Chapter 09 FWS

download Chapter 09 FWS

of 31

Transcript of Chapter 09 FWS

  • 8/9/2019 Chapter 09 FWS

    1/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    CHAPTER 9 INTEGRATION

    Focus on Exam 9

    1 3 +sinxcos2x dx= 3

    cos2x+ sinx

    cos2xdx =[3 sec2x+(cosx)2sinx] dx

    =[3 sec2x(cosx)2(sinx)] dx

    =3 tanx(cosx)1

    1+c

    =3tanx+ 1cosx

    +c

    2 sin2xcos2xdx=(sinxcosx)2dx

    =12sin 2x2

    dx

    =14sin22xdx

    =14

    1 cos 4x2 dx

    =18

    (1 cos 4x) dx

    =18

    x14sin4x+c

    3 x1 x4dx=du2

    1 u2

    = 12

    du1 u2

    =12

    12

    ln 1 +u1 u+c

    =1

    4ln

    1 +x2

    1 x2

    +c

    dxa2x2=1

    2aln a+xax +c

    sin 2x=2 sinxcosx

    sinxcosx=1

    2sin 2x

    cos 4x=1 2 sin22x

    sin22x =1 cos 4x

    2

    u=x2dudx

    =2x

    x dx =du2

  • 8/9/2019 Chapter 09 FWS

    2/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term2

    4 Let x=sin

    dxd

    =cos

    dx=cos d

    dx

    x2 1 x2=

    cos d

    sin2 1 sin2

    = cos dsin2 cos2 = dsin2 =csc2d

    =cot +c

    = 1x2

    x +c [Shown]

    5 Let u=lnx

    dudx

    =1x

    dxx

    = du

    dxx lnx= dxx

    1lnx

    = duu =ln |u| +c

    = ln |lnx| +c

    6ddx

    (tan3x)=3 tan2x sec2x

    =3(sec2x1) sec2x =(3 sec2x3) sec2x = 3sec4x3sec2x [Shown]

    (3 sec4x3 sec2x) dx=tan3x+c

    3 sec4xdx 3 sec2xdx=tan3 x+c

    3 sec4 xdx=3 sec2xdx+tan3x+c

    =3 tanx+tan3x+c

    sec4xdx= tanx+ 13tan3x+ c

    3

    sec4xdx=tanx+13tan3x+c

    1 x

    q

    1 x2

  • 8/9/2019 Chapter 09 FWS

    3/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 3

    7 xsinxcosxdx= x12sin 2xdx

    =12xsin 2xdx

    =1

    2

    cos 2x

    1

    2

    x

    1

    2

    cos 2x

    1

    2dx

    =14

    x cos 2x+14cos 2xdx

    =14

    xcos2x+18

    sin2x+c

    8 1

    0

    x

    1 +x2dx =1

    2

    1

    0

    2x1 +x2

    dx

    =12

    [ln |1 +x2|]10

    =12[ln (1 +12) ln (1 +02)]

    =12

    (ln 2 ln 1)

    =12

    ln2

    9 2

    0

    x2

    16 x2dx

    Letx=4 sin dx=4 cos d

    For the lower limit, whenx=0, 0 =4 sin =0

    For the upper limit,

    whenx=2, 2 =4 sin

    sin =12

    =6

    06 16 sin

    2

    16 16 sin2(4 cos d) = 0

    6

    16 sin2

    4 1 sin2(4 cos d)

    = 0616 sin2 d

    = 06161 cos 22 d

    =806(1 cos 2) d

  • 8/9/2019 Chapter 09 FWS

    4/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term4

    =8 12sin 206

    =8612

    sin3

    0

    =43 4

    3

    2 =4

    3 2 3 [Shown]

    10 Let t=tan x2

    dtdx

    =12

    sec2x

    2

    dtdx

    =12

    1 +tan2x2 dt

    dx=1

    2(1 +t2)

    dx = 2 dt1+t2

    For the lower limit, whenx=0, t=tan 0 =0

    For the upper limit, whenx= 2

    ,

    t= tan 4 = 1

    11

    x

    t2

    1 t2

    + 2t

    0

    2 5 dx3 sinx +4 cosx= 5

    1

    0

    2 dt

    1+t2

    3 2t1+t2+ 41t21+t2

    = 5 1

    0

    2 dt6t+4 4t2

    = 5 1

    0

    dt3t+2 2t2

    = 51

    0

    dt2t23t2

    = 51

    0 dt

    (2t+1)(t2)

  • 8/9/2019 Chapter 09 FWS

    5/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 5

    Let1

    (2t +1)(t2)= A

    2t+1+ B

    t 2

    1 A(t 2) +B(2t +1)

    Letting t=2, 1 =B(5)

