Chapter 10 Fluid

download Chapter 10 Fluid

of 15

Transcript of Chapter 10 Fluid

  • 7/30/2019 Chapter 10 Fluid

    1/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 1EXAMPLE 1

    Example 1. Water flows in a rectangular channel at a depth of 4.0

    ft and a flow rate of Q = 200 cfs. Determine the minimum

    channel width if the flow is to be subcritical.

    sftVandfeetwidthbbftb

    sft

    A

    QV /

    50

    )4)((

    /200 3

    sft

    b

    yg

    VFr

    )4)(/2.32(

    /50

    2

    ftbor

    sft

    b

    yg

    VFr

    FrSet

    41.4

    1)4)(/2.32(

    /50

    1

    2

  • 7/30/2019 Chapter 10 Fluid

    2/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 2EXAMPLE 2

    Example 2. Water flows at a rate of 1,000 cubic feet per second in

    a horizontal channel 30 feet wide with a 2-ft depth. Determine

    the depth if the channel contracts to a width of 25 ft. Explain.

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 2EXAMPLE 2

  • 7/30/2019 Chapter 10 Fluid

    3/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 2EXAMPLE 2

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 3EXAMPLE 3

    Example 3. Plot the specific energy diagram for a wide channel

    carrying q = 50 cfs per foot (50 ft2/s). determine (a) the critical

    depth, (b) the minimum specific energy, (c) the alternate depth

    corresponding to a depth of 2.5 ft, and (d) the possible flow

    velocities ifE= 10 ft.

    ysft

    sfty

    yg

    qyE

    )/2.32(2

    )/50(

    2 22

    22

    2

    2

    (a) ftsft

    sft

    g

    qyNOTE

    yyE

    c 27.4/2.32

    )/50(

    .

    3/1

    2

    223/1

    2

    2

  • 7/30/2019 Chapter 10 Fluid

    4/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 2EXAMPLE 2

    =

    E=6.4ft

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 3EXAMPLE 3

    Example 3. Plot the specific energy diagram for a wide channel

    carrying q = 50 cfs per foot (50 ft2/s). determine (a) the critical

    depth, (b) the minimum specific energy, (c) the alternate depth

    corresponding to a depth of 2.5 ft, and (d) the possible flow

    velocities ifE= 10 ft.

    ftftyEb c 41.6)27.4(2/32/3) min

    ftyandftyftyy

    y

    fty

    yEthenftyifc

    91.1;12.8;5.2;8.38

    71.8

    71.85.2

    8.385.2

    8.38,5.2)

    2

    22

  • 7/30/2019 Chapter 10 Fluid

    5/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 2EXAMPLE 2

    y= .

    E=8.71 ft

    y=2.5 ft

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 3EXAMPLE 3

    Example 3. Plot the specific energy diagram for a wide channel

    carrying q = 50 cfs per foot (50 ft2/s). determine (a) the critical

    depth, (b) the minimum specific energy, (c) the alternate depth

    corresponding to a depth of 2.5 ft, and (d) the possible flow

    velocities ifE= 10 ft.

    8.381010)

    2ythenftEFord

    ;/3.2222.2

    /50;/22.5

    57.9

    /50/

    81.1;24.2;57.9

    22

    sftft

    sftsft

    ft

    sftyqV

    yroots

  • 7/30/2019 Chapter 10 Fluid

    6/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 2EXAMPLE 2

    y=9.57 ft

    y=2.24 ft

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 4EXAMPLE 4

    Example 3. A weedy irrigation canal of trapezoidal cross section

    is to carry a flow of20 m3/s when built on a slope of0.56 m per

    km. The side slope ratio (Z) is 1.0 and the bottom width is 8

    meters. Determine the width of the waterline at the free surface.

    1

    Z

  • 7/30/2019 Chapter 10 Fluid

    7/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 4EXAMPLE 4

    Quess d,m Area, m2 Per, m Rh, m Q,calc Top, m

    1.00 9.00 10.83 0.83 6.28 10.00

    1.10 10.01 11.11 0.90 7.37 10.20

    1.20 11.04 11.39 0.97 8.53 10.40

    1.30 12.09 11.68 1.04 9.76 10.60

    1.40 13.16 11.96 1.10 11.06 10.80

    1.50 14.25 12.24 1.16 12.44 11.00

    1.60 15.36 12.53 1.23 13.88 11.20

    . . . . . .

    1.80 17.64 13.09 1.35 16.98 11.60

    1.90 18.81 13.37 1.41 18.63 11.802.002.00 20.0020.00 13.6613.66 1.461.46 20.3420.34 12.0012.00

    2.10 21.21 13.94 1.52 22.13 12.20

    2.20 22.44 14.22 1.58 23.99 12.40

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 4EXAMPLE 4

  • 7/30/2019 Chapter 10 Fluid

    8/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.3 TEXT (Modified)EXAMPLE 10.3 TEXT (Modified)

    Example 3. Water flows in a channel of trapezoidal cross section.

    The bottom drops 1.4 ft per 1000 ft of length. The canal is lined

    with new finished concrete. LET Z =2!!!!

    FIND: (a) the flow rate and (b)The Froude Number for this flow.

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.3 TEXT (Modified)EXAMPLE 10.3 TEXT (Modified)

    Example 3. Water flows in a channel of trapezoidal cross section.

    The bottom drops 1.4 ft per 1000 ft of length. The canal is lined

    with new finished concrete. LET Z =2!!!!

    FIND: (a) the flow rate and (b)The Froude Number for this flow.

