Chap18-Feedback, Stability and Oscillators

58
Jaeger/Blalock 3/10/04 Microelectronic Circuit Design McGraw-Hill Chapter 18 Feedback, Stability and Oscillators Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock Chap 18 - 1

Transcript of Chap18-Feedback, Stability and Oscillators

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 1/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Chapter 18

Feedback, Stability and Oscillators

Microelectronic Circuit Design 

Richard C. Jaeger 

Travis N. Blalock 

Chap 18 - 1

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 2/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Chapter Goals

• Review concepts of negative and positive feedback.

• Develop two-port approach to analysis of negative feedback amplifiers.

• Understand topologies and characteristics of series-shunt, shunt-shunt, shunt-series and series-series feedback configurations.

• Discuss common errors that occur in applying two-port feedback theory.• Discuss effects of feedback on frequency response and feedback amplifier 

stability and interpret stability in in terms of Nyquist and Bode plots.

• Use SPICE ac and transfer function analyses on feedback amplifiers.

• Determine loop-gain of closed-loop amplifiers using SPICE simulation or measurement.

• Discuss Barkhausen criteria for oscillation and amplitude stabilization• Understand basic RC, LC and crystal oscillator circuits and present LCR model

of quartz crystal.

Chap 18 - 2

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 3/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Feedback Effects

• Gain Stability: Feedback reduces sensitivity of gain to variations in

values of transistor parameters and circuit elements.

•  Input and Output Impedances: Feedback can increase or decrease input

and output resistances of an amplifier.

•  Bandwidth: Bandwidth of amplifier can be extended using feedback.

•  Nonlinear Distortion: Feedback reduces effects of nonlinear distortion.eg: removal of dead zone in class-B amplifiers

Chap 18 - 3

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 4/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Classic Feedback Systems

•  A(s) = transfer function of open-

loop amplifier or open-loop gain.

• b (s) = transfer function of 

feedback network.

V d ( s)V 

i( s)V 

 f  ( s)

V o( s)V 

d ( s) A( s)

V  f  ( s)V 

o( s) b ( s)

 Av

s V 

o( s)

V i( s)

A s

1 A s  b  s

A s 1T s

T(s) = A b = loop gain

For negative feedback: T(s) > 0

For positive feedback: T(s) < 0

Chap 18 - 4

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 5/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Voltage Amplifiers: Series-Shunt

Feedback (Voltage Gain Calculation)

1

 A

v

11

 A

hi1

12

 A

hv

1

 F 

v

11

 F 

hi1

12

 F 

hv

2

2 Ai 21

 Ah i1 22

 Ah v2  2

 F i 21 F h i

1 22

 F h v2

ijT h ij

 Ah ij F h and 21

 Ah 21 F h , 12

 F h 12 Ah

 

v1 11

T h i1 12

 F h v2

  vi( R

 I  11

T h )i1 12

 F h v2

i2 21

 Ah i1 22

T h v2  0 21

 Ah i1( 22

T h G L

)v2

 

 Av v

2

vi

21 Ah

21 Ah 12

 F h ( R I 

11T h )( 22

T h G L

) A

1 A b 

   A 21 Ah

( R I 

11T h )( 22

T h G L

)   b  12

 F h

Chap 18 - 5

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 6/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Voltage Amplifiers: Series-Shunt

Feedback (Two-Port Representation)

• Gain of amplifier should include

effects of , , R I  and R L.• Required h-parameters are found

from their individual definitions.

• Two-port representation of the

amplifier is as shown 

11 F 

h

22 F 

h

Chap 18 - 6

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 7/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Voltage Amplifiers: Series-Shunt

Feedback (Input and Output Resistances)

vi( R

 I  11

T h )i1

12 F h

- 21 Ah

( 22T h G

 L)

i1

 Rin

v

i

i1

( R I 

11T h )(1 A b )

 Rin in A R (1 A b )

Series feedback at a port increases

input resistance at that port.

For output resistance:

v1  R I   i1v2 v x  i2 i x G Lv2

i x

21 Ah i

1( 22

T h G L

)v x

0 ( R I 

11T h )i

1 12

 F h v x

 Rout 

v x

i x

1

22T h G

 L

 

1 A b     Rout out  A R

1 A b 

Shunt feedback at a port reduces

resistance at that port.

Chap 18 - 7

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 8/58

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 9/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Voltage Amplifiers

Series-Shunt Feedback (Example cont.)

