Chapter 03 Mathematical Methods - University of...

98
Slides to accompany lectures in Vibro-Acoustic Design in Mechanical Systems © 2012 by D. W. Herrin Department of Mechanical Engineering University of Kentucky Lexington, KY 40506-0503 Tel: 859-218-0609 [email protected] Chapter 3 – Mathematical Methods

Transcript of Chapter 03 Mathematical Methods - University of...

Page 1: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

Slides to accompany lectures in

Vibro-Acoustic Design in Mechanical Systems © 2012 by D. W. Herrin

Department of Mechanical Engineering University of Kentucky

Lexington, KY 40506-0503 Tel: 859-218-0609

[email protected]

Chapter 3 – Mathematical Methods

Page 2: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Euler’s Formula

θθθ sincos je j +=

The Power of Complex Numbers

( ) ( ) ( ) ( ) ( ) ( ) ( )0!

0!4

0!3

0!2

44

33

22

1 nn

fnxfxfxfxaxfafxf +⋅⋅⋅+++++=

Taylor’s Series Proof

⋅⋅⋅+−+−=!6!4!2

1cos642 θθθ

θ

⋅⋅⋅+−+−=!7!5!3

sin753 θθθ

θθ

⋅⋅⋅+++−−+= jjje j!5!4!3!2

15432 θθθθ

θθ

Dept. of Mech. Engineering University of Kentucky

2

Page 3: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Complex Numbers - Example

jz 321 +=

Addition and Subtraction

jzz 2721 +=+

jz 152 −=

jzz 4321 +−=−

Dept. of Mech. Engineering University of Kentucky

3

Page 4: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Complex Numbers - Example

jz 321 +=

Multiplication and Division (Rationalization)

jjjzz 131332151021 +=+−+=

jz 152 −=

( )( )( )( ) 26

17755532

*22

*21

2

1 jjjjj

zzzz

zz +

=+−

++==

Dept. of Mech. Engineering University of Kentucky

4

Page 5: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Complex Numbers - Review Close and Frederick, 2002

Dept. of Mech. Engineering University of Kentucky

5

Page 6: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Complex Numbers - Review Close and Frederick, 2002

Dept. of Mech. Engineering University of Kentucky

6

Page 7: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Polar Form - Review

θcoszx =θsinzy =

22 yxz +=

⎟⎠

⎞⎜⎝

⎛=xyarctanθ

θjezz =

Close and Frederick, 2002

Dept. of Mech. Engineering University of Kentucky

7

Page 8: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Complex Number Notations - Review

jyxz +=

( )θθ sincos jzz +=

θ∠= zzθjezz =

Rectangular Form

Polar Form

Close and Frederick, 2002

Dept. of Mech. Engineering University of Kentucky

8

Page 9: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Polar Form - Review

jjezj

=⎟⎠

⎞⎜⎝

⎛+⎟⎠

⎞⎜⎝

⎛==⎟⎠

⎞⎜⎝

2sin

2cos2 ππ

π

jjezj

−=⎟⎠

⎞⎜⎝

⎛+⎟⎠

⎞⎜⎝

⎛==⎟⎠

⎞⎜⎝

23sin

23cos2

3ππ

π

( ) ( ) ( ) 1sincos −=+== πππ jez j

( ) ( ) ( ) 12sin2cos2 =+== πππ jez j

Dept. of Mech. Engineering University of Kentucky

9

Page 10: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Polar Form - Examples

jz 321 += jz 152 −=

jez 983.01 13= jez 197.0

2 26 −=

jezzj

1313338 421 +==

⎟⎠

⎞⎜⎝

⎛ π

26177

21

2613 18.1

197.0

983.0

*22

*21

2

1 jeee

zzzz

zz j

j

j +====

Dept. of Mech. Engineering University of Kentucky

10

Page 11: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Polar Form - Examples

jz 321 += jz 152 −=

°∠= 3.56131z °∠=°−∠= 7.348263.11262z

( ) °∠=°−°∠= 453383.113.5633821zz

( ) °∠=°−−°∠=°−∠

°∠= 6.67

213.113.56

21

3.11263.5613

2

1

zz

Dept. of Mech. Engineering University of Kentucky

11

Page 12: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Polar Form – Complex Conjugate

jz 321 +=

jez 983.0*1 13 −=

26177

21

2626

2613 18.1

197.0

197.0

197.0

983.0

*22

*21

2

1 jeee

ee

zzzz

zz j

j

j

j

j +====

+

+

jz 32*1 −=

jez 983.01 13=

Dept. of Mech. Engineering University of Kentucky

12

Page 13: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

MATLAB Commands

r = abs(z)

theta = angle(z)

x = real(z)

y = imag(z)

Dept. of Mech. Engineering University of Kentucky

13

Page 14: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

14

Example 1 Write the harmonically varying force as a complex force.