    B=15

    Letting t= 12

    , 1 =A 52 A= 2

    5

    51

    0

    dt(2t +1)(t2)

    = 51

    0 25(2t +1)+

    15(t 2)dt

    = 5

    1

    5

    ln 2t +1+ 1

    5

    ln t 2

    1

    0

    = ln 2t +1 ln t 21

    0

    = ln 2t +1t 2 1

    0

    =ln 3 ln 12 =ln

    31

    2

    =ln 6 [Shown]

    11 023

    dx1sinx

    Let t=tan x2

    tanx=2 tan

    x

    2

    1 tan2x

    2

    = 2t1t2

    t =tan x2

    dtdx

    =12

    sec2x

    2

    =12

    1 +tan2x2

    =12(1 +t2)

    x

    1 + t2

    1 t2

    2t

  • 8/9/2019 Chapter 09 FWS

    6/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term6

    2 dt =(1 +t2) dx

    dx = 2 dt1+t2

    Whenx=0, t=tan 02

    =0

    Whenx=23

    , t=tan 3

    = 3

    023

    dx1sinx

    =03

    2 dt1+t2

    1 2t1+t2

    =03

    2 dt

    1+t22t

    = 203

    dt

    (t1)2

    = 2(t 1)1

    1 03

    = 2t 1

    0

    3

    = 23 1

    21

    = 23 1

    2

    =2 2 31

    3 1

    =2 3

    3 1

    =2 3

    1 3 [Shown]

  • 8/9/2019 Chapter 09 FWS

    7/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 7

    12 Let t=tan x2

    dtdx

    =12

    sec2x

    2

    dtdx

    =12

    1 +tan2x2

    dtdx

    =12

    (1 +t2)

    dx = 2 dt1+t2

    For the lower limit, whenx=0, t=tan 0 =0

    For the upper limit, whenx= 23

    , t= tan 2

    = 3

    023

    35+4 cosx

    dx =03

    3 2 dt1+t25 + 41 t

    2

    1+t2dx

    =03

    6 dt5+5t2+4 4t2

    = 603

    dt9 +t2

    = 6 13

    tan1 t303

    dxa2+x2=1

    atan1

    x

    a+c

    = 2tan1 33 tan10 = 260 =

    3 [Shown]

    13 sinxA(3 sinx+4 cosx) +B(3 cosx4 sinx) sinx (3A4B)sinx+(4A+3B)cosx

    Equating the coefficients of sinx,

    1 =3A4B

    Equating the coefficients of cosx,

    0 =4A+3B Solvingandsimultaneously, we have

    A= 3

    25andB= 4

    25

    x

    1 + t2

    1 t

    2

    2t

  • 8/9/2019 Chapter 09 FWS

    8/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term8

    02 sinx

    3 sinx+4 cosxdx =0

    2

    325

    (3 sinx+4 cosx) 425

    (3 cosx4 sinx)

    3 sinx+4 cosxdx

    =02 325

    425

    3 cosx4 sinx3 sinx+4 cosxdx

    = 325x 425ln |3 sinx+4 cosx|02

    = 325

    2 0425

    [ln |3 +0| ln |0 +4|]

    =0.235

    1417 +x

    (4 3x)(1 +2x)A

    4 3x+ B

    1 + 2x 17 +xA(1 + 2x) +B(4 3x)

    Lettingx= 12, 16 12= B4 3 12 16

    12

    = B5 12 B=3

    Lettingx= 43

    , 1813

    = A1 + 243 18

    13

    = A323 A=5

    17 +x(4 3x)(1 +2x)

    = 54 3x

    + 31 + 2x

    1

    21

    3

    17 +x

    (4 3x)(1 +2x)dx=

    1

    21

    3

    54 3x+3

    1 + 2xdx

    = 53

    1

    21

    3

    3

    4 3xdx +3

    2

    1

    21

    3

    2

    1 + 2xdx

    = 53

    [ln |4 3x|]1

    21

    3

    +32

    [ln |1 + 2x|]1

    21

    3

    =

    5

    3ln 4 3

    2 ln 4 3

    3+3

    2ln1 +2

    2 ln1 +2

    3 = 5

    3ln 52 ln 3+

    32

    ln 2 ln 53

    = 53

    ln 523+3

    2ln 253

    = 53

    ln56

    +32

    ln65

    =0.577 [Shown]

