandcontributedanother26percentand15percentrespectively.Therateofgrowthofsolarenergyuse

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

150°140°130°120°

10°

20°

30°

40°

AERA 10.15

December Average SolarRadiation

0 750 km

Megajoules/m² per day

3

4 - 6

7 - 9

10 - 12

13 - 15

16 - 18

19 - 21

22 - 24

25 - 27

28 - 30

31 - 33

Figure 10.15 DecemberaveragesolarradiationSource: BureauofMeteorology2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

272

DARWIN

BRISBANE

PERTH

SYDNEYADELAIDE

MELBOURNE

HOBART

150°140°130°120°

10°

20°

30°

40°

AERA 10.16

June Average Solar Radiation

0 750 km

Megajoules/m² per day

3

4 - 6

7 - 9

10 - 12

13 - 15

16 - 18

19 - 21

22 - 24

25 - 27

28 - 30

31 - 33

Figure 10.16 JuneaveragesolarradiationSource: BureauofMeteorology2009

7

6

5

4

PJ

3

2

1

0

PV

Solar thermal

1974-75 1977-78 1980-81 1983-84 1986-87 1989-90 1992-93 1995-96 1998-99 2001-02 2004-05 2007-08

YearAERA 10.17

Figure 10.17 Australia’sprimaryconsumptionofsolarenergy,bytechnologySource: IEA2009b;ABARE2009a

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

273

CHAPTER 10: SOLAR ENERGY

overthepastdecadehasbeensimilarinallstatesandterritories,rangingfromanaverageannualgrowthof7percentintheNorthernTerritoryandVictoria,toanaverageannualgrowthof11percentinNewSouthWales.

ArangeofgovernmentpolicysettingsfrombothAustralianandStategovernmentshaveresultedinasignificantincreaseintheuptakeofsmall-scalesolarhotwatersystemsinAustralia.Thecombinationofdrivers,includingthesolarhotwaterrebate,statebuildingcodes,theinclusionofsolarhotwaterundertheRenewableEnergyTargetandthemandatedphase-outofelectrichotwaterby2012,haveallcontributedtotheincreaseduptakeofsolarhotwatersystemsfrom7percentoftotalhotwatersysteminstallationsin2007to13percentin2008(BISShrapnel2008;ABARE2009a).

Electricity generationElectricitygenerationfromsolarenergyinAustraliaiscurrentlyalmostentirelysourcedfromPVinstallations,primarilyfromsmalloff-gridsystems.Electricitygenerationfromsolarthermalsystemsiscurrentlylimitedtosmallpilotprojects,althoughinterestinsolarthermalsystemsforlargescaleelectricitygenerationisincreasing.

Somecareinanalysisofgenerationdatainenergystatisticsiswarranted.Forenergyaccountingpurposes,thefuelinputstoasolarenergysystemareassumedtoequaltheenergygeneratedbythesolarsystem.Thus,thesolarelectricityfuelinputs inenergystatisticsrepresentthesolarenergycapturedbysolarenergysystems,ratherthanthesignificantlylargermeasureoftotalsolarradiationfallingonsolarenergysystems;howeverthisradiationisnotmeasuredinenergystatistics.Fossilfuelssuchasgasandcoalaremeasuredinterms

ofboththeirthermalfuelinput,andtheirelectricaloutput.Theresultofthisdifferencebetweenfuelinputsandenergyoutputforfossilfuelsisthatsolarrepresentsalargershareofelectricitygenerationoutputthanoffuelinputstoelectricitygeneration.

In2007–08,0.11TWh(0.4PJ)ofelectricityweregeneratedfromsolarenergy,representing0.04percentofAustralianelectricitygeneration(figure10.19).Despiteitssmallshare,solarelectricitygenerationhasincreasedrapidlyinrecentyears.

Installed electricity generation capacityAustralia’stotalPVcapacityhasincreasedsignificantlyoverthelastdecade(figure10.20),andinparticularoverthelasttwoyears.ThishasbeendrivenprimarilybytheSolarHomesandCommunitiesPlanforon-gridapplicationsandtheRemoteRenewablePowerGenerationProgramforoff-gridapplications.Overthelasttwoyears,therehasbeenadramaticincreaseinthetake-upofsmallscalePV,withmorethan40MWinstalledin2009(figures10.20,10.23).Thisisduetoacombinationoffactors:supportprovidedthroughtheSolarHomesandCommunitiesprogram,greaterpublicawarenessofsolarPV,adropinthepriceofPVsystems,attributablebothtogreaterinternationalcompetitionamonganincreasednumberofsuppliersandadecreaseinworldwidedemandasaresultoftheglobalfinancialcrisis,astrongAustraliandollar,andhighlyeffectivemarketingbyPVretailers.

MostAustralianstatesandterritorieshaveinplace,orareplanningtoimplement,feed-intariffs.Whilethereissomecorrelationoftheirintroductionwithincreasedconsumeruptake,itistooearlytosuggestthatthesetariffshavebeensignificantcontributorstoit.Thecombinationofgovernmentpolicies,associatedpublicandprivateinvestmentinRD&Dmeasuresandbroadermarketconditionsarelikelytobethemaininfluences.

WesternVictoriaAustralia

6%40%

Queensland15%

Tasmania2%

NorthernSouth Territory

Australia 3%8%

New SouthWales26%

AERA 10.18

Figure 10.18 Solarthermalenergyconsumption, bystate,2007–08

Source: ABARE2009a

0.0

0.10 0.0

0.08 0.0

hTW 0.06 0.03 %

0.04 0.0

0.02 0.0

0 01992-93 1995-96 1998-99 2001-02 2004-05 2007-08

Year

Solar electricity generation (TWh)

Share of total electricity generation (%)AERA 10.19

0.12 6

5

4

2

1

Figure 10.19 Australianelectricitygenerationfrom solar energy

Source: ABARE

TWh

0.12

0.10

0

0.02

0.04

0.06

0.08

%

0.06

0.04

0.03

0.02

0.01

0

0.05

1992-93 1995-96 1998-99 2001-02 2004-05 2007-08

Year

Solar electricity generation (TWh)

Share of total electricity generation (%)AERA 10.19

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

274

120

100

80

Peak

cap

acity

(MW

)

60

40

20

01992 1993 1994 1995 1996 2006200520042003200220012000

Year199919981997 2008

AERA 10.20

2007

Grid distributed

Diesel grids

Grid centralised

Off gridnon-domestic

Off grid domestic

Figure 10.20 PVinstalledcapacityfrom1992–2008Note: TheseestimatesrepresentthepeakpoweroutputofPVsystems.Theydonotrepresenttheaveragepoweroutputoverayear,assolarradiationvariesaccordingtofactorssuchasthetimeofday,thenumberofdaylighthours,theangleofthesunandthecloudcover.ThesecapacityestimatesareconsistentwiththePVproductiondatapresentedinthisreport

Source: Watt2009

Thelargestcomponentofinstalledsolarelectricitycapacityisusedforoff-gridindustrialandagriculturalpurposes(41MW),withsignificantcontributionscomingfromoff-gridresidentialsystems(31MW),andgridconnecteddistributedsystems(30MW).Thislargeoff-gridusagereflectsthecapacityofPVsystemstobeusedasstand-alonegeneratingsystems,particularlyforsmallscaleapplications.Therehavealsobeenseveralcommercialsolarprojectsthatprovideelectricitytothegrid.