    S0 = 0.0014 ft/ft

    b = 12.0 ft

    d = 5.0 ft

  • 7/30/2019 Chapter 10 Fluid

    9/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.3 TEXT (Modified)EXAMPLE 10.3 TEXT (Modified)

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.3 TEXT (Modified)EXAMPLE 10.3 TEXT (Modified)

    b =12 ft, d = 5 ft, Z=2

    A = bd + zd2

    P = b + 2d (Z2+1)1/2

    Rh = A/PQ = 1.49 (A) (Rh)2/3 S0

    1/2

    n

    Fr = V/(gy)1/2 = V/(gdh)

    1/2

    with dh = AREA/TOPWIDTH

  • 7/30/2019 Chapter 10 Fluid

    10/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.3 TEXT (Modified)EXAMPLE 10.3 TEXT (Modified)

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.3 TEXT (Modified)EXAMPLE 10.3 TEXT (Modified)

    0.012 Finish Concrete

    0.015 Brickwork

    0.016 Asphalt

    0.025 Rubble

    0.035 Pasture

    0.050 Li ht brush

    0.075 Heavy Brush0.150 Trees

  • 7/30/2019 Chapter 10 Fluid

    11/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.3 TEXT (Modified)EXAMPLE 10.3 TEXT (Modified)

    Area, ft2 Per, f t Rh, f t Q, c fs Top, f t n Material

    110.0 34.361 3.201 1110 32.0 0.012 Finish Conc

    110.0 34.361 3.201 888 32.0 0.015 Brickwork

    110.0 34.361 3.201 833 32.0 0.016 Asphalt

    110.0 34.361 3.201 533 32.0 0.025 Rubble

    110.0 34.361 3.201 381 32.0 0.035 Pasture

    . . . . .

    110.0 34.361 3.201 178 32.0 0.075 Heavy Brush

    110.0 34.361 3.201 89 32.0 0.15 Trees

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.3 TEXT (Modified)EXAMPLE 10.3 TEXT (Modified)

    Finish Concrete

    Brickwork

    Asphal t

    Rubble

    Pasture

    Light brush eavy rus Trees

  • 7/30/2019 Chapter 10 Fluid

    12/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.3 TEXT (Modified)EXAMPLE 10.3 TEXT (Modified)

    Material Velocity, f t/s Fr

    . .

    Brickwork 8.07 0.77

    Asphalt 7.57 0.72

    Rubble 4.84 0.46

    Pasture 3.46 0.33

    g rus . .

    Heavy Brush 1.61 0.15

    Trees 0.81 0.08

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.4 TEXT (Modified)EXAMPLE 10.4 TEXT (Modified)

    b =12 ft, Z=2

    = 400 cfs

    S0 =0.0014 ft/ft

    WEEDY n = 0.030

    FIND depth of flow

    A = bd + zd2 P = b + 2d (Z2+1)1/2

    Rh = A/P Q = 1.49 (A) (Rh)2/3 S0

    1/2

    n

  • 7/30/2019 Chapter 10 Fluid

    13/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.4 TEXT (Modified)EXAMPLE 10.4 TEXT (Modified)

    Quess d,ft Area, ft2 Per, ft Rh, ft Q,calc Top, ft Vel, ft/s Fr

    4.00 80.00 29.89 2.68 286.6 28.0 3.58 0.37

    4.10 82.82 30.34 2.73 300.6 28.4 3.63 0.37

    4.20 85.68 30.78 2.78 315.1 28.8 3.68 0.38

    4.30 88.58 31.23 2.84 329.8 29.2 3.72 0.38

    4.40 91.52 31.68 2.89 345.0 29.6 3.77 0.38

    4.50 94.50 32.12 2.94 360.5 30.0 3.82 0.38

    4.60 97.52 32.57 2.99 376.5 30.4 3.86 0.38

    . . . . . . . .

    4.75 102.13 33.24 3.07 401.1 31.0 3.93 0.38

    4.80 103.68 33.47 3.10 409.5 31.2 3.95 0.384.90 106.82 33.91 3.15 426.5 31.6 3.99 0.38

    5.00 110.00 34.36 3.20 444.0 32.0 4.04 0.38

    5.10 113.22 34.81 3.25 461.9 32.4 4.08 0.38

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.4 TEXT (Modified)EXAMPLE 10.4 TEXT (Modified)

  • 7/30/2019 Chapter 10 Fluid

    14/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.6 TEXTEXAMPLE 10.6 TEXT

    Water flows along a drainage canal having the properties shown in

    the figure below. The bottom slope S0 = 0.002 ft/ft. Estimate the

    flow rate when the depth is 1.4 feet.

    Q = Q1 + Q2 + Q3 Qi = 1.49 (Ai) (Rhi)2/3 S0

    1/2

    ni

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.6 TEXT (Modified)EXAMPLE 10.6 TEXT (Modified)

    S0= 0.002

    i A i ,ft2 Pi , ft Rhi, ft n i Qi, ft3/s

    1 1.8 3.6 0.500 0.020 3.78

    2 2.8 3.6 0.778 0.015 10.52

    . . . . .

    16.82

    TOTAL 6.4 10.8 0.5926 0.0179

  • 7/30/2019 Chapter 10 Fluid

    15/15

    CHAPTER 10. OPEN CHANNEL FLOWCHAPTER 10. OPEN CHANNEL FLOW

    EXAMPLE 10.6 TEXT (Modified)EXAMPLE 10.6 TEXT (Modified)