 Av

o

vi

25k W1k W 25k W9.01k W

(104)1.96k W

1.96k W1.00k W 4730

 Av A

1 A b  4730

1 4730(0.0990)10.1

 Rin

in A R (1 A b )16.4 M W

 Rout 

out  A R

1 A b 1.41W

Chap 18 - 9

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 10/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Transresistance Amplifiers: Shunt-Shunt

Feedback (Voltage Gain Calculation)

1 Ai 11

 A y v1 12

 A y v2  1

 F i 11 F  y v

1 12

 F  y v2

2 Ai 21

 A y v1 22

 A y v2  2

 F i 21 F  y v

1 22 F  y v

2

ijT  y ij

 A y ij F  y and 21

 A y 21 F  y , 12

 F  y 12 A y

 

i1 11

T  y v1 12

 F  y v2    i

i (G

 I  11

T  y )v1 12

 F  y v2

i2 21 A y v1 22T  y v2  0 21 A y v1( 22T  y G L)v2

 

 Atr 

v2

ii

21 A y

21 A y

12 F  y (G

 I  11

T  y )( 22T  y G

 L)

A

1 A b 

   A 21 A y

(G I 

11T  y )( 22

T  y G L)   b 

12

 F  y

Chap 18 - 10

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 11/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Transresistance Amplifiers: Shunt-Shunt

Feedback (Two-Port Representation)

• Gain of amplifier should includeeffects of , , R I  and R L.

• Required y-parameters are foundfrom their individual definitions.

• Two-port representation of theamplifier is as shown.

11 F  y

22 F  y

Chap 18 - 11

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 12/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Transresistance Amplifiers: Shunt-Shunt

Feedback (Input and Output Resistances)

ii (G

 I  11

T  y )v1 12

 F  y-

21 A y

(22T  y G

 L)

v1

 Rin

v

1

ii

1

G I 

11T h

 

 

(1 A b ) in

 A R

(1 A b )

Shunt feedback at a port reduces resistance

at that port.

For output resistance:

i1 G I v1  i2 i x G Lv2

i x

21 A y v

1( 22

T  y G L

)v x

0(G I 

11T  y )v

1 12

 F  y v x

 Rout 

v x

i x

1

22T  y G

 L

 

1 A b     Rout out  A R

1 A b 

Resistance at output port is reduced due to

shunt feedback.

Chap 18 - 12

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 13/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Transresistance Amplifiers

Shunt-Shunt Feedback (Example)

• Problem: Find A,  b  , closed-loop

gain, input and output resistances.

• Given data: V  A = 50 V,  b  F = 150

• Analysis: For the dc equivalent

circuit, 

11 F 

 y

i1

v1 v

2 0

1

 R F 

10-5

 S 

22 F  y

i2

v2 i

2 0

1

 R F 

10-5  S 

12 F  y

i1

v2 v1

0

1

 R F 

10-5  S 

 

 I C 

CC V 

 BE 

 RC 

 R

C  R

 F 

 b  F 

0.970 mA

V CE 

V CC 

( I C 

 I  B

) RC 

1.35 V 

 g m

40(0.977mA)39.1 mS 

r  

1

 g m

3.84 k W  r o

50V 1.35V 

0.977mA52.6 k W

Chap 18 - 13

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 14/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Transresistance Amplifiers

Shunt-Shunt Feedback (Example cont.)

 Av

o

ii

4.76k W

4.76k W 3.84k W(150)1.41k W 52.6k W

 

 114 k W

 Atr 

A

1 A b  114k W

1114k W(0.01mS )53.3 k W

 Rin in A R (1 A b ) R

 I  R

 F r  

 

 (1 A b ) 995 W

 Rout 

out  A R

1 A b 

R L

 R F 

 RC 

r o

1 A b 640 W

ib ii

4.76k W

4.76k Wr  

vo b oib(1.41k Wr 

o)

Chap 18 - 14

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 15/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Current Amplifiers: Shunt-Series

Feedback (Voltage Gain Calculation)

i1 1

 Ai 1 F i

v2 2 Av 2 F v

ijT  g  ij

 A g  ij F  g  and 21

 A g  21 F  g  ,

12

 F  g  12 A g 

 

i1 11

T  g  v1 12

 F  g  i2    i

i (G

 I  11

T  g  )v1 12

 F  g  i2

v2 21

 A g  v1 22

T  g  i2  0 21

 A g  v1( 22

T  g   R L

)i2

 

 Ai

i2

ii

21 A g 

21 A g 

12 F  g  (G

 I 

11T  g  )(

22T  g   R

 L) A

1 A b 

   A 21

 A g 

(G I 

11T  g  )(

22T  g   R

 L)   b  12

 F 

 g 

Chap 18 - 15

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 16/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Current Amplifiers: Shunt-Series

Feedback (Two-Port Representation)

• Gain of amplifier should include

effects of , , R I  and R L.• Required g -parameters are found

from their individual definitions.