Recently completed solar projectsFivecommercial-scalesolarprojectswithacombinedcapacityofaround5MWhavebeencommissionedinAustraliasince1998(table10.3).AlloftheseprojectsarelocatedinNewSouthWales.Commissionedsolarprojectstodatehavehadsmallcapacitieswithfourofthefiveprojectscommissionedhavingacapacityoflessthanorequalto1MW.Theonlyprojecttohaveacapacityofmorethan1MW

isAusra’s2008solarthermalattachmenttoLiddellpowerplant,whichhasapeakelectricpowercapacityof2MW(Ausra2009).Whilesomewhatlargerthanthemorecommondomesticorcommercialinstallations,thesearemodestly-sizedplants.However,thereareplansforconstructionofseverallargescalesolarpowerplantsundertheAustralianGovernment’sSolarFlagshipsProgram,whichwill usebothsolarthermalandPVtechnologies.

10.4Outlookto2030forAustralia’sresourcesandmarketSolarenergyisarenewableresource:increaseduseoftheresourcedoesnotaffectresourceavailability.However,thequantityoftheresourcethatcanbeeconomicallycapturedchangesovertimethroughtechnologicaldevelopments.

TheoutlookfortheAustraliansolarmarket dependsonthecostofsolarenergyrelativetootherenergyresources.Atpresent,solarenergyismoreexpensiveforelectricitygenerationthanothercurrentlyusedrenewableenergysources,suchashydro,wind,biomassandbiogas.Therefore,theoutlookforincreasedsolarenergyuptakedependsonfactorsthatwillreduceitscostsrelativetootherrenewablefuels.Thecompetitivenessofsolarenergyandrenewableenergysourcesgenerallywillalsodependongovernmentpoliciesaimedatreducinggreenhousegasemissions.

Solarenergyislikelytobeaneconomicallyattractiveoptionforremoteoff-gridelectricitygeneration.Thelong-termcompetitivenessofsolarenergyinlarge-

Table 10.3 Recentlycompletedsolarprojects

Project Company State Start up Capacity

Singleton Energy NSW 1998 0.4MWAustralia

Newington Private NSW 2000 0.7MW

BrokenHill Australian NSW 2000 1MWInlandEnergy

Newcastle CSIRO NSW 2005 0.6MW

Liddell Ausra NSW Late 2MW2008

Source: GeoscienceAustralia2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

275

CHAPTER 10: SOLAR ENERGY

scalegrid-connectedapplicationsdependsinlargemeasureontechnologicaldevelopmentsthatenhancetheefficiencyofenergyconversionandreducethecapitalandoperatingcostofsolarenergysystems andcomponentry.TheAustralianGovernment’s$1.5billionSolarFlagshipsprogram,announcedaspartoftheCleanEnergyInitiative,willsupporttheconstructionanddemonstrationoflargescale (upto1000MW)solarpowerstationsinAustralia. Itwillacceleratedevelopmentsolartechnologyand helppositionAustraliaasaworldleaderinthatfield.

10.4.1KeyfactorsinfluencingthefuturedevelopmentofAustralia’ssolarenergyresourcesAustraliaisaworldleaderindevelopingsolartechnologies(LovegroveandDennis2006),butuptakeofthesetechnologieswithinAustraliahasbeenrelativelylow,principallybecauseoftheir highcost.Anumberoffactorsaffecttheeconomicviabilityofsolarinstallations.

Solar energy technologies and costsResearchintobothsolarPVandsolarthermaltechnologiesislargelyfocussedonreducingcostsandincreasingtheefficiencyofthesystems.

• Electricity generation–commercial-scalegenerationprojectshavebeendemonstratedtobepossiblebutthecostofthetechnologyisstillrelativelyhigh,makingsolarlessattractiveandhigherriskforinvestors.Small-scalesolarPVarraysarecurrentlybestsuitedtoremoteandoff-gridapplications,withotherapplicationslargelydependentonresearchorgovernmentfundingtomakethemviable.Informationonsolarenergytechnologiesforelectricitygenerationispresentedinbox10.1.

• Direct-use applications–solarthermalhotwatersystemsfordomesticuserepresentthemostwidelycommercialisedsolarenergytechnology.

Solarwaterheatersarecontinuingtobedevelopedfurther,andcanalsobeintegrated withPVarrays.Otherdirectusesincludepassivesolarheating,andsolarairconditioning.Informationonsolarenergytechnologiesfordirect-useapplicationsispresentedinbox10.2.

WithbothsolarPVandsolarthermalgeneration,themajorityofcostsareborneinthecapitalinstallationphase,irrespectiveofthescaleorsizeoftheproject(figure10.21).ThelargestcostcomponentsofPVinstallationsarethecellsorpanelsandtheassociatedcomponentsrequiredtoinstallandconnectthepanelsasapowersource.Inaddition,theinverterthatconvertsthedirectcurrenttoalternatingcurrentneedstobereplacedatleastonceevery10years(Borenstein2008).However,therearenofuelcosts–oncethesystemisinstalled,apartfromreplacingtheinverter,thereshouldbenocostsassociatedwithrunningthesystemuntiltheendofitsusefullife(20to25years).Themajorchallenge,therefore,isinitialoutlay,withsomewhatmoremodestperiodiccomponentreplacement, andpaybackperiodfortheinvestment.

Currently,thecostofsolarenergyishigherthan othertechnologiesinmostcountries.TheminimumcostforsolarPVinareaswithhighsolarradiation isaroundUS23centsperkWh(EIA2009).

SolarthermalsystemshaveasimilarprofiletoPV,dependingonthescaleandtypeofinstallation.Thecostofelectricityproductionfromsolarenergyisexpectedtodeclineasnewtechnologiesaredevelopedandeconomiesofscaleimproveintheproductionprocesses.

Thecostofinstallingsolarcapacityhasgenerallybeendecreasing.BothPVandsolarthermaltechnologiescurrentlyhavesubstantialresearch anddevelopmentfundsdirectedtowardthem,andnewproductionprocessesareexpectedtoresultinacontinuationofthistrend(figure10.22).IntheUnited

Cos

ts

Years = 25installation inverter replacement

AERA 10.21

Figure 10.21 IndicativesolarPVproductionprofile and costs

Source: ABARE

PV

Solar thermal1

0

6

5

2007

US$

per

wat

t

4

3

2

2011 2013 2015 2017 2019 2021 2023 2025 2027

AERA 10.22

2029

Year

Figure 10.22 Projectedaveragecapitalcostsfor newelectricitygenerationplantsusingsolarenergy, 2011to2030

Source: EIA2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

276

States,thecapitalcostofnewPVplantsisprojectedtofallby37percent(inrealterms)from2009to2030(EIA2009).