  • 8/9/2019 Chapter 09 FWS

    9/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 9

    156x6

    (x +3)(x2+3) A

    x+3+ Bx +C

    x2+ 3

    6x6 A(x2+ 3) +(Bx + C)(x +3) Lettingx=3, 18 6 =12A 24 =12A

    A =2 Lettingx=0, 6 =3A +3C 6 =6 +3C C =0

    Lettingx=1, 0 =4A + (B+C)(4) 0 =8 +4B B =2

    6x6(x +3)(x2+3)

    2x+3 +

    2x

    x2+ 3

    2

    1

    6x6

    (x +3)(x2+3)dx=

    2

    1 2x+3+

    2xx2+ 3dx

    = 2 [ln |x+ 3|]12+[ln |x2+ 3|]

    12

    = 2 (ln 5 ln 4) +ln7 ln 4

    = 2 ln 54

    +ln 74

    = ln

    7

    4

    542

    = ln 2825

    [Shown]

    1613 11x+6x2(x +3)(x2)2

    Ax+3

    + B(x 3)2

    + Cx 2

    13 11x+6x2A(x 2)2+B(x + 3) +C(x +3)(x 2)

    Lettingx=2, 15 =5B B =3

    Lettingx=3, 100 =25A A =4

    Lettingx=0, 13 =4A + 3B6C 13 =4(4) + 3(3) 6C C =2

  • 8/9/2019 Chapter 09 FWS

    10/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term10

    13 11x+6x2

    (x +3)(x2+3)= 4

    x+3+ 3

    (x 2)2+ 2

    x 2

    4

    3

    13 11x+6x2(x +3)(x2+3)

    =4

    3

    4x+3

    dx+4

    3

    3(x2)2

    dx + 4

    3

    2x 2

    dx

    = 4 [ln |x+ 3|]34+3

    4

    3

    (x 2)2dx+2[ln |x 2|]3

    4

    = 4 [ln |x+ 3|]3

    4 3x 24

    3+2[ln |x 2|]

    3

    4

    = 4 (ln 7 ln 6) 32 31+2(ln 2 ln 1)

    = 4 ln 76

    +32

    +2 ln 2

    =3.50 [Shown]

    17 1x2+2x 15x2+2x 14

    x2+2x 151

    x2+2x 14x2+2x 15

    =1 + 1x2+2x 15

    =1 + 1(x 3)(x +5)

    Let1

    (x 3)(x+5) A

    x 3+ B

    x+ 5 1 A(x+ 5) +B(x 3)

    Lettingx=5, 1 =8BB= 1

    8

    Lettingx=3, 1 =8A

    A= 18

    x2+2x 14

    x2+2x 15=1 + 1

    8(x 3) 1

    8(x+ 5)

    5

    4

    x2+2x 14x2+2x 15

    dx = 5

    41 + 18(x 3)

    18(x+ 5)dx

    = x+ 18 ln |x3| 18

    ln |x+ 5|4

    5

    = 5 + 18

    ln2 18

    ln 10 4 + 18 ln 1 18

    ln 9 = 5 + 1

    8ln2 1

    8ln 10 4 + 1

    8ln 9

    = 1 + 18

    ln 2 910

    =1

    +

    1

    8ln

    9

    5 [Shown]

  • 8/9/2019 Chapter 09 FWS

    11/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 11

    18

    0x cos2xdx =

    p

    0x1 +cos 2x2 dx

    =p

    0

    12

    (x +xcos 2x) dx

    cos 2x=2 cos2x1

    cos2x = 1 +cos 2x2

    =p

    012 x dx +

    p

    012 x cos 2xdx

    =12x2

    2 p

    0

    +12 sin 2x 12

    xp

    0

    p

    0

    12

    sin 2x12dx Integrating by parts.

    =x2

    4 p

    0

    +14x sin 2xp

    0

    p

    0

    14

    sin 2xdx

    =x2

    4 p

    0

    +14x sin 2xp

    0

    +18cos 2x

    0

    =2

    4

    0 +1

    4

    sin 20+1

    8cos 21

    8cos 0

    =2

    4+1

    81

    8

    = 2

    4 [Shown]

    19y =4x25x y =5x6x2

    Substitutinginto,

    4x25x=5x6x2

    10x2

    10x=0 10x(x 1) =0 x =0or1 From: Whenx=0, y=0. Whenx =1,y=1. Hence, the points of intersection are (0, 0) and (1,1).

    y =4x25x=x(4x5) The curve cuts thex-axis at the

    points (0, 0) and1 14, 0.dy

    dx=8x5

    Since a > 0, the curve has a minimum point.