• Two-port representation of theamplifier is as shown

11 F  g 

22 F  g 

Chap 18 - 16

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 17/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Current Amplifiers: Shunt-Series

Feedback (Input and Output Resistances)

ii(G

 I  11

T  g  )v1 12

 F  g - 21

 A g 

(22T  g   R

 L)

v1

 Rin

v1

ii

1

G I 

11T  g 

 

 

(1 A b ) in A R

(1 A b )

Shunt feedback at a port decreases

resistance at that port.

For output resistance:

 Rout 

v

 x

i2

22T  g   R

 L

  1 A b   

 

 Rout  out 

 A R 1 A b   

 

Series feedback at output port increases

resistance at that port.

i1 G I v1  v2 v x  R Li2

v x

21 A g  v

1( 22

T  g   R L

)i2

0(G I 

11T  g  )v

1 12

 F  g  i2

Chap 18 - 17

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 18/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Transconductance Amplifiers: Series-Series

Feedback (Voltage Gain Calculation)

v1 1 Av 1 F vv

2

2 Av

2 F v

ijT  z  ij

 A z  ij F  z    and  

21 A z  21

 F  z  ,12 F  z  12

 A z 

 

v1 11

T  z  i1 12

T  z  i2    v

i( R

S  11

T  z  )i1 12

 F  z  i2

v2 21

T  z  i1 22

T  z  i2  0 21

T  z  i1(

22T  z   R

 L)i

2

 

 Atc

i2

vi

21 A z 

21 A z  12

 F  z  ( R I 

11T  z  )( 22

T  z   R L

) A

1 A b 

   A 21 A z ( R

 I 

11T  z  )( 22

T  z   R L

)   b  z 

12 F 

Chap 18 - 18

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 19/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Transconductance Amplifiers: Series-Series

Feedback (Input and Output Resistances)

 Rout 

v

 x

i2

22T  z   R

 L

  1 A b   

 

 Rout 

out  A R 1 A b 

 

 

 Rin

v

i

i1

11T  z   R

 I 

  1 A b   

 

 Rin

in A R 1 A b 

 

 

Series feedback at input and output

 port increases resistance at both ports.

Chap 18 - 19

• Gain of amplifier should includeeffects of , , R I  and R L.

• Required y-parameters are foundfrom their individual definitions.

• Two-port representation of theamplifier is as shown.

11 F  z 

22 F  z 

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 20/58

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 21/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Erroneous Application of Two-Port

Feedback Theory (cont.)

 z -parameters are found

as shown. From A-

circuit, I  E = 1 mA

r  

1000(0.025V)

1mA2.5k W  r 

o 50V

1mA50k W

 

  iovi

 Rid 

 Rid  R Ao

 b o

r  ( b o1) R

 Atc io

vi

A1 A b 

1.64S 11.64S (5k W)

0.200 mS 

 Rin

in A R 1 A b 

 ( R

id  R)1 A b 

 246  M W   R

in in

 A R 1 A b 

 27.7 GW

Chap 18 - 21

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 22/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Erroneous Application of Two-Port

Feedback Theory (cont.)

SPICE analyses confirm results for  Atc and Rin,

 but results for  Rout are in error. For  Atc and Rin,

amplifier can be properly modeled as a series-

shunt feedback amplifier, as collector of Q1 can

 be directly connected to ground for calculations

and a valid 2-port representation exists as shown.

Results for  Rout are in error because

output of op amp is referenced to ground,

 base current of BJT is lost from output

 port and feedback loop and Rout is limited

to

3 and 4 are not valid terminals as current

entering 3 is not same as that exiting 4.

Amplifier can’t be reduced to a 2-port.