TheElectricPowerResearchInstitute(EPRI)hasdevelopedestimatesofthelevelisedcostoftechnologya,includingarangeofsolartechnologies,toenablethecomparisonoftechnologiesatdifferentlevelsofmaturity(Chapter2,figures2.18,2.19).Thesolartechnologiesconsideredareparabolictroughs,centralreceiversystems,fixedPVsystemsandtrackingPVsystems.Centralreceiversolarsystemswithstorageareforecasttohavethelowestcostsoftechnologyin2015.AddingstoragetothecentralreceiversystemsortoparabolictroughsisestimatedtodecreasethecostperKWhproduced,asitallowsthesystemtoproduceahigherelectricityoutput.TrackingPVsystemsareforecasttohavethelowestcostoftheoptionsthatdonotincorporatestorage.TheEPRItechnologystatusdatainfigures2.18and2.19showthat,althoughsolartechnologiesremainrelativelyhighcostoptionsthroughouttheoutlookperiod,significantreductionsincostareanticipatedby2030.ThesubstantialglobalRD&D(bygovernmentsandtheprivatesector)intosolartechnologies,includingtheAustralianGovernment’s$1.5billionSolarFlagshipsProgramtosupporttheconstructionanddemonstrationoflargescalesolarpowerstationsinAustralia,isexpectedtoplayakeyroleinacceleratingthedevelopmentanddeploymentofsolarenergy.

Thetimetakentoinstallordevelopasolarsystem ishighlydependentonthesizeandscaleoftheproject.Solarhotwatersystemscanbeinstalledinaroundfourhours.Small-scalePVsystemscansimilarlybeinstalledquiterapidly.However,commercialscaledevelopmentstakeconsiderablylonger,dependingonthetypeofinstallationandotherfactors,includingbroaderlocationorenvironmentalconsiderations.

Location of the resourceInAustralia,thebestsolarresourcesarecommonlydistantfromthenationalelectricitymarket(NEM),especiallythemajorurbancentresontheeasternseaboard.Thisposesachallengefordevelopingnewsolarpowerplants,asthereneedstobeabalancebetweenmaximisingthesolarradiationandminimisingthecostsofconnectivitytotheelectricitygrid.However,thereispotentialforsolarthermalenergyapplicationtoprovidebaseandintermediateloadelectricitywithfossil-fuelplants(suchasgasturbinepowerstations)inareaswithisolatedgridsystemsandgoodinsolationresources.ThereportbytheWyldGroupandMMA(2008)identifiedMountIsa,AliceSprings,TennantCreekandthePilbararegionasareaswiththesecharacteristics.AccesstoAustralia’smajorsolarenergyresources–aswithotherremoterenewableenergysources–islikelytorequireinvestmenttoextendtheelectricitygrid.

Stand-alonePVsystemscanbelocatedclosetocustomers(forexampleonroofareasofresidentialbuildings),whichreducesthecostsofelectricitytransmissionanddistribution.However,concentratingsolarthermaltechnologiesrequiremorespecificconditionsandlargeareasofland(Lorenz,PinnerandSeitz2008)whichareoftenonlyavailablelongdistancesfromthecustomersneedingtheenergy. InAustralia,installingsmall-scaleresidentialormediumscalecommercialsystems(bothPVandthermal)canbehighlyattractiveoptionsforremoteareaswhereelectricityinfrastructureisdifficultorcostlytoaccess,andalternativelocalsourcesofelectricityareexpensive.

government policiesGovernmentpolicieshavebeenimplementedatseveralstagesofthesolarenergyproductionchaininAustralia.RebatesprovidedforsolarwaterheatingsystemsandresidentialPVinstallationsreducethecostofthesetechnologiesforconsumersandencouragetheiruptake.

TheSolarHomesandCommunitiesPlan(2000toJune2009)providedrebatesfortheinstallationofsolarPVsystems.ThecapacityofPVsystemsinstalledbyAustralianhouseholdsincreasedsignificantlyunderthisprogram(figure10.23). TheexpandedRETschemeincludestheSolar Creditsinitiative,whichprovidesamultipliedcreditforelectricitygeneratedbysmallsolarPVsystems. Solar Creditsprovidesanup-frontcapitalsubsidytowardstheinstallationofsmallsolarPVsystems.

TheAustralianGovernmenthasalsoannounced $1.5billionofnewfundingforitsSolarFlagshipsprogram.Thisprogramaimstoinstalluptofournewsolarpowerplants,withacombinedpoweroutputofupto1000MW,madeupofbothPVandsolarthermalpowerplants,withthelocationsandtechnologiestobedeterminedbyacompetitivetenderprocess.Theprogramaimstodemonstratenewsolartechnologiesatacommercialscale,therebyacceleratinguptakeofsolarenergyingeneralandprovidingtheopportunityforAustraliatodevelopleadershipinsolarenergytechnology(RET2009b).

TheAustralianGovernmenthasalsoallocatedfundingtoestablishtheAustralianSolarInstitute(ASI),whichwillbebasedinNewcastle.ItwillhavestrongcollaborativelinkswithCSIROandUniversitiesundertakingR&Dinsolartechnologies.TheinstitutewillaimtodrivedevelopmentofsolarthermalandPVtechnologiesinAustralia,includingtheareasofefficiencyandcosteffectiveness(RET2009a).

Othergovernmentpolicies,includingfeed-intariffs,whichareproposedoralreadyinplaceinmostAustralianstatesandterritories,mayalsoencouragetheuptakeofsolarenergy.

a ThisEPRItechnologystatusdataenablesthecomparisonoftechnologiesatdifferentlevelsofmaturity. Itshouldnotbeusedtoforecastmarketandinvestmentoutcomes.

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

277

CHAPTER 10: SOLAR ENERGY

50

40

30

MW

20

10

02000

Year2001 2002 2003 2004 2005 2006 2007 2008 2009

AERA 10.23

Figure 10.23 ResidentialPVcapacityinstalledundertheSolarHomesandCommunitiesPlan(asofOctober2009)

Source: DEWHA2009

Infrastructure issuesThelocationoflargescalesolarpowerplants inAustraliawillbeinfluencedbythecostofconnectiontotheelectricitygrid.Intheshortterm,developmentsarelikelytofocusonisolatedgridsystemsornodestotheexistingelectricitygrid, sincethisminimisesinfrastructurecosts.

Inthelongerterm,theextensionofthegridtoaccessremotesolarenergyresourcesindesertregionsmayrequirebuildinglongdistancetransmissionlines.Thetechnologyneededtoachievethisexists:highvoltagedirectcurrent(HVDC)transmissionlinesareabletotransferelectricityoverthousandsofkilometres,withminimallosses.SomeHVDClinesarealreadyinuseinAustralia,andarebeingusedtoforminterstategridconnections;thelongestexamplebeingtheHVDClinkbetweenTasmaniaandVictoria.However,buildingaHVDClinktoasolarpowerstationindesertareaswouldrequirealargeup-frontinvestment.