F t( ) = F cos ωt( )F t( ) = Fe jωt = F cos ωt( )+ j sin ωt( )( )F t( ) = Re Fe jωt( )

Page 15: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

15

Example 2 Write the harmonically varying force as a complex force.

F t( ) = F1 cos ωt( )− F2 sin ωt( )F t( ) = F1 + jF2( )e jωt = F1 + jF2( ) cos ωt( )+ j sin ωt( )( )F t( ) = F1 cos ωt( )− F2 sin ωt( )+ j F1 sin ωt( )− F2 cos ωt( )( )

Page 16: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

16

Example 3 Write the harmonically varying force as a complex force.

F t( ) = F1 cos ωt( )− F2 sin ωt( ) = F cos ωt +ϕ( )

F = F 21 + F

22

ϕ = arctan F2 F1( )F t( ) = Fe jωt+ jϕ = Fe jωt

F t( ) = Re Fe jωt( )

Page 17: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

17

Displacement, Velocity and Acceleration

v t( ) = ve j ωt+ϕv( )

a t( ) = ddtv t( ) = jωve j ωt+ϕv( ) =ωve j ωt+ϕv+π /2( )

x t( ) = v t( )∫ dt = 1jωve j ωt+ϕv( ) =

1ωve j ωt+ϕv−π /2( )

Page 18: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

18

Complex Conjugate

F = FF* = Fe j ωt+ϕ( )Fe− j ωt+ϕ( ) = FF = F

Re F( ) = 12F+F*( )

=12F cos ωt( )+ j sin ωt( )( )+ F cos ωt( )− j sin ωt( )( )( )

= F cos ωt( )

Page 19: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

19

Derivation Mechanical Power F t( ) = F cos ωt +ϕF( ) = Re Fe j ωt+ϕF( )( )v t( ) = vcos ωt +ϕv( ) = Re ve j ωt+ϕv( )( )W t( ) = F t( )v t( ) = Re F t( )( )Re v t( )( )

W t( ) = 12F t( )+F t( )*( ) 12 v t( )+ v t( )

*( )W t( ) = 1

4F t( )v t( )+F t( )* v t( )* +F t( )* v t( )+F t( )v t( )*( )

W t( ) = 12Re F t( )v t( )( )+Re F t( )* v t( )( )( )

W t( ) = Re Fve j 2ωt+ϕF+ϕv( )( ) 2+Re Fve j ϕF−ϕv( )( ) 2W t( ) = Fv cos 2ωt +ϕF +ϕv( )+ cos ϕF −ϕv( )( )

Page 20: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

20

Derivation Mechanical Power

W t( ) = Fv cos 2ωt +ϕF +ϕv( )+ cos ϕF −ϕv( )( )

W =1T

W t( )dt0

T

∫ =12Fvcos ϕF −ϕv( )

W =12Re Fv*( ) = 12 Re F

*v( )

Page 21: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

The Transfer Function

Hi1 =aiF1=outputinput

•  Measure using impact testing or shaker.

•  Simulate by using unit force and determining acceleration.

F1 ai

Dept. of Mech. Engineering University of Kentucky

21

Page 22: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Transfer Functions

•  Measure using impact testing or shaker.

•  Simulate by using unit force and determining acceleration.

Unit Force

Dept. of Mech. Engineering University of Kentucky

22

Page 23: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Assumption Superposition

F1 F2 F2

F1

+ =

aiI ai

II aiI + ai

II

aiI + ai

II = Hi1F1 +Hi2F2

Dept. of Mech. Engineering University of Kentucky

23

Page 24: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Assumption Linearity

F1 ai 2×F1 2×ai

Doubling the force will double the response.

