Chap 11 AC Power Analysis -Rev

65
Chap 11 AC Power Analysis

Transcript of Chap 11 AC Power Analysis -Rev

Page 1: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis

Page 2: Chap 11 AC Power Analysis -Rev

Outline

• Instantaneous and Average Power

• Maximum Average Power Transfer

• Effective or RMS Value

• Apparent Power and Power Factor

• Conservation of AC Power

• Power Factor Correction

Chap 11 AC Power Analysis 2

Page 3: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 3

Instantaneous Power

( ) ( ) ( )p t v t i t

( ) cos( )

( ) cos( )

( ) ( ) cos( )cos( )

1 cos

1cos(2 )

2

cos cos(

1c

) c

os( )

(

( )

)

2

os2

m

m v

m i

m

m m vm v

m v i

ii

v t V t

i t I t

v t i t V I

V I

t t

V

p t

tI

Frequency doubled!

The instantaneous power (in watts) is the power at any

instant of time.

Power Provider Power Consumer

Page 4: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 4

Illustration of Instantaneous Power

1cos

1cos (( ) )

2 2( ) 2m m v i m m v iV Ip tt V I

• p(t) is periodic but with frequency 2ω

• The power is transferred from the circuit to the source.

(Because of the storage elements such as capacitors and

inductors in the circuit)

Page 5: Chap 11 AC Power Analysis -Rev

An Example of Instantaneous Power

Chap 11 AC Power Analysis 5

1co

1cos( ) s(2 )

2( )

22 60

4 4p t t

Page 6: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 6

Average Power

The average power (in watts) is the average of the

instantaneous power over one period.

0

*

0

*

1( )

1 cos( )cos( )

1

2

1

cos(

Re ;

)

2

m m v

T

T

m

i

m v i

m m v i

p t dtT

V I t t

V

T

P

I

dt

V I

VI VI

( ) cos( )

( ) cos( )

m v

m i

v t V t

i t I t

Page 7: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 7

Two Special Cases of Average Power

2

Purely resistive circuit:

Purely reactive circui

1

1

2

9

cos 2

0:

90 0

t

v i

v i

eq

m mV I

P R

P

I

cos1

(2

)m m v iP V I

The resistive load (R) absorbs power at all times, while a

reactive load (L or C) absorbs zero average power.

Page 8: Chap 11 AC Power Analysis -Rev

Examples of Special Cases

Chap 11 AC Power Analysis 8

221 1

: 0 || |

2

90 0

1

|2 2

1 :

92

01

: 0

2

m m

m m

m m

RR

j L

j C

P V I R

P V I

P V I

Z I

Z

Z

V

Page 9: Chap 11 AC Power Analysis -Rev

Phasor Domain Interpretation

Chap 11 AC Power Analysis 9

+

-

V

I

Z

V

I

22

*

*

1Re

2

1 1Re Re

2

||

2

||

P

P

VI Z

Z

V ZI VI

Page 10: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 10

Example 11.1

Q: Given that v(t)=120cos(377t+45o)V, i(t)=10cos(377t-

10o)A, find the instantaneous power and the average

power absorbed by the passive linear network.

344.2 600cos(754

1200cos(377 45 )cos

35 )

34

(377 10 )

600 cos(754 35 ) cos55

1 1cos( ) 1200cos 45 ( 10 )

2 2

600cos55 4

W

W.2

m m v i

p

t

i

t

V IP

v t t

Page 11: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 11

Example 11.2

Q: Calculate the average power absorbed by an

impedance Z = 30 – j70 Ω when a voltage V = 1200°is applied across it.

120 0 A

76.16 66.8

1cos( )

2

1(120)(1.576)cos(

1.576 66.8

30 66.8 )2

7. W24

m m v iV IP

V

ZI

Page 12: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 12

Example 11.3

Q: For the circuit, find the average power supplied by

the source and the average power absorbed by the

resistor.