Theideaofgeneratinglargescalesolarenergyinremotedesertregionshasbeenproposedonamuchlargerscaleinternationally.InJune2009theDESERTECFoundationoutlinedaproposaltobuildlargescalesolarfarmsinthesun-richregionsoftheMiddleEastandNorthernAfrica,andexporttheirpowertoEuropeusinglongdistanceHVDClines. Morerecently,anAsiaPacificSunbeltDevelopmentProjecthasbeenestablishedwiththeaimofmovingsolarenergybywayoffuelratherthanelectricityfromregionssuchasAustraliatothoseAsiancountrieswhoimportenergy,suchasJapanandKorea.Theseprojectsillustratethegrowinginternationalinterestinutilisinglargescalesolarpowerfromremoteandinhospitableareas,despitetheinfrastructurechallengesintransmittingortransportingenergyoverlongdistances.

Environmental issuesAroof-mounted,grid-connectedsolarsysteminAustraliaisestimatedtoyieldmorethanseventimes

theenergyrequiredtoproduceitovera20yearsystemlifespan(MacKay2009).Inareaswithlesssolarradiation,suchasCentral-NorthernEurope,theenergyyieldratioisestimatedtobearoundfour.Thispositiveenergyyieldratioalsomeansthatgreenhousegasemissionsgeneratedfromtheproductionofsolarenergysystemsaremorethanoffsetoverthesystems’lifecycle,astherearenogreenhousegasemissionsgeneratedfromtheiroperation.

Mostsolarthermalelectricitygenerationsystemsrequirewaterforsteamproductionandthiswateruseaffectstheefficiencyofthesystem.Themajorityofthiswaterisconsumedin‘wetcooling’towers,whichuseevaporativecoolingtocondensethesteamafterithaspassedthroughtheturbine.Inaddition,solarthermalsystemsrequirewatertowashthemirrors,tomaintaintheirreflectivity(Jones2008).Itispossibletouse‘drycooling’towers,whicheliminatemostofthewaterconsumption,butthisreducestheefficiencyofthesteamcyclebyapproximately10percent(Stein2009b).

AfurtheroptionunderdevelopmentistheuseofhightemperatureBraytoncycles,whichdonotusesteamturbinesandthusdonotconsumewater.BraytoncyclesaremoreefficientthanconventionalRankine(steam)cycles,buttheycanonlybeachievedbypoint-focussingsolarthermaltechnologies(powertowersanddishes).

10.4.2OutlookforsolarenergymarketAlthoughsolarenergyismoreabundantinAustraliathanotherrenewableenergysources,plansforexpandingsolarenergyinAustraliagenerallyrelyonsubsidiestobeeconomicallyviable.Therearecurrentlyonlyasmallnumberofproposedcommercialsolarenergyprojects,mostlyofsmallscale.Solarenergyiscurrentlymoreexpensivetoproducethanotherformsofrenewableenergy,suchashydro,windandbiomass(WyldGroupandMMA2008).Intheshortterm,therefore,solarenergywillfinditdifficulttocompetecommerciallywithotherformsofcleanenergyforelectricitygenerationintheNEM.However,asglobaldeploymentofsolarenergytechnologiesincreases,thecostofthetechnologiesislikelytodecrease.Moreover,technologicaldevelopmentsandgreenhousegasemissionreductionpoliciesareexpectedtodriveincreaseduseofsolarenergyinthemediumandlongterm.

Key projections to 2029–30ABARE’slatest(2010)AustralianenergyprojectionsincludetheRET,a5percentemissionsreductiontarget,andothergovernmentpolicies.SolarenergyuseinAustraliaisprojectedtomorethantriple,from7PJin2007–08to24PJin2029–30,growingatanaveragerateof5.9percentayear(figure10.27,table10.4).Whilesolarwaterheatingisprojectedtoremainthepredominantuseforsolarenergy,theshareofPVintotalsolarenergyuseisprojectedtoincrease.

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

278

BOx 10.1SOLARENERGyTECHNOLOGIESFORELECTRICITyGENERATION

Sunlighthasbeenusedforheatingbygeneratingfireforhundredsofyears,butcommercialtechnologiesspecificallytousesolarenergytodirectlyheatwaterorgeneratepowerwerenotdevelopeduntilthe1800s.Solarwaterheatersdevelopedandinstalledbetween1910and1920werethefirstcommercialapplicationofsolarenergy.ThefirstPVcellscapableofconvertingenoughenergyintopowertorunelectricalequipmentwerenotdevelopeduntilthe1950sandthefirstsolarpowerstations(thermalandPV)withcapacityofatleast1megawattstartedoperatinginthe1980s.

Solar thermal electricitySolarthermalelectricityisproducedbyconvertingsunlightintoheat,andthenusingtheheattodrive agenerator.Thesunlightisconcentratedusingmirrors,andfocussedontoasolarreceiver.Thisreceivercontainsaworkingfluidthatabsorbstheconcentratedsunlight,andcanbeheateduptoveryhightemperatures.Heatistransferredfromtheworkingfluidtoasteamturbine,similartothoseusedinfossilfuelandnuclearpowerstations.Alternatively,theheatcanbestoredforlateruse(seebelow).

Therearefourmaintypesofconcentratingsolarreceivers,showninfigure10.24.Twoofthesetypesareline-focussing(parabolictroughandLinearFresnelreflector);theothertwoarepoint-focussing(paraboloidaldishandpowertower).Eachofthesetypesisdesignedtoconcentratealargeareaofsunlightontoasmallreceiver,whichenablesfluid tobeheatedtohightemperatures.Therearetrade-offsbetweenefficiency,landcoverage,andcosts ofeachtype.

Themostwidelyusedsolarconcentratoristheparabolictrough.Parabolictroughsfocuslightinoneaxisonly,whichmeansthattheyneedonlyasingleaxistrackingmechanismtofollowthedirectionofthesun.ThelinearFresnelreflectorachievesasimilarline-focus,butinsteadusesanarrayofalmostflatmirrors.LinearFresnelreflectorsachieveaweakerfocus(thereforelowertemperaturesandefficiencies)thanparabolictroughs.However,linearFresnelreflectorshavecost-savingfeaturesthatcompensateforlowerenergyefficiencies,includingagreateryieldperunitland,andsimplerconstructionrequirements.

Theparaboloidaldishisanalternatedesignwhichfocusessunlightontoasinglepoint.Thisdesignisabletoproduceamuchhighertemperatureatthe

a b

c d

Figure 10.24 Thefourtypesofsolarthermalconcentrators: (a)parabolictrough,(b)compactlinearFresnelreflector,(c)paraboloidaldish,and(d)powertower

Source: WikimediaCommons,photographbykjkolb;WikimediaCommons,originaluploaderwasLkruijswaten.wikipedia; AustralianNationalUniversity2009a;CSIRO

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

279

CHAPTER 10: SOLAR ENERGY

receiver,whichincreasestheefficiencyofenergyconversion.Theparaboloidaldishhasthegreatestpotentialtobeusedinmodularform,whichmaygivethisdesignanadvantageinoff-gridandremoteapplications.However,tofocusthesunlightontoasinglepoint,paraboloidaldishesneedtotrackthedirectionofsunlightontwoaxes.Thisrequiresamorecomplextrackingmechanism,andismoreexpensivetobuild.Theotherpointfocusingdesignisthe‘powertower’,whichusesaseriesofground-basedmirrorstofocusontoanelevatedcentralreceiver.Powertowermirrorsalsorequiretwo-axistrackingmechanisms;howevertheuseofsmaller,flatmirrorscanreducecosts.