Dept. of Mech. Engineering University of Kentucky

24

Page 25: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Linear Superposition

+

=

+ +

In Operation

F1 F2

F3 F4Dept. of Mech. Engineering University of Kentucky

25

Page 26: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

M B

K

Total response = Transient Response + Steady State Response •  Transient response depends on (a) the system parameters (M, B,

and K) and (b) the I.C’s

•  Steady state response depends on (a) the system parameters and (b) the amplitude and frequency of the forcing function

Equation of Motion:

Single DOF Systems

( )tf

( )tx

( ) ( )tFtfKxxBxM ωcos==++

Dept. of Mech. Engineering University of Kentucky

26

Page 27: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

0 2 4 6 8 10

Time (s)

f(t) a

nd x

(t)

Transient Steady StateTotal Response Forcing Function

( ) ( ) ( )φωθωζω −++= − tXtAetx Dtn coscos

Transient and Steady State Response

Dept. of Mech. Engineering University of Kentucky

27

Page 28: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Complex Exponential Form

M B

K ( )tf

( )txMx +Bx +Kx = f t( ) = F cos ωt( )x t( ) = Xe jωt f t( ) = Fe jωt

−Mω 2 + jωB+K( ) Xe jωt = Fe jωt

X = FK −Mω 2( )+ jωB

=F

K −Mω 2( )2+ ωB( )2

e− jϕ

x t( ) = Re Xe jωt( )= F

K −Mω 2( )2+ ωB( )2

cos ωt −ϕ( )

ϕ = arctan ωBK −Mω 2

"

#$

%

&'

Dept. of Mech. Engineering University of Kentucky

28

Page 29: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

29

The Amplification Factor ω0 =

KM

δ =B2M

g t( ) =F t( )M

X = g

ω02 −ω 2( )

2+ 2δω( )2

ϕ = arctan 2δωω 2 −ω0

2

"

#$

%

&'+ nπ , n = 0,1, 2,...

φ =X ω( )

X ω = 0( )=

1

1− ωω0( )

2"

#$

%

&'

2

+ 4 δω0( )

2ωω0( )

2

The Amplification Factor

Page 30: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.005 0.01 0.015 0.02Time (s)In

put,

Out

put

f (t)

x(t)

Vibrating System with transfer function H(s)

( ) ( )tFtf ωcos= x t( ) = X cos ωt −ϕ( )

H s( )→s= jω

H jω( )∠ϕ

X∠ϕ = F H jω( )∠ϕ

Frequency Response Function

Sinusoidal Steady State Response

Dept. of Mech. Engineering University of Kentucky

30

Page 31: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

31

Frequency Response Functions

H ω( ) =Y ω( )X ω( )

H ω( ) = x ω( ) F ω( )Dynamic Flexibility or Receptance

Mobility or Mechanical Admittance

Accelerance

Dynamic Stiffness

Mechanical Impedance

Acoustic Impedance

Specific Impedance

H ω( ) = v ω( ) F ω( )A ω( ) = a ω( ) F ω( )

κ ω( ) = F ω( ) x ω( )

Z ω( ) = F ω( ) v ω( )

Z ω( ) = p ω( ) Q ω( )

Z ω( ) = p ω( ) u ω( )

Page 32: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

32

Frequency Response Functions

H ω( ) =X ω( )F ω( )

=1

−ω 2M + jω2Mδ +K=

1 K1− ω ω0( )2 + j2 ωδ ω0

2( )

δ =ω0

δ >ω0

δ <ω0

δ = 0

Critically Damped

Overdamped

Underdamped

Undamped

ξ =δω0

Often a damping ratio is defined

Page 33: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

33

Dynamic Flexibility Magnitude

Page 34: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

34

Dynamic Flexibility Phase

Page 35: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

35

Nyquist Diagram

Page 36: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Derivation of Loss Factor

Ekin =M2ω 2x2 cos2 ωt +ϕ( )

Epot =K2x2 sin2 ωt +ϕ( )

Edis = Fd dx∫ = B∫ dxdtdx = B∫ dx

dt"

#$

%

&'2

dt

= Bx2ω 2 cos2 ωt +ϕ( )dt0

T

∫ = Bx2ω 2 T2= Bx2ω 2 2π

2ω= Bx2ωπ

η =Edis 2πmax Epot( )

=ωBK

= 2ωδω02

Dept. of Mech. Engineering University of Kentucky

36

Page 37: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Material Damping

Creep Test

σ0 σ

t

ε0

ε

t

σ0 J(t) ε∞

Relaxation Test

ε0 ε

t

σ0 σ

t

ε0 E(t) σ∞

Dept. of Mech. Engineering University of Kentucky

37

Page 38: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

The Kelvin-Voigt 2-Parameter Model

E R

Creep Compliance ( ) ( )

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−=

=

− tRE

eE

tJ

tJt

110σε

Stress Relaxation

( ) ( )( ) EtE

tEt=

= 0εσ

Material Damping

Dept. of Mech. Engineering University of Kentucky

38

Page 39: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

The 3-Parameter Model

E0 R

Creep Compliance ( ) ( )

( )⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−−=

=

− tqq

eqqp

qtJ

tJt

1

0

1

01

0

0

111

σε

E1

Constants

1

101

00

11

EEERq

EqERp

+=

=

=

Stress Relaxation ( ) ( )