Page 13: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 13

Example 11.3 (cont.)

1. A

W

115 30 5 30

4 2 4.472 26.57

1Re

2

1 5 1.118cos(30 5

8 56.57

2.

6.57 )2

5

P

j

VI*

I

1.118 56.57 A

4 4.472 56.57

2.5

V

14.4 W72 1.118

2

R

R R

RP

I I

V I

Page 14: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 14

Example 11.4

Q: Determine the average power generated by each

source and the average power absorbed by each

passive element in circuit (a).

Page 15: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 15

Example 11.4 (cont.)

1

2

2

1

4 A

10 5 10 60 30 0

By and 12 6

( )

( )

( ) ( ) 10.58 79.1

For mesh 1:

KCL for mesh :

8

2

A0

a

bj

a

j

b

j

I

I

I I

*

2

1 1Re

For the vol

207

tage sourc

60 10.58 cos(30 79.1 )2

:

2

e

8 W.VP VI

V

0. Hence, this average powe absorbed by the r sis o c .ur eVP

Page 16: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 16

Example 11.4 (cont.)

1 1 1 2

*

1 1

20 10( ) 80 10(4 2 10.39)

184.984 6.21

1

For

1Re 184.984 4cos(6.21 0)

2 2

the current source:

3 W67.8

I

j j j

P

V

V I I I

V I

1

2 1

*

2 1

4 0 A

20 80 0 V

1 1Re 80

F

42 2

160

or the resis or

W

t :

RP

I

V I

V I

0. Hence, this current source power to thsup e cpli irc .s te uiIP

Page 17: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 17

Example 11.4 (cont.)

2

C 2

*

2

L 1 2

L 1 2

10 58 79 1 ,

5 (5 90 )(10.58 79.1 ) 52.9 (79.1 90 )

1 1

For the capacitor:

For the inductor:

0Re (52.9)(10.58)cos( 90 )2 2

2 10.39 10.58 79.1

10( ) 10.58 ( 79.1

C C

. .

j

j

j

P

I

V I

V I

I I I

V I I

*

90 )

1 1Re (105.8)(10.58)cos90

20

2L L LP

V I

Finally,

367.8 160 0 0 20 07.8

V I R C LP P P P P

LVLI

CV

Page 18: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 18

Maximum Average Power Transfer

For maximum average power transfer, the load

impedance ZL must be equal to the complex conjugate

of the Thevenin impedance ZTh.

2

Th

max

Th8P

R

V

*

ThL Z Z

Page 19: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 19

Th Th Th

Th Th

Th Th Th

2

2* * Th

2 2

Th Th

;

( ) ( )

1 1 1 1Re Re

2 2 2 2 ( ) ( )

L L L

L L L

L L

L

L

L

L

R jX R jX

R R j

R

R R

X

P

X

RXX

Z Z

V VI

Z Z

VV I Z II I

Derivation of Maximum Average Power

Transfer

2

Th Th

22 2

Th Th

2 2 2

Th Th Th Th

22 2

Th Th

To find the condition with maximum power,

( )

( )0

0

( )

( ) ( ) 2 ( )

2 ( ) ( )

L L

L L

L L L

L L

L

L

L

P

X

P

R X X

R R X X

R R X X R R R

R R R X X

V

V

Page 20: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 20

2

Th Th

22 2

Th Th

2 2 2

Th T

Th

22

Th

*

Th

2

h Th Th

22 2

Th Th

T

Th

h

Th Th

max

Th

0( ) ( )

( ) ( ) 2 ( )0

2 ( ) ( )

;

8

L L

L L L

L L L

L

L th

L

L L L

L

L

th

L

R X XP

X R R X X

R R X X R R RP

R R R

X X

R R X

X X

X -X

R j

X

R

PR

X

Z Z

V

V

V

Derivation of Maximum Average Power

Transfer

2 2

T

2 2

Th

h h T

Th

T h

0

L

L

L L

X

R R (X X

R R X

)

Z

Page 21: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 21

Example 11.5

Q: Determine the load impedance ZL that maximizes the

average power drawn from the circuit. What is the

maximum average power?