Theparabolictroughhasthemostwidespreadcommercialuse.Anarrayofnineparabolictroughplantsproducingacombined354MWhaveoperatedinCaliforniasincethe1980s.SeveralnewoneshavebeenbuiltinSpainandNevadainthelastfewyearsatarounda50–60MWscale,andtherearemanyparabolictroughplantseitherintheconstructionorplanningphase.Whileparabolictroughshavethemajorityofthecurrentmarketshare,allfourdesignsaregainingrenewedcommercialinterest.Thereisan11MWsolarpowertowerplantoperatinginSpain, andasimilar20MWplanthasrecentlybegunoperatingatthesamelocation.ThelinearFresnelreflectorhasbeendemonstratedonasmallscale(5MW),anda177MWplantisplannedforconstructioninCalifornia.Theparaboloidaldishhasalsobeendemonstratedonasmallscale,andthereareplansforlargescaledishplants.

Methodsofpowerconversionandthermalstoragevaryfromtypetotype.Whilesolarthermalplantsaregenerallysuitedtolargescaleplants(greaterthan 50MW),theparaboloidaldishhasthepotentialto beusedinmodularform.Thismaygivedishsystemsanadvantageinremoteandoff-gridapplications.

Efficiency of solar thermalTheconversionefficiencyofsolarthermalpowerplantsdependsonthetypeofconcentratorused, andtheamountofsunlight.Ingeneral,thepoint-focusingconcentrators(paraboloidaldishandpowertower)canachievehigherefficienciesthanlinefocussingtechnologies(parabolictroughandFresnelreflector).Thisispossiblebecausethepoint-focussingtechnologiesachievehighertemperaturesforhigherthermodynamiclimits.

Thehighestvalueofsolar-to-electricefficiencyeverrecordedforasolarthermalsystemwas31.25percent,usingasolardishinpeaksunlightconditions(Sandia2009).Parabolictroughscanachieveapeaksolar-to-electricefficiencyofover20percent(SEGS2009).However,theconversionefficiencydropssignificantlywhentheradiationdropsinintensity,

sotheannualaverageefficienciesaresignificantlylower.AccordingtoBegay-Campbell(2008),theannualsolar-to-electricefficiencyisapproximately12–14percentforparabolictroughs,12percentforpowertowers(althoughemergingtechnologiescanachieve18–20percent),and22–25percentforparaboloidaldishes.LinearFresnelreflectorsachieveasimilarefficiencytoparabolictroughs,withanannualsolar-to-electricefficiencyofapproximately 12percent(Millsetal.2002).

Energy storageSolarthermalelectricitysystemshavethepotentialtostoreenergyoverseveralhours.Theworkingfluidusedinthesystemcanbeusedtotemporarilystoreheat,andcanbeconvertedintoelectricityafterthesunhasstoppedshining.Thismeansthatsolarthermalplantshavethepotentialtodispatchpoweratpeakdemandtimes.Itshouldbenoted,however,thatperiodsofsustainedcloudyweathercuttheproductivecapacityofsolarthermalpower. Theseasonalityofsunshinealsoreducespoweroutputinwinter.

Thermalstorageisoneofthekeyadvantagesofsolarthermalpower,andcreatesthepotentialforintermediateorbase-loadpowergeneration.Althoughthermalstoragetechnologyisrelativelynew,severalrecentlyconstructedsolarthermalpowerplantshaveincludedthermalstorageofapproximately7hours’powergeneration.Inaddition,therearenewpowertowerdesignsthatincorporateupto16hoursofthermalstorage,allowing24hourpowergenerationinappropriateconditions.Thedevelopmentofcosteffectivestoragetechnologiesmayenableamuchhigheruptakeofsolarthermalpowerinthefuture(WyldGroupandMMA2008).

Currentresearchisdevelopingalternativeenergystoragemethods,includingchemicalstorage,andphase-changematerials.Chemicalstorageoptionsincludedissociatedammoniaandsolar-enhancednaturalgas.Thesenewstoragemethodshavethepotentialtoprovideseasonalstorageofsolarenergy,ortoconvertsolarenergyintoportablefuels.Infuture,itmaybepossibleforsolarfuelstobeusedinthetransportsector,orevenforexportingsolarenergy.

Hybrid operation with fossil fuel plantsSolarthermalpowerplantscanmakeuseof existingturbinetechnologiesthathavebeendevelopedandrefinedovermanydecadesinfossilfueltechnologies.Usingthismaturetechnologycanreducemanufacturingcostsandincreasetheefficiencyofpowergeneration.Inaddition,solarthermalheatcollectorscanbeusedinhybridoperationwithfossilfuelburners.Anumberofexistingsolarthermalpowerplantsusegasburnerstoboostpowersupplyduringlowlevelsofsunlight.

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

280

Combiningsolarthermalpowerwithgascanprovideahedgeagainsttheintermittencyofsunlight.

Solarthermalheatcollectorscanbeattachedtoexistingcoalorgaspowerstationstopre-heatthewaterusedintheseplants.Thisispossiblesincesolarthermalheatcollectorsperformaverysimilarfunctiontofossilfuelburners.Inthisway,solarthermalpowercanmakeuseofexistinginfrastructure.Thisoptionisnotaffectedbyintermittencyofsunlight,sincethefossilfuelburnersprovidefirmcapacityofproduction.Internationally,thereareseveralnewintegratedsolarcombinedcycle(ISCC)plantsplannedforconstruction.ISCCplantsaresimilartocombinedcyclegasplants(usingbothagasturbine,andasteamturbine),butusesolarthermalheatcollectorstoboostthesteamturbineproduction.

Solar updraft towersAnalternativesolarthermalpowertechnologyisthesolarupdrafttower,alsoknownasasolarchimney.Theupdrafttowercapturessolarenergyusingalargegreenhouse,whichheatsairbeneathatransparentroof.Averytallchimneyisplacedatthecentreofthegreenhouse,andtheheatedaircreatespressuredifferencesthatdriveairflowupthechimney.Electricityisgeneratedfromtheairflowusingwindturbinesatthebaseofthechimney.

Solarupdrafttowershavebeentestedatarelativelysmallscale,witha50kWplantinSpainbeingtheonlyworkingprototypeatpresent.Thereareplanstoupscalethistechnology,includingaproposed200MWplantinBuronga,NSW.ThemaindisadvantageofsolarupdrafttowersisthattheydeliversignificantlylesspowerperunitareathanconcentratingsolarthermalandPVsystems(Enviromission2009).