    At minimum point,dy

    dx=0

    8x5 =0

    x=58

    Whenx=58

    ,y=4582

    558 =1 9

    16

  • 8/9/2019 Chapter 09 FWS

    12/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term12

    Hence, the minimum point of the curve is 58, 1916.

    y =5x6x2=x(5 6x)

    dy

    dx=5 12x

    The curve cuts thex-axis at the points

    (0, 0) and 56, 0.

    Since a < 0, the curve has a maximum point.

    At maximum point,dy

    dx=0

    5 12x=0

    x= 512

    Whenx= 512

    ,y=5 512 6512

    2

    =11

    24

    Hence, the minimum point of the curve is 512 , 1124.

    The graphs ofy=4x25xandy=5x6x2are as shown in the following diagram.

    y= 4x2 5x

    y= x

    (1, 1)

    xO

    y

    1

    1

    1

    2

    2

    2

    y= 5x 6x2

    124512 , 1

    ,

    A1

    A2

    1 91658

    The equation of the chord joining the points of intersection (0, 0) and (1, 1) isy =x.

    A1=

    1

    05x6x2(x)dx

    =1

    0(6x 6x2) dx

    =3x22x310 =3(1)2 2(1)3 0 =1 unit2

  • 8/9/2019 Chapter 09 FWS

    13/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 13

    A2=

    1

    0[x(4x25x)] dx

    =1

    0(4x 4x2) dx =2x24x

    3

    3 1

    0

    =2(1)2 413 0 =2

    3units2

    A1: A

    2=1 : 2

    3

    =3:2 [Shown]

    20 The graph ofy=3 ln (x 2) is as shown in the following diagram.

    xO 2 43

    y= 3 ln (x2)

    y

    Required area =4

    3 y dx

    =4

    3 3 ln |x 2| dx Copy back

    =[3xln |x2|]43

    4

    33x 1

    x 2dx

    Differentiate

    =3xln |x2|43 3

    4

    3

    x

    x 2dx

    =3xln |x2|43 3

    4

    31 + 2x 2dx

    =3xln |x2|43 3x+2 ln |x2|4

    3

    1

    x2 x x2 2

    x

    x 2 =1 +2

    x 2

    =3(4) ln 2 3(4 +2 ln 2)[3(3) ln 1 3(3 + 2 ln 1)]

    =12 ln 2 12 6 ln 2 9(0) +9 +6(0)

    =6 ln 23 [Shown]

    To be kept.

    To be integrated.

  • 8/9/2019 Chapter 09 FWS

    14/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term14

    21y=x2 y =x2x3

    Substitutinginto,

    x2=x2x3

    x32x2=0 x3(x 2) =0 x =0or2

    From: Whenx=0, y=0

    Whenx =2,y=22

    =4

    Hence, the points of intersection of the curves are (0, 0) and (2,4).

    y =x2x3

    =x2

    (1 x)

    The curve intersects thex-axis at the

    points (0, 0) and (1, 0).

    dy

    dx=2x3x2

    d2y

    dx2=2 6x

    At turning points,

    dy

    dx=0. 2x3x2=0

    x(23x) =0

    x=0 or 23

    Whenx=0, y=0 andd2y

    dx2=2 6(0)

    =2 (>0)

    Thus, (0, 0) is a minimum point.

    Whenx=23

    ,y=232 23

    3

    = 427

    and

    d2y

    dx2=2 6 23

    =2 (< 0)

    Thus, 23,

    427is a maximum point.

  • 8/9/2019 Chapter 09 FWS

    15/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 15

    The graphs ofy=x2andy=x2x3are as shown in the following diagram.

    x

    y

    O

    y1= x2

    y2= x2 x3

    (2, 4)

    42723 ,

    Required area =2

    0 (y2y1) dx =

    2

    0 (x2x3(x2)dx

    =2

    0 (2x2x3) dx

    =2x3

    3x

    4

    4 2

    0

    =23

    (8) 164

    0

    =11

    3units2

    [Shown]

    22 y =4x

    y2=4(x 1)

    Substitutinginto:

    4x2

    =4(x 1)

    16

    x

    2=4(x 1)

    4

    x2=x 1

    4 =x3x2

    x3x2 4 =0 By inspection, x=2 satisfies the equation.

    (x2)(x2+x+2) =0

    x2 =0 or x2+x+2 =0 x=2 No real roots because b24ac =12 4(1)(2)

    =7 (< 0)

  • 8/9/2019 Chapter 09 FWS

    16/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term16

    Whenx=2, y =42

    =2

    Hence, the point of intersection of the curves is (2, 2).