 Rout 

 b or 

o

Chap 18 - 22

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 23/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Analysis of Shunt-Series Feedback Pair 

• Problem: Find A,  b  , closed-loop gain, input and output resistances.

• Given data:  b o= 100, V  A = 100 V, Q-point for Q1:(0.66 mA, 2.3 V), Q-point for 

Q2:(1.6 mA, 7.5 V)

• Analysis: The circuit is redrawn to identify amplifier and feedback networks and

appropriate 2-port parameters of feedback network are found.

Shunt-shunt transresistance configuration is used. 

Chap 18 - 23

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 24/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Analysis of Shunt-Series Feedback Pair 

(cont.)

Small signal parameters are found

from given Q-points.

For Q1, r = 3.79 k W, r o = 155 k W.

For Q2, r 

 = 1.56 k W, r 

o = 64.8 k W.

vthii

 R B

 R Br 

 1

 b o1

(r o1 RC )

vth4.94105i

i

 Rth 10k W r o18.88k W

v2vth

( b o21)(0.901k W)

8.88k W r  2( b o21)(0.901k W)

Chap 18 - 24

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 25/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Analysis of Shunt-Series Feedback Pair 

(cont.)

 Av

2

ii

4.43105 W

 b 12

 F  y 1

9100S 

 

 Atr 

A

1 A b  8910 W

 Rin

in

 A R

(1 A b )

 R B

r  1

(1 A b ) 42.5 W

 Rout 

out  A R

(1 A b )1.86 W

Closed-loop current gain is given by:

 Ai

io

ii

oi

e

ii

a o

v2

901Wi

i

o

901W A

tr 9.79

Chap 18 - 25

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 26/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Direct Calculation of Loop Gain

• Original input source is set to zero.

• Test source is inserted at the point

where feedback loop is broken.

vr  b vo b  A(0v x) b  Av x

T A

 b vr 

v x

Example:

is added for proper 

termination of feedback loop.

 R3 R

2 R

1

vr  v

o

 R1

 R1  R2

R

1

 R1  R2

 

 

 Av x

 Rid 

 Rid  R3

 

 

T v

v x

 A R

1

 R1 R

2

 

 

 Rid 

 Rid 

 R3

 

 

Chap 18 - 26

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 27/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Calculation of Loop Gain using

Successive Voltage and Current Injection

Voltage injection: Voltage source v X is

inserted at arbitrary point P in circuit.

v1

1 A b v x

where  b R A

 R A R B

v2v1v x  b (1 A b )

1 A b v x

T vv

2

v1

1 A b  b 

 b T 1 R B

 R A

 

 

 R B

 R A

for  T = A b 

Current injection: Current

source i X is inserted again at P. 

i1

v x

 R A

  i2

v x

 Av x

 R B

v x1 A R B

T ii2

i1

1 A  

  R B

1/ R A

 R B

 R A

T 1 R B

 R A

 

 

T v

T i

1

2T vT i

   R B R A

1T v

1T i

Chap 18 - 27

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 28/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Simplifications to Successive Voltage

and Current Injection Method

• Technique is valid even if source resistances with v X and i X are included in analysis.

• If at P, R B is zero or  R A is infinite, T can be found by only one measurement and T  =

T v . In ideal op amp, such point exists at op amp input.• If at P, R B is zero, T  = T v . In ideal op amp, such point exists at op amp output.

• If  R A = 0 or  R B is infinite, T  = T  I  .

• In practice, if  R B >> R A or  R A >> R B, the simplified expressions can be used.

Chap 18 - 28

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 29/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Blackman’s Theorem 

• First we select ports where resistance is to be calculated.

• Next we select one controlled source in the amplifier’s equivalent

circuit and use it to disable the feedback loop and also as reference to

find T SC and T OC .

 RCL = resistance of closed-loop amplifier looking into one of its ports (any

terminal pair)

 R D = resistance looking into same pair of terminals with feedback loop

disabled.

T SC = Loop gain with a short-circuit applied to selected port

T OC = Loop gain with same port open-circuited.

 RCL  R D

1 T SC 

1 T OC 

Chap 18 - 29

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 30/58

Jaeger/Blalock 3/10/04

Microelectronic Circuit DesignMcGraw-Hill

Blackman’s Theorem (Example 1) 

For output

resistance:

 R D

r o1

b o( R R

id )

r  

( R Rid 

)

 

3.18 M W

T SC 

A

ov

1

1 A

o

( b o1)( R R

id r 

o)

r  

( b o1)( R R

id r 

o)

9940

T OC 

Aov

1 A

o

( R Rid 

)

r  

( R Rid 

) 6350

Problem: Find input and output resistances. 