Photovoltaic systemsThecostsofproducingPVcellshasdeclinedrapidlyinrecentyearsasuptakehasincreased(Fthenakis

etal.2009)andanumberofPVtechnologieshave

beendeveloped.Thecostofmodulescanbereduced

infourmainways:

• makingthinnerlayers–reducingmaterialand

processingcosts;

• integratingPVpanelswithbuildingelementssuch

asglassandroofs–reducingoverallsystem

costs;

• makingadhesiveonsite–reducingmaterials

costs;and

• improvingdecisionsaboutmakingorbuying

inputs,increasingeconomiesofscale,and

improvingthedesignofPVmodules.

TherearethreemaintypesofPVtechnology:

crystallinesilicon,thin-filmandconcentratingPV.

Crystallinesiliconistheoldestandmostwidespread

technology.Thesecellsarebecomingmoreefficient

overtime,andcostshavefallensteadily.

Thin-filmPVisanemerginggroupoftechnologies,

targetedatreducingcostsofPVcells.Thin-filmPV

isatanearlierstageofdevelopment,andcurrently

deliversalowerefficiencythancrystallinesilicon,

estimatedataround10percent,althoughmany

ofthenewervarietiesstilldeliverefficienciesof

lessthanthis(Prowse2009).However,thisis

compensatedbylowercosts,andtherearestrong

prospectsforefficiencyimprovementsinthefuture.

Thin-filmPVcanbeinstalledonmanydifferent

substrates,givingitgreatflexibilityinitsapplications.

ConcentratingPVsystemsuseeithermirrorsor

lensestofocusalargeareaofsunlightontoacentral

receiver(figure10.25).Thisincreasestheintensity

ofthelight,andallowsagreaterpercentageofits

energytobeconvertedintoelectricity.Thesesystems

aredesignedprimarilyforlargescalecentralised

Figure 10.25 (a)ExampleofarooftopPVsystem. (b)AschematicconcentratingPVsystem,wherealargenumberofmirrorsfocussunlightontocentralPVreceivers

Source: CERP,WikimediaCommons;EnergyInnovationsInc.underWikipedialicencecc-by-sa-2.5

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

281

CHAPTER 10: SOLAR ENERGY

power,duetothecomplexitiesofthereceivers.ConcentratingPVisthemostefficientformofPV,deliveringatypicalsystemefficiencyofaround 20percent,andhasachievedefficienciesofjustover40percentinideallaboratoryconditions(NREL2008).

AnadvantageofusingconcentratingPVisthatitreducestheareaofsolarcellsneededtocapture thesunlight.PVcellsareoftenexpensivetoproduce,andthemirrorsorlensesusedtoconcentratethelightaregenerallycheaperthanthecells.However,theuseofsolarconcentratorsgenerallyrequiresalargersystemthatcannotbescaleddownaseasilyasflat-platePVcells.

ArelativelyrecentareaofgrowthforPVapplicationsisinBuilding-integratedPV(BIPV)systems.BIPVsystemsincorporatePVtechnologyintomanydifferentcomponentsofanewbuilding.Thesecomponentsincluderooftops,wallsandwindows,

wherePVcellscaneitherreplace,orbeintegratedwithexistingmaterials.BIPVhasthepotentialtoreducecostsofPVsystems,andtoincreasethesurfaceareaavailableforcapturingsolarenergywithinabuilding(NREL2009b).

Efficiency of photovoltaic systemsCurrently,themaximumefficiencyofcommerciallyavailablePVmodulesisaround20to25percent,withefficienciesofaround40percentachievedinlaboratories.MostcommerciallyavailablePVsystemshaveanaverageconversionefficiencyofaround10percent.Newdevelopments(suchasmulti-junctiontandemcells)suggestsolarcellswithconversionefficienciesofgreaterthan40percentcouldbecomecommerciallyavailableinthefuture.Fthenakisetal.(2009)positthatincreasesinefficiencyofPVmoduleswillcomefromfurthertechnologyimprovements.

BOx 10.2SOLARENERGyTECHNOLOGIESFORDIRECT-USEAPPLICATIONS

Solar thermal heatingSolarthermalheatingusesdirectheatfromsunlight,withouttheneedtoconverttheenergyintoelectricity.Thesimplestformofsolarthermalheatingisachievedsimplybypumpingwaterthroughasystemoflight-absorbingtubes,usuallymountedonarooftop.Thetubesabsorbsunlight,andheatthewaterflowingwithinthem.Themostcommonuseforsolarthermalheatingishotwatersystems,buttheyarealsousedforswimmingpoolheatingorspaceheating.

Therearetwomaintypesofsolarwaterheaters:flat-plateandevacuatedtubesystems(figure10.26).Flat-platesystemsarethemostwidespreadandmaturetechnology.Theyuseanarrayofverysmalltubes,coveredbyatransparentglazingforinsulation.Evacuatedtubesconsistofasunlightabsorbingmetaltube,insidetwoconcentrictransparentglasstubes.Thespacebetweenthetwoglasstubesis

evacuatedtopreventlossesduetoconvection.Evacuatedtubeshavelowerheatlossesthanflatplatecollectors,givingthemanadvantageinwinterconditions.However,flat-platesystemsaregenerallycheaper,duetotheirrelativecommercialmaturity.

Solarthermalheatingisamaturetechnologyandrelativelyinexpensivecomparedtoothersolartechnologies.Thiscostadvantagehasmeantthatsolarthermalheatinghasthelargestenergyproductionofanysolartechnology.Insomecountrieswithfavourablesunlightconditions,solarwaterheatershavegainedasubstantialmarketshareofwaterheaters.Forexample,theproportionofhouseholdswithsolarwaterheatersintheNorthernTerritorywas54percentin2008(CEC2009)whereasinIsraelthisproportionisapproximately 90percent(CSIRO2010).

Figure 10.26 (a)Flat-platesolarwaterheater. (b)EvacuatedtubesolarwaterheaterSource: WesternAustralianSustainableEnergyDevelopmentOffice2009;HillsSolar(SolarSolutionsforLife)2009

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

282

Solar air conditioningSolarthermalenergycanalsobeusedtodriveair-conditioningsystems.Sorptioncoolingusesaheatsourcetodrivearefrigerationcycle,andcanbeintegratedwithsolarthermalheatcollectorstoprovidesolarair-conditioning.Sincesunlightisgenerallystrongwhenair-conditioningismostneeded,solarair-conditioningcanbeusedtobalancepeaksummerelectricityloads.However,anumberofdevelopmentsarerequiredbeforesolarair-conditioningbecomescostcompetitiveinAustralia(CSIRO2010).

Passive solar heatingSolarenergycanalsobeusedtoheatbuildingsdirectly,throughdesigningbuildingsthatcapturesunlightandstoreheatthatcanbeusedatnight.Thisprocessiscalledpassivesolarheating,andcansaveenergy(electricityandgas)thatwouldotherwisebeneededtoheatbuildingsduringcoldweather.Newbuildingscanbeconstructedwithpassivesolarheatingfeaturesatminimalextracost,providingareliablesourceofheatingthatcangreatlyreduceenergydemandsinwinter(AZSC2009).