Page 22: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 22

Example 11.5 (cont.)

Th

Th

2.933 44(8 6)

From Fig. (a), 5 4 (8 6) 5 4 8 6

8 6From Fig (b),

.467

7.454 1 (10) 4 8 6

0. V3

jj j j

j

j

j

j

Z

V

*

2

x

2

ma

(7.454)

8

2.933 4.

8(2.933

467

2.368 W)

TH

T

H

L

H

TR

j

P

Z Z

V

Page 23: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 23

Example 11.6

Q: In the circuit, find the value of RL that will absorb the

maximum average power. Calculate the power.

Page 24: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 24

Example 11.6 (cont.)

Th

Th

20(40 30)(40 30) 20 9.412 22.35

20 40 30

20(150 30 ) 72.76 134 V

20 40 30

j jj j j

j j

j

j j

Z

V

2 2

Th

Th

Th

2

max

9.412 22.35

72.76 1341.8 100.42 A

3

24

3.66 22.35

1 1(1.8)

.

(24

25

39..25)2

292

W

L

L

LR

P

R j

R

Z

VI

Z

I

RL

Page 25: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 25

Effective or RMS Value

The effect value of a period current is the dc current

that delivers the same average power to a resistor as

the period current.

Page 26: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 26

Effective or RMS Value (cont.)2 2

eff0

1 T

R i RdtP I RT

2

0eff rms

1 T

TI i dt I

eff rms

2

0Simi

1larly,

T

v dtT

V V

2

0

The ( ) value of a periodic signal ( )

1

T

rms

x troot - mean - square rms

X x dtT

Page 27: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 27

R

VRIP

2rms2

rms

Effective or RMS Value (cont.)

The effect value of a period signal is its root-mean-square

(rms) value.

rms

22

rms

2

0 0

For the sinusoid ( ) cos , the rms valus is

1 1 cos 1 cos 2

2

Similarly, for ( ) cos ,

2

2

m

T Tm

m

m

m

m

i t I t

II tdt t dt

T T

v t

II

V

V t

V

Page 28: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 28

Example 11.7

Q: Determine the rms value of the current waveform. If

the current is passed through a 2-Ω resistor, find the

average power absorbed by the resistor.

Page 29: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 29

Example 11.7 (cont.)

• The period of the waveform is T = 4,

42,10

20,5)(

t

ttti

2 4

2 2 2

0rms

0 2

23

4

2

0

1 1(5 ) ( 10)

4

1 1 20025 100 200

48.165

3 4 3A

T

i dt t dt dtT

t

I

t

2

rm2

2

s (8.165) (2) 1 3 3 W3.R IP R

Page 30: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 30

Example 11.8

Q: The waveform is a half-wave rectified sine wave.

Find the rms value and the amount of average power

dissipated in a 10-Ω resistor.

Page 31: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 31

Example 11.8 (cont.)

• The period of the waveform is T = 2,

2,0

0,sin10)(

t

tttv

2

2 2 2 2

rms0 0

2

0

rms

0

1 1( ) (10sin ) 0

2

1 100 50 sin 2 11 cos 2 ; sin (1 cos 2 )

2 2 2 2 2

50 1sin 2 0 25

2 2

V5

T

π

V v t dt t dt dtT

( t)dt t t t

V

π

2 2

rms10 W2.5

5

10R

V

RP

Page 32: Chap 11 AC Power Analysis -Rev

RMS of Sinusoidal Signal

Chap 11 AC Power Analysis 32

rms

22

r

0

ms

2

0

For the sinusoid ( ) cos , the rms valus is

1 1 cos 1 cos 2 2

2

Similarly, for ( ) cos ,

2

2

m i

T Tm

m im

i

v

m

m

i t I t

II t dt

II t dt

T T

v t V

V

t

V

Page 33: Chap 11 AC Power Analysis -Rev

Power Representation Via RMS

Values

Chap 11 AC Power Analysis 33

*

*

Represented b

Given ( ) cos and ( ) cos

1 1The average power cos( ) Re[ ]