Given data:V REF = 5 V, R = 5 k W,  b o= 100, V  A= 50 V, Ao= 10,000, Rid = 25 k W, Ro= 0

Assumptions: Q-point is known, g m = 0.04 S, r   = 25 k W, r o = 25 k W. 

 Rout  3.18 M W 1 9940

 

 

/1 6350

 

 

  5.06  M W

For input

resistance:

   R D

 Rid 

( R 1 g 

m

)  25 k W

 Rin

25k W 1 9940  

 /1

   249  M W

Chap 18 - 30

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 31/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Blackman’s Theorem (Example 2) 

Problem: Find input and output resistances. 

Given data: b o = 100, V  A = 100 V, Q-point for Q1:(0.66 mA, 2.3 V), Q-point

for Q2:(1.6 mA, 7.5 V). For Q1, r  = 3.79 k W, r o = 155 k W, For Q2, r  = 1.56

k W, r o = 64.8 k W. 

Chap 18 - 31

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 32/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Blackman’s Theorem (Example 2 cont.) 

 R Dr o2

1b o(1/

22 F  y )

r  2( RC r o1

)(1/22 F  y )

 

321 k W

 

T SC 

(9.1k W10k W 3.79k W)( g m1

) 79k W 10k W 1.56k W ( b o

1)0.901k W

 

.

( b o1)0.901k W

1.56k W( b o 1)0.901k W 12

 F 

 y 48.7

T OC 

(2.11k W)(400.66mA)(1.93k W)0.901k W

1.56k W 0.901k W

 

 

1

9.1k W

 

 

4.33

 Rout 

321k W 1 48.7  

 /1 4.33

 

 

   2.99  M W

For input resistance:

 R D10k W9.1k W r 

  12.11 k W

 Rin2.11k W 10

147.8 42.5 W

For output resistance:

Chap 18 - 32

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 33/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Blackman’s Theorem (Example 3) 

• Problem: Find expression for output resistance of the Wilson source.

Analysis: Feedback loop is disabled by

setting reference source i to zero.

 R Dr o3 1

b o3

(1/ g m1

)

r o2r 

 3(1/ g 

m1)

 

r o3

Assuming g m1= g m2 = g m3 and m  f  >>  b o >> 1.

 Next, current source i is set to 1:

i ie ( b 

o31)i

b

( b o

1)

12 b 

o1

m  f  

( b o1)

T SC 

 b o1 T 

OC 

ie

i1 b o 1

m  f  

1

 Rout 

r o

1 b o1

11

 

 

 b 

or 

o

2

Chap 18 - 33

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 34/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Use of Feedback to Control Frequency

Response

 Av

s A s

1 A s  b  s

 A s A

 H  s

( s  L

)( s  H 

)where

 Av

s A

 H  s

 s2   L

  H 

(1 Ao b )

 s 

 L 

 H 

Assuming  H 

1 Ao b 

   

 L,

 L F 

 

  L

1 Ao b    H 

 F 

  

 H 

(1 Ao

 b )

 BW  F 

  H 

(1 Ao b )

Upper and lower cutoff frequencies as well as

 bandwidth of amplifier are improved, gain is

stabilized at

 Amid  Ao

1 Ao b 

1 b 

GBW  Amid 

 BW  F 

 Ao 

 H 

Chap 18 - 34

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 35/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Use of Nyquist Plot to

Determine Stability

• If gain of amplifier is greater than or equal to 1 at the frequency wherefeedback is positive, instability can arise.

• Poles are at frequencies where T(s) = -1.• In Nyquist plots, each value of  s in s-

 plane has corresponding value of T(s).• Values of  s on j axis are plotted.• If -1 point is enclosed by boundary, there

is some value of  s for which T(s) = -1, a pole exists in RHP and the amplifier is

unstable.• If -1 point lies outside the interior of the Nyquist plot, all poles of the closed-loopamplifier are in the LHP and theamplifier is stable.

 Av

s A s

1T s

Chap 18 - 35

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 36/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

First-Order Systems

For a simple low-pass amplifier,

It can also represent a single-pole

op amp with resistive feedback 

T s Ao o s 

o

 b  T o s 

o

 

T ( j )T o

 j 1

At dc, T (0) = T o, but for >>1,

As increases, magnitude

monotonically approaches zero and

 phase asymptotically approaches -900.