Passivesolarheatingusuallyrequirestwo

basicelements:anorth-facing(intheSouthernHemisphere)windowoftransparentmaterialthatallowssunlighttoenterthebuilding;andathermalstoragematerialthatabsorbsandstoresheat.Passivesolarheatingmustalsobeintegratedwithinsulationtoprovideefficientstorageofheat,androofdesignsthatcanmaximiseexposureinwinter,andminimiseexposureinsummer.Althoughsomeofthesefeaturescanberetrofittedtoexistingbuildings,thebestprospectsforpassivesolarheatingareinthedesignofnewbuildings.

Combined heat and power systemsAtechnologyunderdevelopmentinAustraliaandoverseasisthecombinedheatandpowersystem,combiningsolarthermalheatingwithPVtechnology(ANU2009).Typicallythisconsistsofasmall-scaleconcentratingparabolictroughsystemwithacentralPVreceiver,wherethereceiveriscoupledtoacoolingfluid.WhilethePVproduceselectricity,heatisextractedfromthecoolingfluidandcanbeusedinthesamewayasaconventionalsolarthermalheater.Thesesystemscanachieveagreaterefficiencyofenergyconversion,byusingthesamesunlightfortwopurposes.Thesesystemsarebeingtargetedforsmall-scalerooftopapplications.

Electricitygenerationfromsolarenergyisprojectedtoincreasestrongly,fromonly0.1TWhin2007–08to4TWhin2029–30,representinganaverageannualgrowthrateof17.4percent(figure10.28).Theshareofsolarenergyinelectricitygenerationisalsoprojectedtoincrease,from0.04percentin2007–08to1percentin2029–30.

Whilehighinvestmentcostscurrentlyrepresentabarriertomorewidespreaduseofsolarenergy,thereisconsiderablescopeforthecostofsolartechnologiestodeclinesignificantlyovertime.Thecompetitivenessofsolarenergywillalsodependongovernmentpolicies.TheRET,theresultsofRD&D

programsandtheproposedemissionsreductiontargetareallexpectedtounderpinthegrowthofsolarenergyovertheoutlookperiod.

Proposed development projectsAsatOctober2009,therewerenosolarprojectsnearingcompletioninAustralia(table10.5).Therearecurrentlyfiveproposedsolarprojects,withacombinedcapacityof116MW.ThelargestoftheseprojectsisWizardPower’s$355millionWhyallaSolarOasis,whichwillbelocatedinSouthAustralia.Theprojectisexpectedtohaveacapacityof80MWandisscheduledtobecompletedby2012.

24

20

16

12

8

4

0

0.30

0.25

0.20

PJ 0.15 %

0.10

0.05

0

Solar energy consumption (PJ)

Share of total (%)

1999- 2000- 2001- 2002- 2003- 2004- 2005- 2006- 2007- 2029-00 01 02 03 04 05 06 07 08 30

YearAERA 10.2

Figure 10.27 Projectedprimaryenergyconsumption ofsolarenergy

Source: ABARE2009a,2010

%

AERA 10.3

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

1.1

0.9

0.8

0.6

0.5

0.3

0.2

01999-

002000-

012001-

022002-

032003-

042004-

052005-

062006-

072007-

08

TWh

2029-30

Solar electricity generation (TWh)

Share of total (%)

Year

Figure 10.28 Projectedelectricitygenerationfrom solar energy

Source: ABARE2009a,2010

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

283

CHAPTER 10: SOLAR ENERGY

Table 10.4 OutlookforAustralia’ssolarmarketto2029–30

unit 2007–08 2029–30

Primary energy consumption

Shareoftotal

PJ

%

7

0.1

24

0.3

Averageannualgrowth,2007–08to20029–30

Electricity generation

Electricityoutput

Shareoftotal

%

TWh

%

0.1

0.04

5.9

4

1.0

Averageannualgrowth,2007–08to2029–30 % 17.4

a Energyproductionandprimaryenergyconsumptionareidentical Source: ABARE2009a,2010

Table 10.5 Proposedsolarenergyprojects

Project Company Location Status Start up Capacity Capital expenditure

SolarGasOne CSIROandQldGovernment

Qld Governmentgrantreceived

2012 1MW na

LakeCargelligosolarthermalproject

LloydEnergySystems

LakeCargelligo,NSW

Governmentgrantreceived

na 3MW na

Cloncurrysolarthermalpowerstation

LloydEnergySystems

Cloncurry,Qld Governmentgrantreceived

2010 10MW $31m

ACTsolarpowerplant

ACTGovernment Tobedetermined,ACT

Pre-feasibilitystudycompleted

2012 22MW $141m

WhyallaSolarOasis

WizardPower Whyalla,SA Feasibilitystudyunderway

2012 80MW $355m

Source: ABARE2009c;LloydEnergySystems2007

10.5ReferencesABARE(AustralianBureauofAgriculturalandResourceEconomics),2010,Australianenergyprojectionsto2029–30,ABAREresearchreport10.02,preparedfortheDepartmentofResources,EnergyandTourism,Canberra

ABARE,2009a,AustralianEnergyStatistics,Canberra,August

ABARE,2009b,Electricitygeneration:Majordevelopmentprojects–October2009listing,Canberra,November

AER(AustralianEnergyRegulator),2008,StateoftheEnergyMarket2008,<http://www.aer.gov.au/content/index.phtml/itemId/723386>

Ausra,2009,TheLiddellSolarThermalPowerStation,<http://www.ausra.com/pdfs/LiddellOverview.pdf>

ANU(AustralianNationalUniversity),2009a,SolarThermalEnergyResearch,<http://solar-thermal.anu.edu.au/pages/DownloadPics.php>

ANU,2009b,CombinedHeatandPowerSolar(CHAPS)ConcentratorSystem,<http://solar.anu.edu.au/projects/chaps_proj.php>

AZSC(ArizonaSolarCenter),2009,PassiveSolarHeating andCooling,<http://www.azsolarcenter.com/technology/pas-2.html>

Begay-CampbellS,2008,ConcentratingSolarTechnologiesandApplications:SandiaNationalLaboratories,<http://apps1.eere.energy.gov/tribalenergy/pdfs/course_tcd0801_ca17ax.pdf>

BISShrapnel,2008,Hotwatersystemsinstalledinnew

dwellingsinAustralia,NorthSydney,<http://www.bis.com.au/reports/hot_water_systems_nd_in_aust.html>

BorensteinS,2008,TheMarketValueandCostofSolarPhotovoltaicElectricityProduction,CentrefortheStudyofEnergyMarkets,UniversityofCalifornia

BureauofMeteorology,2009,AverageDailySolarExposure,<http://www.bom.gov.au/climate/averages/climatology/solar_radiation/IDCJCM0019_solar_exposure.shtml>