( )⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−−=

=

− tpe

pqqqtE

tEt

1

1

1

100

0εσ

Material Damping

Dept. of Mech. Engineering University of Kentucky

39

Page 40: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

For Low Frequency Harmonic Processes the Kelvin-Voigt Model is Applicable

E ω( ) ≈ E0 + jωR = E0 1+ jη( )

( )02 ER

UWD ωπ

ωη ≈=

The Material Loss Factor (Steel ~ .0001)

Energy Dissipated per Cycle

Maximum Potential Energy

Material Damping

Dept. of Mech. Engineering University of Kentucky

40

Page 41: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Component and Structural Damping

•  Component loss factor differs because stress and distortion conditions are position-dependent.

•  Unless particular measures are taken to increase component damping, damping at the contact surfaces of joints (bolted, riveted, clamped) is the predominant damping mechanism.

•  Damping is due to relative motion of the mating surfaces. This can happen in the form of macro-slip (relative motion across the entire face of the joint), micro-slip (interfacial slip of small areas), and gas pumping losses.

η ~ 0.01

Dept. of Mech. Engineering University of Kentucky

41

Page 42: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Structural Damping

•  Damping in structures is normally not viscous. It is due to mechanisms such as hysteresis in the material and slip in connections.

•  In reality, due to computation easiness, damping in structures are approximated by viscous damping.

•  Phenomenological damping methods physical dissipative mechanisms are modeled.

•  Spectral damping methods viscous damping is introduced by means of specified fractions of critical damping.

Cook et al., 2001

Dept. of Mech. Engineering University of Kentucky

42

Page 43: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

K

C

M fa(t)

( )

( )tfM

xxx

tfKxxCxM

nn12 2 =++

=++

ωξω

x

Models for Damped Structures

( )( ) tj

tj

FetfXetx

ω

ω

=

=

Dept. of Mech. Engineering University of Kentucky

43

Page 44: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

( ) FM

XXjX

FM

xxx

nn

nn

12

12

22

2

=++−

=++

ωωξωω

ωξω

Models for Damped Structures

( ) ( )

( ) ( )

FM

XXjX

tfM

xjMKx

tfxjKxM

nn1

11

1

222 =++−

=++

=++

ωηωω

η

η

Viscous Damping Representation Loss Factor Representation

At Resonance ξη 2=

Used in SEA Codes Used in FEM Codes

Dept. of Mech. Engineering University of Kentucky

44

Page 45: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Models for Damped Structures

[ ] [ ] [ ] ( ){ }tfxKxCxM a=++

Assuming special damping matrices (which simplify calculation) with viscous damping or with structural damping, the equations of motion can be decoupled by modal transformation. This yields equations of motion for simple damped systems which can be solved in the familiar manner. If this assumption is not justified by the physical damping behavior of a structure, then the coupling effects should be incorporated in the model.

[ ] [ ] [ ]MKC βα +=

VDI 3830

Dept. of Mech. Engineering University of Kentucky

45

Page 46: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Models for Damped Structures

( ) ( )

( ) ( )

( )tfM

xxx

tfM

xxx

tfKxxMKxM

nn

nn

12

1

2

22

=++

=+++

=+++

ωξω

ωβαω

βα

( )

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

+=

nn

nn

ωβαωξ

βαωξω

121

2 2

Proportional Damping Representation Relation to Viscous Damping Ratio

Dept. of Mech. Engineering University of Kentucky

46

Page 47: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Rayleigh or Proportional Damping

⎟⎠

⎞⎜⎝

⎛ +=ωβ

αωξ21

Design Spectrum

( )21

22

11222ωωωξωξ

α−

−=

( )21

22

1221212ωω

ωξωξωωβ

−=

Estimating α and β

Cook et al., 2001

Dept. of Mech. Engineering University of Kentucky

47

Page 48: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Structural Vibration at a Single DOF

At a single degree of freedom

u =ϕ cos ωt( )

u =displacement of a nodal DOFϕ =amplitude

Dept. of Mech. Engineering University of Kentucky

48

Page 49: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Structural Vibration for the Entire Structure

u{ }= ϕ{ }cos ωt( )

u{ }=Vector of nodal displacements

ϕ{ }=vector of amplitudes for each DOF

Dept. of Mech. Engineering University of Kentucky

49

Page 50: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Mode Shapes

The vector of amplitudes is a mode shape

2φ 3φ 4φ 5φ 6φ7φ

Use subscript i to differentiate mode shapes and natural frequencies

u{ }= ϕ{ }i cos ωit( )