2 2

y RMS:

Denot

cos( ) cos

e phasors:

1Re[

( )

2

] Re[

2

2

,

2

2

m i m v

m m v i

m mv i rms rms

rms rm

rms rms

v i

i t I t v t V t

P V I

V IP V I

P

s

VV I

V

I

I I

V

V

I

*

22

For resistive load:

]

v i

rmsrms rms rms L

L

VV I I R

RP

Page 34: Chap 11 AC Power Analysis -Rev

Complex Power

Chap 11 AC Power Analysis 34

Complex power S (in volt-amperes or VA) is the product

of the rms voltage phasor and the complex conjugate of

the rms current phasor. Its real part is real power P and its

imaginary part is reactive power Q.

* 2* 2

*

2

*

2

*

1 | || |

2 22 2

| |

sin

| |

t

c s

1

o

a

2

n

rms rms

rmsrms

jS S

j

SS

P PQ P

e j

j

V I VV I I Z

Z

VS I Z

S

S

Z

S VI

*

rms rmsS V I

Page 35: Chap 11 AC Power Analysis -Rev

Summary of Terminologies

Chap 11 AC Power Analysis 35

rms rms

2 2

rms rms

Terminology Unit Form

1*

Complex Power VA 2

( )

Apparent Power VA

Real Power Watt Re( ) cos( )

Reactive Power VAR Im( ) sin( )

Power p Factor os( )f c

v i

v i

v i

v i

S

P

Q

P

S

P jQ

V I

V I P Q

S

S

VI

S

S

S

S

Page 36: Chap 11 AC Power Analysis -Rev

Summary of Terminologies (cont.)

• S is called the complex power consumed by

the load Z

• P is the average or real power.

– The power delivered to the load

– The actual power dissipated by the load

• Q is the reactive or quadrature power.

– Unit: volt-ampere reactive (VAR)

– A measure of the energy exchange between the source

and the reactive part of the load.

Chap 11 AC Power Analysis 36

Page 37: Chap 11 AC Power Analysis -Rev

Summary of Terminologies (cont.)

• S is called the apparent power which denotes

the power the provider provides.

• pf: is the power factor in [0,1]. The power

factor is an index of the load reaching the

satisfaction of the provider; the larger the

power is, the happier the provider is.

Chap 11 AC Power Analysis 37

Page 38: Chap 11 AC Power Analysis -Rev

Power and Impedance Triangles

Chap 11 AC Power Analysis 38

Power triangle

2

2

*

** 2

*

2

1 | || |

2 2

| || |

c

1

2

ta

os s n

n

i

rms rms

rmsrms

jS

P

e S S jS

PP jQ j

VV I I Z

Z

VS I Z

S

S

Z

VI

S

rms

rms

( )rmsv i

rms

V

I

VV

I IZ

Impedance triangle

Page 39: Chap 11 AC Power Analysis -Rev

Passive Load

Chap 11 AC Power Analysis 39

| | ( )

0 ( )

(1)

(2) ; in the

Resistive load

Inductive load

f quadrant and the curr

[ 90 ,90 ]

0 :

0 0 :

ent is

the voltage by

irst

C

(3) ap0 ac0 : it

v i

v i

R

X

X

laggi

R jX

R

ng

Z Z

Z

S

; in the

quadrant and the current is

ive loa

the voltage by

d

our

f th

leading

S

Page 40: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 40

Power Triangle (cont.)