As  b changes, value of T (0) = T o is

scaled but as T (0) changes, radius of circle changes, but it can never enclose

the -1 point, so amplifier is stable

regardless of value of T o.

T ( j ) jT o

 

Chap 18 - 36

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 37/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Second-Order Systems

T s Ao

1 s

 1

 

 

1 s

 2

 

 

 b  T o

1 s

 1

 

 

1 s

 2

 

 

In given example,

T (0) = 14, but for high frequencies

As increases, magnitude

monotonically decreases from 14

towards zero and phase asymptotically

approaches -1800 The transfer function

can never enclose the -1 point, but it

can come arbitrarily close to it.

T ( j ) 14

 j 1  

 2

 

T ( j )( j)2 14

 2

14

 2

Chap 18 - 37

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 38/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Phase Margin

Phase Margin is the maximumincrease in phase shift that can be

tolerated before system becomes

unstable.

 m T ( j 1)(180)180T ( j 

1)

Where

First we determine frequency for which

magnitude of loop gain is unity,corresponding to intersection of the

 Nyquist plot with unit circle, and then

determine phase shift at this frequency.

Difference between this angle and -1800 is

 phase margin.

Small phase margin causes excessive

 peaking in closed-loop frequency

response and ringing in step response.

T ( j 1) 1

Chap 18 - 38

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 39/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Third-Order Systems

In given example,

T (0) = 7, but, for high frequencies

As increases, polar plot

asymptotically approaches zero along

 positive imaginary axis and plot can

enclose the -1 point under manycircumstances and system is unstable.

T s T 

o

1 s

 1

 

 

1 s

 2

 

 

1 s

 3

 

 

T ( s) 14

 s3  s2 3 s2

T ( j )( j)3 14 3  j14

 3

Chap 18 - 39

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 40/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Gain Margin

Gain Margin is the reciprocal of magnitude of T ( j ) evaluated at

frequency for which phase shift is

1800.

GM 1

T ( j 180

where

If magnitude of T ( j ) is increased by a

factor equal to or exceeding gain margin,

then closed-loop system becomes

unstable, because the Nyquist plot thenencloses -1 point.

T ( j 180

)180

GM)log(20dB

GM

Chap 18 - 40

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 41/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Bode Plots

 A b  21019

 s105

 

  s106

 

  s107

 

 

At 1.2 Mrad/s, magnitude of the loop gain is

unity and corresponding phase shift is 145o.

Phase margin is given by 180o - 145o = 35o.

Amplifier can tolerate additional phase shift

of 35o before it becomes unstable.

At 3.2 Mrad/s, phase shift is exactly 180o and

corresponding magnitude of the loop gain is -17 dB. Phase margin is given by 17 dB.

Gain of amplifier must increase by 17 dB

 before amplifier becomes unstable.

Chap 18 - 41

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 42/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Use of Bode plot to Determine Stability

 b 

1log20log20log20 A A

Frequency at which curves corresponding to

magnitudes of open-loop gain and reciprocal of 

feedback factor intersect is the point at which loop

gain is unity, phase margin is found from phase

 plot.

Assuming feedback is independent of frequency,

For 1/ b =80 dB,  m=850, amplifier is stable.

For 1/ b =50 dB,  m=150, amplifier is stable, butwith significant overshoot and ringing in its step

response.

For 1/ b =0 dB,  m= -450, amplifier is unstable

 A b  210 24

 s 10 5

 

  s 310 6

 

  s 10 8

 

 

Chap 18 - 42

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 43/58

Jaeger/Blalock 3/10/04 Microelectronic Circuit DesignMcGraw-Hill

Operational Amplifier 

Compensation Example

• Problem: Find value of compensation capacitor for  m = 700.

• Given data:  RC 1 = 3.3 k W , RC 2 = 12 k W ,SPICE parameters: BF =

100, VAF = 75 V, IS = 0.1 fA, RB = 250 W, TF = 0.75 ns, CJC = 2 pF.

Assumptions: Dominant pole is set by C C and pnp C-E stage.  R Z is

included to remove zero associated

with C C .  pnp and npn transistors are

identical; quiescent value of V o = 0,

VJC = 0.75 V, MJC = 0.33. Q4 and

Q5 are in parallel, small-signal

resistances of diode-connected Q7 and

Q8 can be neglected.