Dept. of Mech. Engineering University of Kentucky

50

Page 51: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Appropriate Initial Conditions

If the I.C.s are a scalar (a) multiple of a specific mode shape then the structure will vibrate in the corresponding mode and natural frequency

ICs = a ϕ{ }i

Dept. of Mech. Engineering University of Kentucky

51

Page 52: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Determining Natural Frequencies

Consider a multi DOF system

M[ ] u{ }+ K[ ] u{ }= 0{ }

Note that the system is ü  Undamped ü  Not excited by any external forces

Dept. of Mech. Engineering University of Kentucky

52

Page 53: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Modal Analysis

u{ }= ϕ{ }i cos ωit( )

If the system vibrates according to a particular mode shape and frequency

ϕ{ }i =mode shape i

ωi =natural frequency i

Dept. of Mech. Engineering University of Kentucky

53

Page 54: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Modal Analysis

u{ }= −ωi ϕ{ }i sin ωit( )

g  First derivative (Velocity)

g  Second derivative (Acceleration)

u{ }= −ωi2 φ{ }i cos ωit( )

Dept. of Mech. Engineering University of Kentucky

54

Page 55: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Modal Analysis

− M"# $%ωi2 + K"# $%( ) φ{ }i = 0{ }

Plug velocity and acceleration into the equation of motion

Two possible solutions

φ{ }i = 0{ }

det − M"# $%ωi2 + K"# $%( ) = 0

Dept. of Mech. Engineering University of Kentucky

55

Page 56: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

The Eigen Problem

The Eigen Problem

A!" #$ x{ }= λ x{ }

det − M"# $%ωi2 + K"# $%( ) = 0

λEigenvalue

x{ }Eigenvector

Dept. of Mech. Engineering University of Kentucky

56

Page 57: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Modal Analysis – An Eigen Problem

− M"# $%ωi2 + K"# $%( ) φ{ }= 0"# $%

Natural frequencies are eigenvalues

The mode shapes are eigenvectors

K!" #$ φ{ }=ωi2 M!" #$ φ{ }

M!" #$−1K!" #$ φ{ }=ωi2 φ{ }

ωi2

φ{ }Dept. of Mech. Engineering University of Kentucky

57

Page 58: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Modal Analysis – An Eigen Problem

Solving the eigen problem

M!" #$−1K!" #$ φ{ }=ωi2 φ{ }

A!" #$ x{ }= λ x{ }

A!" #$ x{ }−λ x{ }= 0A!" #$− λ I!" #$( ) x{ }= 0det A!" #$− λ I!" #$( ) = 0

Dept. of Mech. Engineering University of Kentucky

58

Page 59: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Example Eigen Problem

2 33 2

!

"#

$

%&x1x2

!"#

$#

%&#

'#= λi

x1x2

!"#

$#

%&#

'#

det 2 33 2

(

)*

+

,-− λi

1 00 1

!

"#

$

%&

'

())

*

+,,= 0

Dept. of Mech. Engineering University of Kentucky

59

Page 60: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Find Eigenvalues

det 2−λ 33 2−λ

#

$%

&

'(

)

*++

,

-..= 0

2−λ( ) 2−λ( )−9 = λ2 − 4λ −5Eigen values

λ1 = −1λ2 = 5

Dept. of Mech. Engineering University of Kentucky

60

Page 61: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

For Eigen Vector 1

λ1 = −1

2 33 2

#

$%

&

'(− −1( ) 1 0

0 1

#

$%

&

'(

)

*++

,

-..

x1x2

/01

21

341

511

= 00

/01

21

341

51

2+1 33 2+1

#

$%

&

'(

)

*++

,

-..

x1x2

/01

21

341

511

= 00

/01

21

341

51

Dept. of Mech. Engineering University of Kentucky

61

Page 62: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

For Eigen Vector 1

3 33 3

!

"#

$

%&

'

())

*

+,,

x1x2

-./

0/

12/

3/1

= 00

-./

0/

12/

3/

x1 can be any value

x1x2

!"#

$#

%&#

'#1

= 1−1

!"#

$#

%&#

'#= .7071

−.7071

!"#

$#

%&#

'#

Dept. of Mech. Engineering University of Kentucky

62

Page 63: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

For Eigen Vector 2

λ2 = 5

2 33 2

"

#$

%

&'− 5( ) 1 0

0 1

"

#$

%

&'

)

*++

,

-..

x1x2

/01

21

341

512

= 00

/01

21

341

51

2−5 33 2−5

"

#$

%

&'

)

*++

,

-..