    The graphs of the curvesy =4x

    andy2=4 (x 1) is as shown in the following diagram.

    y

    xO

    (2, 2)

    y=4x

    y2= 4(x 1)

    y2

    =

    4(x

    1)

    3

    2

    1

    A2

    A1

    Required area =A1+A

    2

    =2

    0y

    2

    4+1dy+

    3

    2

    4y

    dy

    =y3

    12+y

    2

    0

    +[4 lny]32

    = 812+ 2 0+(4 ln 3 4 ln 2)

    =8

    3+ 4 ln 3

    2units2

    [Shown]

    23 y=x(x+2)(x3) =x3x2 6x y=x(x3) =x23x

    Substitutinginto, x3x2 6x =x23x x32x2 3x =0 x(x22x3) =0

    x(x+1)(x3) =0 x=0, 1 or 3 From: Whenx=1,y=(1)2 3(1) =4 Whenx=0, y=0 Whenx=3, y=32 3(3) =0 Hence, the points of intersection are (1, 4), (0, 0)and(3, 0).

    y=x(x+2)(x3) =x3x2 6x The curve cuts thex-axis at the points (2, 0), (0, 0) and (3, 0).

  • 8/9/2019 Chapter 09 FWS

    17/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 17

    dy

    dx=3x22x 6

    d2y

    dx2=6x2

    At turning points,dy

    dx=0

    3x2

    2x 6 =0 x=

    2 (2)2 4(3)(6)2(3)

    x=1.79 or 1.12 Whenx=1.79,y=1.79(1.79 +2)(1.79 3) =8.21 and

    d2y

    dx2=6(1.79) 2

    =8.74 (> 0)

    (1.79, 8.21) is a minimum point. Whenx=1.12,y=1.12(1.12 + 2)(1.12 3) =4.06 and

    d2y

    dx2=6(1.12) 2

    =8.72 (< 0) (1.12, 4.06) is a maximum point. y=x(x3) =x23x The curve cuts thex-axis at the points (0, 0) and (3, 0). Its minimum point is (1.5, 2.25).

    The graphs ofy=x(x+2)(x3) andy=x(x3) is as shown in the following diagram.y

    xO

    2

    4

    6

    8

    12

    2

    4

    6

    8

    321

    y= x(x 3)

    y= x(x+ 2)(x 3)(1.12, 4.06)

    (1.5, 2.25)

    (1.79, 8.21)

    A2

    A1

    x =0 +3

    2

    y =1.5(1.5 3)

  • 8/9/2019 Chapter 09 FWS

    18/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term18

    Required area =AreaA1+AreaA

    2

    =0

    1x3x26x(x23x)dx+

    3

    0x23x(x3x26x) dx

    =0

    1(x32x23x) dx +

    3

    0(x3+2x2+3x) dx

    =x4

    42x

    3

    33x

    2

    20

    1+x

    4

    4+2x

    3

    3+3x

    2

    23

    0

    =0 (1)4

    4

    2(1)3

    3

    3(1)2

    2 +34

    4+2(3)

    3

    3+3(3)

    2

    2 3

    0

    0

    =14+23

    32+

    814

    +18 +272

    =1156

    units2 [Shown]

    24y=ex

    Whenx=0, y=e0 =1

    Whenx + ,y +

    Whenx ,y0 y=2 +3ex

    =2 + 3ex

    Whenx=0, y=2 + 3e0

    =5

    Whenx + , 3

    ex 0 and thusy 2

    Whenx ,y +

    x

    y

    O In 3

    1

    2

    5

    y= 2 + 3ex

    y= ex

    y=ex y=2 +3ex

    Substitutinginto, we have:

    ex=2 +3ex

    ex=2 + 3

    e

    x

    (ex)2=2ex+3

  • 8/9/2019 Chapter 09 FWS

    19/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 19

    (ex)2 2ex 3 =0 (ex 3)(ex+ 1) =0 ex=3 or ex=1 x=ln 3 (No solution)

    Hence, thex-coordinate of the point of intersection of the curves y=exandy=2 +3exis ln 3.

    Area of the shaded region =ln 3

    0 2 +3ex

    ex

    dx =2x+3 11ex ex

    ln 3

    0

    =2x 3ex exln 3

    0

    =2 ln 3 3eln3

    eln 32(0) 3e0e0 =2 ln 3 3

    3 3 0 + 3 + 1

    =2.20 units2

    25 (a) y 2=x(x4)2

    y = x (x4) Hence, the axis of symmetry is thex-axis.

    (b) Sincey 20, thenx(x4)20. Because (x4)20, x(x4)20 if and only ifx0. Hence, the curve exists only forx0.