Chap 18 - 43

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 44/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

Operational Amplifier 

Compensation Example (cont.)

• Analysis: I C 1 = I C 2 = 250 mA. For V o = 0,voltage across RC 2 = 12-0.75 = 11.3 V and I C 3 = 11.3V/12k W= 938 mA. Q4 and Q5 mirror 

currents in Q7 and Q8 , so, I C 4 = I C 5 = 938 mA. For V o = 0, V CE4 =12 V, V CE5 = 12 V, V CE3 = 11.3V. For V  I = 0, V CE2 = 12.8 V,V CE1 = 12-3300(0.25 mA)+0.75 =11.9 V

Small-signal parameters arefound using their respectiveformulae.

 Av1

 g m1

2(2r 

o1 R

C 1r  3

)

 Av1

0.01

2(696k W 3.3k W 3.07k W) 7.93

 Av2

 g m2

(r o3

RC 2

r  4

2

( b o4

1) R L

 

 

 Av2

0.0375 92k W12k W 3.09k W2

(117)500W

 Av2

338

 Av3

( b 

o1) R

 L

r  4

2 ( b o4 1) R L

(117)500

30902 (117)500

 Av3

0.974

 Av A

v1 A

v2 A

v3 2610

Chap 18 - 44

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 45/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

Operational Amplifier 

Compensation Example (cont.)

Input stage pole:

Emitter Follower pole: Q4 and Q5 are

in parallel, composite parameters are-

 g m = 0.02 S, r  x = 125 W, C  = 56.2 pF,

C m = 1.60 pF, Rth = 1/ g m3 = 267 W.

 f   H 

1

1

r  

C  

C m 

2g 

m R

2

RC 

r  x

 

 

 

 

 f   H 

59.2  MHz 

 f   H  12 

1

( Rth

r  x

 R L

)C 

 

1 g m R

 L

 

 

C m 

 Rth

r  x

  

 f   H 

82.5  MHz 

At f T  ,dominant pole due to C C  

contributes phase shift of 900. For  m= 700, other 2 poles can contribute

more phase margin of 200.

20 tan1f  

59.2 MHz 

 

  tan1

f  T 

82.5 MHz 

 

 

f  T 

12.2  MHz 

C C 

C m 3

   G

m1 

g m1

21

2  f  T 

 

 

65  pF 

 R Z = 1/ g m3 = 27.5 W  is included toremove zero associated with C C.

 f   B

f  

 Ao

12.2 MHz 

2610 4.67 kHz 

Chap 18 - 45

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 46/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

Barkhausen’s Criteria for Oscillation. 

• For sinusoidal oscillator, poles of closed-loop amplifier should be at

frequency  o on j axis.

• Use positive feedback through

frequency-selective feedback 

network to ensure sustained

oscillation at  0 .

 Av

s A s

1 A s  b  s

A s 1T s

• For sinusoidal oscillations,

• Barkhausen’s criteria state 

• Phase shift around feedback loop

should be zero degrees and

magnitude of loop gain must beunity.

• Loop gain greater than unity causes

distorted oscillations.

1T j o 0T j 

o 1

T j o 0

T j o 1

Or even multiples

of 3600 

Chap 18 - 46

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 47/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

Oscillators with Frequency-Selective RC  

 Networks: Wien-Bridge Oscillator 

  V o( s)V 

1( s) Z 

2( s)

 Z 1( s) Z 

2( s)

T (  s )V o( s)

V  I ( s)

sRCG

(1 2 R2C 2)3 sRC 1

Phase shift will be zero if ,

This oscillator is used for frequencies up to a

few MHz, limited primarily by characteristics

of amplifier .

(1 2 R2C 2)0

 

 At   o

= 1/ RC   T ( j o )G

3

T ( j o )G

3  T ( j 

o )0o

Chap 18 - 47

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 48/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

Oscillators with Frequency-Selective RC  

 Networks: Phase-Shift Oscillator 

 sCV o'( s)

0

(2 sC G)

 sC 

 sC 

(2 sC G)

V 1( s)

V 2( s)

V o( s)

V 2( s)

 sCR1

T ( s) V o( s)

V o'( s)

s3C 3 R2 R

13 s2 R2C 2 4 sRC 1

Phase shift will be zero if (1 3 o2 R2C 2) 0,

 RC o

3

 

 At  o , T ( j 

o )

 o2C 2 RR1

4

1

12

 R1 R

Chap 18 - 48

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 49/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

Amplitude Stabilization

• Loop gain of oscillator changes due to power supply voltage,component value or temperature changes.