x1x2

/01

21

341

512

= 00

/01

21

341

51

Dept. of Mech. Engineering University of Kentucky

63

Page 64: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

For Eigen Vector 2

−3 33 −3

"

#$

%

&'

(

)**

+

,--

x1x2

./0

10

230

402

= 00

./0

10

230

40

x2 = x1

x2 can be any value

x1x2

!"#

$#

%&#

'#2

= 11

!"#

$#

%&#

'#= .7071

.7071

!"#

$#

%&#

'#

Dept. of Mech. Engineering University of Kentucky

64

Page 65: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Example

Equations of motions

M1 M2 K1 K2

x1 x2

M1x1 + K1x1 − K1x2 = 0M 2x2 + K2x2 + K1x2 − K1x1 = 0

M1 = 5 kgM 2 =10 kgK1 = 800 N/mK2 = 400 N/m

Dept. of Mech. Engineering University of Kentucky

65

Page 66: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Matrix Form

M1 0

0 M 2

!

"

##

$

%

&&

x1x2

'()

*)

+,)

-)+

K1 −K1−K1 K1 + K2

!

"

##

$

%

&&

x1x2

'()

*)

+,)

-)= 0

0

'()

*)

+,)

-)

5 00 10

!

"#

$

%&x1x2

'()

*)

+,)

-)+ 800 −800

−800 1200

!

"#

$

%&x1x2

'()

*)

+,)

-)= 0

0

'()

*)

+,)

-)

Dept. of Mech. Engineering University of Kentucky

66

Page 67: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Set Up Eigen Problem

M!" #$−1K!" #$ φ{ }=ωi2 φ{ }

M!" #$−1K!" #$=

160 −160−80 120

!

"(

#

$)

det 160 −160−80 120

!

"(

#

$)− λ 1 0

0 1

!

"(

#

$)

+

,--

.

/00= 0

Dept. of Mech. Engineering University of Kentucky

67

Page 68: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Solve Eigen Problem

det 160−λ −160−80 120−λ

#

$%

&

'(

)

*++

,

-..= 0

ω1 = λ1 = 5.011 rad/s

f1 =5.011

2π= .7975 Hz

ω2 = λ2 =15.965 rad/s

f2 =15.965

2π= 2.5409 Hz

φ1φ2

"#$

%$

&'$

($1

= 0.76450.6446

"#$

%$

&'$

($

φ1φ2

"#$

%$

&'$

($2

= −0.86010.5101

"#$

%$

&'$

($

Dept. of Mech. Engineering University of Kentucky

68

Page 69: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Mode 1

M1 M2 K1 K2

0.7645 0.6446

Dept. of Mech. Engineering University of Kentucky

69

Page 70: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Mode 2

M1 M2 K1 K2

-0.8601 0.5101

Dept. of Mech. Engineering University of Kentucky

70

Page 71: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Weighted Orthogonality

ϕ1ϕ2

!"#

$#

%&#

'#1

T

M[ ]ϕ1ϕ2

!"#

$#

%&#

'#2

= 0

ϕ1ϕ2

!"#

$#

%&#

'#1

T

K[ ]ϕ1ϕ2

!"#

$#

%&#

'#2

= 0

Dept. of Mech. Engineering University of Kentucky

71

Page 72: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Modal Vector Scaling

ϕ1ϕ2

!"#

$#

%&#

'#1

T

M[ ]ϕ1ϕ2

!"#

$#

%&#

'#1

=1

g  Unity Modal Mass

Dept. of Mech. Engineering University of Kentucky

72

Page 73: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Modal Vector Scaling

.7645X

.6446X

!"#

$%&1

T5 00 10

'

()

*

+,.7645X.6446X

!"#

$%&1=1

g  Unity Modal Mass

X = .376

ϕ1ϕ2

!"#

$#

%&#

'#1

= .287.242

!"$

%&'

Dept. of Mech. Engineering University of Kentucky

73

Page 74: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Example Vibrating Machine Isolation

m1 =100 kgm2 = 500 kgκ1 = 5E6 N/mκ2 =1E6 N/mdv1 =100kg/sdv2 = 200kg/s

Dept. of Mech. Engineering University of Kentucky

74

Page 75: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Eigenvalues and Eigenvectors

ω1 = 40.7 rad/sf1 = 6.48 Hzψ1 =

15.8

!"#

$%&

ω2 = 245.6 rad/sf2 = 39.1 Hzψ2 =

1−0.034

"#$

%&'

Dept. of Mech. Engineering University of Kentucky

75

Page 76: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Forces With / Without Excitation