    (c) y 2=x(x4)2

    =x(x2

    8x+16) =x3 8x2+16x

    2ydy

    dx=3x216x+16

    dy

    dx=3x

    216x+162y

    At turning points,dy

    dx=0.

    3x216x+16

    2y=0

    3x216x+16 =0 (3x4)(x4) =0

    x=43

    Whenx=43

    ,y 2=43

    4342

    =9 1327

    y=3.08

    Hence, the turning points are 113, 3.08and 1

    13,3.08.

    x=4 is not accepted because whenx=4,y=0

    anddy

    dx=

    0

    0(undefined).

  • 8/9/2019 Chapter 09 FWS

    20/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term20

    (d) The curvey 2=x(x4)2is as shown in the following diagram.

    x

    y

    O 4

    131 , 3.08

    131 , 3.08

    (e) Volume generated =

    4

    0

    y 2dx

    =4

    0x(x4)2dx

    =4

    0(x3 8x2+16x) dx

    = x4

    4 8x

    3

    3+ 8x2

    4

    0

    = 64 83(64) +128

    =2113 units

    3

    26y 2=6x ... y =2x +6 ...

    Substitutinginto,

    (2x +6)2=6x 4x224x +36=6x 4x230x +36 =0 2x215x +18=0

    (2x 3)(x 6)=0 x =3

    2or 6

    From: Whenx =32

    ,y=2 32+6 =3

    Whenx =6,y =2(6) +6 = 6

    Hence, the points of intersection of the curvey 2=6xand the straight liney=2x+6 are 32

    , 3and (6, 6).

  • 8/9/2019 Chapter 09 FWS

    21/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 21

    The graphs ofy 2=6x andy=2x+6 are as shown in the following diagram.

    x

    y

    O

    y12= 6x

    y2= 2x+ 6

    (6, 6)

    6

    3

    3 6

    V1

    V2

    32

    V1=

    3

    0 y 2

    6 2

    dy+6

    3 6 y

    2 2

    dy

    =3

    0y

    4

    36dy+1

    4

    6

    3(36 12y+y 2) dy

    = y5

    1803

    0

    +14

    36y6y 2+y3

    3 6

    3

    = 243180+14

    36(6) 6(6)2+2163 36(3) 6(3)2+273

    =2720

    +14

    (72 63)

    =185 units

    3

    V2=

    6

    06x dx

    6

    3(2x+6)2dx

    = [3x2]60 6

    3(4x224x+36) dx

    =3 (36 0) 4x3

    3 12x2+36x

    6

    3

    =108 43(6)312(6)2+36(6) 43

    (3)312(3)2+36(3) =108 [72 36] =72 units3

    V1: V

    2=

    185

    72

    = 120

    =1: 20 [Shown]

    27y =x(4 x) =4x x2

    y =4x

    1

  • 8/9/2019 Chapter 09 FWS

    22/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term22

    Substitutinginto,

    4x x2=4x

    1

    4x2x3=4 x x34x2x +4=0

    By inspection,x =1 satisfies the equation. (x 1)(x23x 4) =0

    (x1)(x+1)(x4) =0 x =1, 1 or 4 x =1is not accepted x =1or 4

    From: Whenx =1, y =41

    1

    =3

    Whenx=4, y=44

    1

    =0

    Hence, the points of intersection of the curves are (1, 3) and (4, 0) forx>0.

    The graphs ofy=x(4 x) andy=4x

    1 forx0 are as shown in the following diagram.

    y

    xO

    (2, 4)

    (1, 3)

    y2=4x

    y1= x(4 x)

    1

    4

    1

    Volume generated =4

    1y

    22dx

    4

    1y

    12dx

    =4

    1x2 (4 x)2dx

    4

    14x 1

    2

    dx

    =4

    1x2(16 8x +x2) dx

    4

    116x2

    8x

    + 1dx =

    4

    1(16x28x3+x4) dx

    4

    116x2

    8x

    + 1dx

    =16x3

    3 2x4

    +x5

    5 4

    1

    16x 8 lnx+x

    4

    1

    x2 3x 4

    x 1 x34x2x+4x3x2

    3x2x3x2+3x

    4x+ 44x+4

    0

  • 8/9/2019 Chapter 09 FWS

    23/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 23

    =16(4)3

    32(4)4+4

    5

    5163 2 +

    15

    164 8 ln 4 + 4 (16 8 ln 1 +1) =303

    5(15 8 ln 4)

    =1535

    +8ln 22

    =1535

    +16ln 2

    =1535+16ln2 [Shown]