• If loop gain is too small, desired oscillation decays, and if it is toolarge, waveform is distorted.

• Amplitude stabilization or gain control is used to automaticallycontrol loop gain and place poles exactly on j axis.

• At power on, loop gain is larger than that required for oscillation.As oscillation builds up, gain is reduced o minimum required tosustain oscillations.

Chap 18 - 49

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 50/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

Amplitude Stabilization in RC  

Oscillators: Method 1

 R1 is replaced by a lamp. Small-signal resistance of lamp depends on temperature

of bulb filament.If amplitude is large, current is large, resistance of lamp increases, gain is reduced.

If amplitude is small, lamp cools, resistance decreases, loop gain increases.

Thermal time constant of bulb averages signal current and amplitude is stabilized.

Chap 18 - 50

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 51/58

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 52/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

 LC Oscillators: Colpitts Oscillator 

G1/( RS 

r o) C 

3C 

2C 

GS 

0

0

s(C 3 C GD)1/ sL

 s(C 3 g 

m)

 sC 3

 s(C 1C 

3) g 

mG

 

 

V  g ( s)

V  s( s)

 s2 C 1C 

3C 

GD(C 

1C 

3)

   s (C 

GDC 

3)GGC 

3

  

 g 

m

G

 sL (C 

1

C 3

)

 L

= 0, collect real and imaginary parts and set them

to zero.

 o 1

 LC TC 

  C TC 

C GD

C 1C 

3

C 1C 

3

At  o,  g 

m R C 3

C 1

Generally more gain is used to ensure oscillation

with amplitude stabilization.

Chap 18 - 52

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 53/58

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 54/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

Amplitude Stabilization in LC  

Oscillators

• Inherent nonlinear characteristics of transistors are used to limit

oscillation amplitude. Eg: rectification by JFET gate diode or BJT

 base-emitter diode.

• In MOS version, diode and RG form rectifier to establish negative biason gate, capacitors act as rectifier filter.

• Practically, onset of oscillation is accompanied by slight shift in Q-

 point values as oscillator adjusts to limit amplitude.

Chap 18 - 54

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 55/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

Crystal Oscillators

Crystal: A piezoelectric device that vibrates

is response to electrical stimulus, can bemodeled electrically by a very high Q (

> 10,000) resonant circuit.

 L, C S , R represent intrinsic series resonance

 path through crystal. C  P is package

capacitance. Equivalent impedance has seriesresonance where C S resonates with L and

 parallel resonance where L resonates with

series combination of C S and C  P .

 Z C 

 P  Z 

 Z  P 

 Z S 

1

 sC  P 

 s2  s R

 L 1

 LC S 

 s2  s R

 L 1

 LC T 

 

 

C T 

C  P C S 

C  P 

C S 

Below  S  and above   P ,

crystal appears capacitive,

 between  S  and   P  it exhibits

inductive reactance.

Chap 18 - 55

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 56/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

Crystal Oscillators: Example

• Problem: Find equivalent circuit elements for crystal with given parameters.

• Given data:  f S = 5 MHz, Q = 20,000 R = 50 W, C  P = 5 pF

Analysis: 

 L RQ

 S 

50(20,000)

2 (5106

)

31.8 mH 

C S 

1

 S 

2 L 1

107 

 

 

2

(0.0318)

31.8  fF 

 f   P 

1

2  L C  P C S 

C  P 

C S 

1

2  (31.8mH )(31.6 fF )

 f   P 

5.02  MHz 

Chap 18 - 56

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 57/58

Jaeger/Blalock 

3/10/04

Microelectronic Circuit Design

McGraw-Hill

Crystal Oscillators: Topologies

Colpitts Crystal Oscillator Crystal Oscillator using BJT

Crystal Oscillator using JFET

Crystal Oscillator using CMOS

inverter as gain element.

Chap 18 - 57

7/27/2019 Chap18-Feedback, Stability and Oscillators

http://slidepdf.com/reader/full/chap18-feedback-stability-and-oscillators 58/58

J /Bl l k Mi l t i Ci it D i

End of Chpater 18