F1 t( ) = F1e jωt

F2 t( ) = F2e jωt

x1p t( ) = x1pe jωt

x2 p t( ) = x2 pe jωt

Fwithout = FexcFwith =κ1x1e

jωt + jωdv1x1ejωt

Dept. of Mech. Engineering University of Kentucky

76

Page 77: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Simultaneous Differential Equations

−m1ω2x p1 + jω dv1 + dv2( ) x p1 + κ1 +κ2( ) x p1 − jωdv2x p2 −κ2x p2 = Fexc

− jωdv2x p1 −κ2x p1 −m2ω2x p2 + jωdv2x p2 +κ2x p2 = 0

Dept. of Mech. Engineering University of Kentucky

77

Page 78: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Simultaneous Differential Equations

γ ω( ) = FwithoutFwith

=κ2 + jωdv2 −ω

2m2( ) κ1 +κ2( )+ jω dv1 + dv2( )−ω 2m1( )− κ2 + jωdv2( )2

κ1 + jωdv1( ) κ2 + jωdv2( )

Dept. of Mech. Engineering University of Kentucky

78

Page 79: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

The Frequency Spectrum

Dynamic signals can be represented in the frequency domain by a frequency spectrum

f (Hz)

10

1 2

amplitude vs. time

time domain frequency domain

amplitude vs. frequency

Fundamental (first harmonic)

Second harmonic

Dept. of Mech. Engineering University of Kentucky

79

Page 80: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Fourier Analysis Used to determine the frequency spectrum of dynamic signals – spectrum analyzer hardware

T = 2π/ω Is the period of the signal, ω is the fundamental frequency (first harmonic), 2ω is the second harmonic, etc.

y t( ) = Ao2+ An cos nωt( )+Bn sin nωt( )( )

n=1

=Ao2+ Cn cos nωt −ϕn( )( )

n=1

A0 =2T

y t( )dt0

T

An =2T

y t( )cos nωt( )dt0

T

∫ Bn =2T

y t( )sin nωt( )dt0

T

Cn = An2 +Bn

2 ϕn = tan−1 Bn An( )

Dept. of Mech. Engineering University of Kentucky

80

Page 81: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Example

t

A

-A

T

y(t)

Phase between An & Bn

An =2T

y t( )0

T

∫ cos nωt( )dt = 2T

Acos nωt( )dt +0

T 2

∫ −A( )cos nωt( )dtT 2

T

∫#

$%%

&

'((= 0

i.e., Acos nωt( )dt0

T 2

∫ =Anωsin nωt( )

0

T 2

=Anω

sin n 2πTT2

)

*+

,

-.− 0

#

$%

&

'(= 0

Bn =2T

y t( )0

T

∫ sin nωt( )dt =4A nπ , n odd0, n even

/01

21

Cn = An2 +Bn

2 = Bn ϕn = tan−1 Bn An( ) = π 2

Dept. of Mech. Engineering University of Kentucky

81

Page 82: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Example – Fourier Series Expansion

( ) ( ) ( ) ( ) ( ) ⎟⎠

⎞⎜⎝

⎛ +++++= tnn

tttAty ωωωωπ

sin15sin513sin

31sin4

πA4

π34A

Dept. of Mech. Engineering University of Kentucky

82

Page 83: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Example – Fourier Series Expansion

Dept. of Mech. Engineering University of Kentucky

83

Page 84: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

amplitude vs. time

time domain

t

A

-A

T

y(t)

ω 3ω

frequency domain

amplitude vs.frequency

etc.

Example – Fourier Line Spectrum

( ) ( ) ( ) ( ) ( ) ⎟⎠

⎞⎜⎝

⎛ +++++= tnn

tttAty ωωωωπ

sin15sin513sin

31sin4

πA4

π34Aπ54A

Dept. of Mech. Engineering University of Kentucky

84

Page 85: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

“How much is the vibration?”

Peak = 0.51 mm Peak-to-peak = 1.04 mm Average = - 8.1x10-4 mm rms = 0.15 mm

Typical Situation

Dept. of Mech. Engineering University of Kentucky

85

Page 86: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Spectrum reveals several harmonics under 200 Hz, probably related to engine rpm and firing frequency.

Typical Situation

Dept. of Mech. Engineering University of Kentucky

86

Page 87: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Digitization of Analog Signals Time signals are sampled using an analog-to-digital converter (a digital logic hardware device) to yield a digitized version of the waveform for further processing.

ADC

Analog voltage signal from transducer

Time (s) Voltage (V)

0.0 0.0

0.001 0.15

0.002 0.18

0.003 0.28

etc.