    282x+1

    (x2+1)(2 x)Ax+B

    x2+1+ C

    2 x

    2x+1 (Ax+B)(2 x) +C(x2

    +1) Lettingx=2, 5 =C(5) C=1

    Lettingx=0, 1 =2B+C 1 =2B +1 B =0

    Lettingx=1, 3 =(A+B) +2C 3 =(A+0) +2(1) A=1

    2x+1(x2+1)(2 x)

    = xx2+1

    + 12x

    1

    0

    2x+1(x2+1)(2 x)

    dx=1

    0 xx2+1

    dx+1

    0

    12 x

    dx

    =12

    1

    0

    2xx2+1

    dx1

    0

    12 x

    dx

    =12ln (x2+1)1

    0[ln (2 x)]1

    0

    =12

    (ln 2 ln 1) (ln 1 ln 2)

    =1.04

    29 (a)

    x2+x+2

    x2

    +2=1+ x

    x2

    +2

    1

    x2+2 x2+x+2x2 +2

    x

  • 8/9/2019 Chapter 09 FWS

    24/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term24

    x2+x+2x2+2

    dx =1+ xx2+2dx

    =1+122x

    x2+2dx =x+1

    2

    ln|x2+2| +c

    (b) x

    ex+1dx =xe (x+1)dx

    = 11

    e(x+1)xe (x+1)1 dx = x

    ex+1+e (x+1)dx

    = xex+1

    + 11

    e (x+1)+c

    = xex+1 1ex+1+c

    =x+1ex+1

    +c

    30 (a)dy

    dx=3x5

    2 x

    y=3x52 xdx

    y=3

    2x

    12

    5

    2x

    12

    dx y=3

    2x

    32

    3252x

    12

    12+c

    y=x32 5x

    12 +c

    Since the curve passes through the point (1, 4), then

    4 =(1)3

    2 5(1)1

    2+c

    4 =1 5 +c c=0

    Hence, the equation of the curve isy=x32 5x

    12

    =x12(x5)

    = x (x5)

    (b) At thex-axis,y=0

    x(x5) =0 x=0 or 5

    x=0 is ignored because it is given thatx>0. Therefore,x=5.

  • 8/9/2019 Chapter 09 FWS

    25/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 25

    At a turning point,dy

    dx=0.

    3x52 x

    =0

    3x5 =0

    x=53

    Whenx=53

    ,y= 53

    535 =4.30

    dy

    dx=3x5

    2 x

    =3

    2

    x125

    2

    x 1

    2

    d2y

    dx2=3

    4x

    12+5

    4x

    32

    = 3

    4x12

    + 5

    4x32

    Whenx=53

    ,d2y

    dx2= 3

    45312

    + 5

    45332

    (>0)

    Hence, 1 23, 4.30is a minimum point.

    Then curve ofy= x(x5) is as shown below.

    y

    xO 4 5321

    2

    4

    231 , 4.30

    (c) Area of the region bounded by the curve and thex-axis =5

    0ydx

    =5

    0 x32

    3x

    12

    dx

  • 8/9/2019 Chapter 09 FWS

    26/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term26

    =2x52

    55 2x

    32

    3

    5

    0

    =25(5)5210

    3(5)

    320

    =25( 5)

    5

    103 ( 5)

    3

    =25(25 5)

    103

    (5 5) =10 5503 5 =203 5 =20

    3

    5units2

    31 3

    2(x2)2

    x2dx =

    3

    2x

    24x+4x2 dx

    =3

    21 4x+4x2 dx

    =x 4 ln |x| +4 x1

    13

    2

    =x 4 ln |x| 4x3

    2

    =3 4 ln 3 43

    2 4 ln 2 42 =5

    3+4 ln 2 4 ln 3

    =53

    +4 (ln 2 ln 3)

    =53

    +4 ln 23 [Shown]

    32y=6 ex

    On thex-axis,y=0. 6 ex=0 ex=6 x=ln 6

    Thus, the curvey=6 exintersects thex-axis at (ln 6, 0).

    On they-axis,x=0. y=6 e0

    y=5

  • 8/9/2019 Chapter 09 FWS

    27/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 27

    Thus, the curvey=6 ex intersects they-axis at (0, 5).

    Asx ,y Asx ,y6

    (In 5, 1)

    In 6

    5

    6

    y= 6 ex

    y= 5ex

    O x

    y

    y=5ex

    On they-axis,x=0. y=5(e0) y=5

    Therefore, the curvey=5exintersects they-axis at (0, 5). Asx ,y 0. Asx

    ,y

    The curvesy=6 exandy=5exare as shown. y=6 ex y=5ex

    Substitutinginto,

    6 ex=5ex 6ex(ex)2=5 Letting ex=p, 6pp2=5

    p

    2

    6p+5 =0 (p1)(p5) =0 p=1 or 5 Whenp=1, ex=1 x=ln 1 x=0 Whenx=0, y=6 e0=5 Whenp=5, ex=5 x=ln 5

  • 8/9/2019 Chapter 09 FWS

    28/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term28

    Whenx=ln 5,y=6 e ln 5=6 5 =1 Hence, the points of intersection are (0, 5) and (ln 5, 1).