CEC(CleanEnergyCouncil),2009,SolarIndustrySnapshot,<http://www.bcse.or.au/cec/resourcecentre/reports/mainColumnParagraphs/00/text_files/file15/CEC%20Solar%20Sheet_revised_2.pdf>

ClimateActionNewcastle,2009,Newcastle’sGoingSolar,<http://www.climateaction.org.au/files/images/solar%20panel%20photo_0.jpg>

CSIRO,2010,EnergytechnologyinAustralia:overviewandprospectsforthefuture,AreportfortheDepartmentofResources,EnergyandTourism,Canberra(forthcoming)

DESERTEC,2009,CleanPowerFromDeserts.Whitebook4thEdition,<http://www.desertec.org/en/concept/whitebook/>

Desertec-UK,2009,ConcentratingSolarThermalPower,<http://www.trec-uk.org.uk/images/schott_parabolic_trough.jpg>

DEWHA(DepartmentofEnvironment,Water,HeritageandtheArts),2009,Solarhomesandcommunitiesplanwebsite,<http://www.environment.gov.au/settlements/renewable/pv/index.html>

EIA(EnergyInformationAdministrationoftheUnitedStates),2009,InternationalEnergyOutlook2009,WashingtonDC

AUSTRALIAN ENERGY RESOURCE ASSESSMENT

284

Enviromission,2009,TechnologyOverview,<http://www.enviromission.com.au/EVM/content/technology_technologyover.html>

EPIA(EuropeanPhotovoltaicIndustryAssociation),2009,GlobalMarketOutlookforPhotovoltaicsUntil2013, <http://www.epia.org/publications/epia-publications.html>

FthenakisV,MasonJEandZweibelK,2009,Thetechnical,geographical,andeconomicfeasibilityforsolarenergytosupplytheenergyneedsoftheUS,EnergyPolicy,vol37, no2,387–399

GeoscienceAustralia,2009,RenewableEnergyPowerStations,<http://www.ga.gov.au/renewable/operating/operating_renewable.xls>

Greenpeace,2009,ConcentratingSolarPower,GlobalOutlook09,<http://www.greenpeace.org/international/press/reports/concentrating-solar-power-2009>

IEA(InternationalEnergyAgency),2003,GreenhouseGasResearchandDevelopmentProgramme–ThepotentialofsolarelectricitytoreduceCO

2emissions,Paris

IEA,2009a,WorldEnergyOutlook2009,Paris

IEA,2009b,WorldEnergyBalances,2009,Paris

IEA-PVPS,2008,TrendsinPhotovoltaicApplications:SurveyreportofselectedIEAcountriesbetween1992and2007,IEAPhotovoltaicPowerSystemsProgramme

JiaxingDyiSolarEnergyCo,2009,SolarWaterHeater-1,<http://jxdiyi.en.made-in-china.com/product/sqdnACbhfQDM/China-Flat-Solar-Water-Heater-1.html>

JonesJ,2008,ConcentratingSolarThermalPower,RenewableEnergyWorldMagazine

LloydEnergySystems,2007,CloncurrySolarThermalStorageProject,<http://www.lloydenergy.com/presentations/Cloncurry%20Solar%20Thermal%20Storage%20Project.pdf>

LorenzP,PinnerDandSeitzT,2008,TheEconomicsofSolarPower.TheMcKinseyQuarterly,June2008

LovegroveKandDennisM,2006,SolarthermalenergysystemsinAustralia.InternationalJournalofEnvironmentalStudies.63(6):791–802

MacKayDJC,2009,SustainableEnergy–WithouttheHotAir.UIT,Cambridge,<http://www.withouthotair.com/>

McKinsey&Company,2008,TheEconomicsofSolarPower,inMcKinseyQuarterly,June2008,<http://www.mckinseyquarterly.com>

MillsD,MorrisonGandLeLievreP,2002,ProjectProposalforaCompactLinearFresnelReflectorSolarThermalPlantintheHunterValley,<http://solar1.mech.unsw.edu.au/glm/papers/Mills_projectproposal_newcastle.pdf>

NationalAeronauticsandSpaceAdministration(NASA),2009,SurfaceMeteorologyandSolarEnergyDataset,<http://eosweb.larc.nasa.gov/sse>

NREL,2009a,PhotographicInformationExchange, <http://www.nrel.gov/data/pix/searchpix.html>

NREL,2009b,PhotovoltaicResearch–Building-IntegratedPV,<http://www.nrel.gov/pv/building_integrated_pv.html>

ProwseR,2009,Personalcommunication,5/6/2009.CentreManager,CentreforSustainableEnergySystems,AustralianNationalUniversity

RET(DepartmentofResources,EnergyandTourism),2009a,AustralianSolarInstituteFactSheet,<http://www.ret.gov.au/energy/Documents/ASI%20Fact%20sheet%2014Jan%20cleared%20by%20MO.pdf>

RET,2009b,SolarFlagshipsProgramFactSheet,<http://www.ret.gov.au/energy/Documents/Solar%20Flagships%20factsheet%20-%20Oct%202009.pdf>

Sandia,2009,LabAccomplishments2009:SandiaNationalLaboratories,<http://www.sandia.gov/LabNews/labs-accomplish/2009/lab_accomplish-2009.pdf>

SEGS,2009,SolarElectricityGeneratingSystemswebsite,<http://www.flagsol.com/SEGS_tech.htm>

Sellsius,2006,TheWorld’sMostEfficientSolarEnergy,<http://blog.sellsiusrealestate.com/technology/the-worlds-most-efficient-solar-energy/2006/08/06/>

SolarSystems,2009,154MWVictorianProject,<http://www.solarsystems.com.au/154MWVictorianProject.html>

SolarTubeCompany,2009,SolarWaterHeatingSystem,<http://www.solartubecompany.co.uk/solar-water-heating/>

SteinW,2009a,personalcommunication,4/8/2009.Manager,NationalSolarEnergyCentre,CSIRODivisionofEnergyTechnology

SteinW,2009b,personalcommunication,3/11/2009.Manager,NationalSolarEnergyCentre,CSIRODivisionofEnergyTechnology

SunwizeTechnologies,2008,SunWizeWorldInsolationMap,<http://www.sunwize.com/info_center/solar-insolation-map.php>

WattM,2009,NationalSurveyReportofPVPowerApplicationsinAustralia2008:AustralianPVAssociation

WEC(WorldEnergyCouncil),2007,SurveyofEnergyResources2007,London,September2007,<http://www.worldenergy.org/pugblications/survey_of_energy_resources_2007/default.asp>

WEC,2009,Surveyofenergyresources:Interimupdate2009.London,July2009,<http://www.worldenergy.org/publications/survey_of_energy_resources_interim_update_2009/default.asp>

WyldGroupandMMA,2008,HighTemperatureSolarThermalTechnologyRoadmap.PreparedfortheNSWandVictorianGovernmentsbyWyldGroupandMcLennanMagasanikAssociates,<http://www.coag.gov.au/reports/docs/HTSolar_thermal_roadmap.pdf>