Voltage values stored in computer memory

Dept. of Mech. Engineering University of Kentucky

87

Page 88: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

samplegiven any of timeN)3 2, (1,number index sample

period sample totalsamples ofnumber total

Hz)or ec(samples/s /1 rate sample interval sample

=Δ=

⋅⋅⋅=

Δ==

=

Δ==

trtr

tNTN

tft

s

Sampling Parameters

y(t) y(rΔt) y(t)

Dept. of Mech. Engineering University of Kentucky

88

Page 89: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Discrete Fourier Transform •  Continuous (analog) form:

•  Discrete (digital) form:

The discrete form will yield frequency values up to N/2 only.

( ) ( ) ( )( )

( ) ( ) ( ) ( )∫∫

==

++=∞

=

T

n

T

n

nnn

o

dttntyT

BdttntyT

A

tnBtnAAty

00

1

sin2cos2

sincos2

ωω

ωω

( ) ( )

( ) ⎟⎠

⎞⎜⎝

⎛⋅Δ=

=⎟⎠

⎞⎜⎝

⎛⋅Δ=Δ⎟⎠

⎞⎜⎝

⎛ Δ⋅⋅Δ

⋅Δ

=

∑∑

=

==

Nrntry

NB

NnNrntry

Nttrn

tNty

tNA

N

rn

N

r

N

rrn

π

ππ

2sin22

,2,12cos22cos2

1

11

Dept. of Mech. Engineering University of Kentucky

89

Page 90: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Frequencies in Discretely Sampled Signals 1.  Like its analog counterpart, the discrete Fourier series

contains frequency components spaced 1/T apart. This is called the frequency resolution Δf :

Δf = 1/T (Hz)

Δf = 1/T f

Fourier Coefficients

Dept. of Mech. Engineering University of Kentucky

90

Page 91: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

Frequencies in Discretely Sampled Signals

2s

Nyqff =

2.  Signals must be sampled at a minimum rate fs twice the highest frequency of interest (the Nyquist frequency fNyq). The highest frequency resolved in a DFT is:

If this is not done, aliasing error occurs.

Dept. of Mech. Engineering University of Kentucky

91

Page 92: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

The Aliasing Phenomenon

fs = f

(a)

(b)

(c)

2f > fs > f

fs = 2f (minimum sample rate)

The signal f will appear as 2f/3 in the spectrum

Dept. of Mech. Engineering University of Kentucky

92

Page 93: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design

The Aliasing Phenomenon

True spectrum

fNyq

f Measured spectrum

fNyq

f

•  Aliasing results in harmonics above the Nyquist frequency being “folded” back onto their neighbors.

•  Commercial spectrum analyzers set the sampling frequency at least 2.5 times the highest frequency of interest.

•  Signal is low-pass filtered before sampling.

Dept. of Mech. Engineering University of Kentucky

93

Page 94: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

Non–Periodic (transient, random) Signals

The Fourier Integral (Transform):

F(ω) = f (t)e− jωt dt−∞

f (t) = 12π

F(ω)e jωt dω−∞

t

f(t)

ω

F(ω)

Time Domain Frequency Domain

•  F(ω) is continuous, complex

•  limt→∞f t( ) = 0

94

Page 95: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

The Fourier Integral

Example:

t

A

-A

T

f(t)

F(ω) = Ae− jωt0

T /2

∫ dt + (−A)e− jωtT /2

T

∫ dt = jAω

2e− jωT /2 − e− jωT −1( )

F(ω) = F(ω)F *(ω) = Aω

6−8cos πω ωo( )+ cos 2πω ωo( )

where ωo = 2π /T

95

Page 96: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

The Fourier Integral

Example:

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

ω/ωo

F(ω)A /ωo

Compare with Fourier series results

96

Page 97: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

Frequency Response Functions (FRF’s)

An FRF is the ratio of two Fourier transforms:

H12 (ω) =F2 (ω)F1(ω)

What is the FRF between the sound pressures at two points in a duct carrying a +x wave?

A

x1 x2

97

Page 98: Chapter 03 Mathematical Methods - University of Kentuckyweb.engr.uky.edu/~dherrin/ME510_Old/Chapter_03_Mathematical_M… · ME 510 Vibro-Acoustic Design Complex Numbers - Example

ME 510 Vibro-Acoustic Design Dept. of Mech. Engineering University of Kentucky

Frequency Response Functions (FRF’s)

H12 (ω) = P2 (ω)P1(ω)

=Ae− jkx2

Ae− jkx1= e− jk (x2−x1 )

Note: k(x2 − x1) =ωΔt where Δt is the propagation time

A

x1 x2

98