    Area of the shaded region =ln 5

    0 6 ex 5exdx

    =6xex

    5

    (1)ex

    ln 5

    0

    =6xe x+ 5exln 5

    0

    =6 ln 5 eln 5 5eln 5

    0 e0+ 5e0 =6 ln 5 5 +5

    5 (1 + 5)

    =6 ln 5 5 +1 +1 5

    =(6 ln 58) units2

    Volume of the solid generated =ln 5

    06 e x

    2

    5ex2

    dx

    =ln 5

    036 12ex+e2x25e2xdx

    =36x12ex+12e2x25

    (2)e2x

    ln 5

    0

    =36x12ex+12e2x252e2x

    ln 5

    0

    =36 ln 5 12eln 5+12e2 ln 5+25

    2e2 ln 50 12e0+12e0+

    252e0

    =36 ln 5 12(5) +12(25) +

    252(25)

    12+12+252

    =(36 ln 5 48)

    =12(3 ln 54)units3

    33 Let u=1 x

    dudx

    =1

    dx =du

    Whenx =0,u =1.

    Whenx =1, u =0.

    1

    0x2(1 x)

    1

    3dx =0

    1(1 u)2u

    1

    3(du)

    =0

    1u

    1

    3

    (1 u)2

    du

  • 8/9/2019 Chapter 09 FWS

    29/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 29

    =0

    1u

    1

    3(1 2u+u2) du

    =0

    1u

    1

    3+2u4

    3u7

    3du

    =u43

    43

    +2u73

    73

    u103

    103

    0

    1

    =34u4

    3+67

    u7

    3 310

    u10

    3 0

    1

    =0 34(1)4

    3+67

    (1)7

    3 310

    (1)10

    3

    =3

    46

    7+3

    10

    = 27140

    34 (a)

    O

    y1= x2 4

    y2= x2

    4

    2

    3

    2

    1

    2

    x

    y

    R

    (b) y=x2 y=x24

    Substitutinginto,

    x24 =x2

    x2

    x2 =0 (x2)(x+1) =0 x=2 or 1

    Whenx=2, y=2 2 =0

    Whenx=1,y=1 2 =3

    Hence, the coordinates of the points of intersection are (2, 0) and (1,3).

  • 8/9/2019 Chapter 09 FWS

    30/31

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term30

    (c) Area ofR =2

    1(y

    2y

    1) dx

    =2

    1(x2) (x2 4)dx

    =

    2

    1(x2+x+2) dx

    =x3

    3+x

    2

    2+2x

    2

    1

    =23

    3+2

    2

    2+2(2) (1)

    3

    3+

    (1)2

    2+2(1)

    =103

    76 =9

    2units2

    (d) Volume generated =

    2

    1(y12

    y22

    ) dx

    =2

    1(x24)2(x 2)2dx

    =2

    1(x48x2+16) (x24x+4)dx

    =2

    1(x49x2+4x +12) dx

    =x

    5

    53x3+2x2+12x

    2

    1

    =25

    53(2)3+2(2)2+12(2) (1)

    5

    53(1)3+2(1)2+12(1)

    =725 365

    =1085

    units3

    35 (a)

    x

    y

    y =

    y = x2 1

    12

    x2

    1 O 1

    (b) y=x2 1

    y

    x=

    12

    2

  • 8/9/2019 Chapter 09 FWS

    31/31

    Fully Worked Solutions 31

    x4x2= 12

    x4x2 12 = 0

    (x2+ 3)(x2 4) = 0 x2= 4 x= 2

    Whenx= 2, y = 4 1 = 3

    Hence, the points of intersection are (2, 3) and (2, 3).

    (c)

    xx

    2

    21

    12 =

    Volume = y yy

    y y+( ) + 112

    10

    32

    0

    12

    3

    12

    d d d

    = +

    + [ ] [ ] y

    y y y

    2

    0

    3

    3

    12

    0

    12

    2 (12) ln

    = +

    + ( ) ( )

    3

    23 6 12

    2

    ln ln12 3-

    = +15

    212 12ln 4

    = +9

    224 ln 2

    = 24 l 2

    9

    2units

    3n