Resistive load

Inductive load

Capacitive load

Page 41: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 41

Example 11.9

Q: A series-connected load draws a current i(t) = 4

cos(100t + 10°) A when the applied voltage is v(t) =

120 cos(100t - 20°) V. Find the apparent power and

the power factor of the load. Determine the element

values that form the series-connected load.

Sol:

rms rmsapparent power: 240

powe

120 4 VA

2 2

cos( ) cos( 20 1r factor: pf 0.86) 60v i

S V I

Page 42: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 42

Example 11.9 (cont.)

• The load impedance Z can be modeled by a 25.98-Ω

resistor in series with a capacitor with

The power factor can also be obtained from

120 20 30 30 25.98 15

4 10

pf 0.cos 866( 30 )

j

VZ

I

2

115

1 1 F

1512.

15 12

00

CXC

C

Page 43: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 43

Example 11.10

Q: Determine the power factor of the entire circuit as

seen by the source. Calculate the average power

delivered by the source.

Page 44: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 44

Example 11.10 (cont.)

• The average power supplied by the source is

2 46 4 ( 2) 6 6.8 7 13.24

pf 0.9734

1.6 4 2

cos( 13.24)

eq

jj j

j

Z

rrms

ms 30 0A

7 13.24.286 3 24

41 .

I

V

Z

rms rms

2

rms

2

(30)(4.286)0.9734 W

or (4.286) (6.8) W

where is th

p

e resistor part o

f 125

5

f

1

.

2

P V I

R

R

P I

Z

Page 45: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 45

Example 11.11Q: The voltage across a load is v(t) = 60cos(t – 10°) V

and the current through the element in the direction of

the voltage drop is i(t) = 1.5 cos(t + 50°) A. Find: (a)

the complex and apparent powers, (b) the real and

reactive powers, and (c) the power factor and the load

impedance.

*

rms s

r

m

m

r

s

( ) ( ) 60cos( 10 ); ( ) 1.5cos( 50 )

60 1.510 , 50

2 2

The complex power is

60 1.5 10 50 VA

2 2

The ap

45 6

p

0

arent power is

V5 A4

o o

rms

a v t i t

S

t t

S V I

S

V I

Page 46: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 46

Example 11.11 (cont.)

(b) Form (a),

S 45 60 45 cos( 60 ) sin( 60 )

22.5 38.97

S

The real powe 22.5

38.97

r W

The reactive power VA R

j

j

P j

P

Q

Q

pf 0.4

(c) cos( 60 )

6 40 60

0 10

1.5 50

V

IZ

Page 47: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 47

Example 11.12

Q: A load Z draw 12 kVA at a power factor of 0.856

lagging from a 120-V rms sinusoidal source. Calculate:

(a) the average and reactive powers delivered to the

load, (b) the peak current, and (c) the load impedance.

Sol:

The apparent power is S = 12,000 VA, the average

or real power is

and the reactive power is

1(a) cos , copf 0.856 s 0.856 31.13 .

cos 12000 0.856 10. kW272P S

sin 12000 0.517 6.2 kVA04Q S

Page 48: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 48

Example 11.12 (cont.)

(b) Since the pf is lagging, the complex power is

*

rms rms

*

rms

rms

rms

rms

S V Ι

Ι

1

S 10.272 6.204 VA

S 10272 6.204

V 120 0

85.6 51.7 A A

Thus and the peak c

00 31.13

urrent I 1 is

2 2 100

00 31.13

141 4 A.m

P jQ j

j

II

j

Page 49: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 49

Example 11.12 (cont.)

(c) The load impedance

which is an inductive impedance.

rms

rms

120 0

101.2 31.13

0 31.13

Z

V

I

Page 50: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 50

Conservation of AC Power

1 2 N S S S S

• The principle of conservation of power is stillapplicable to the ac circuits.

The principle of conservation of ac power: The

complex, real, and reactive powers of the sources equal

the respective sums of the complex, real and reactive

powers of the individual loads.

1 N 1 2 N

1 1

2 2 * * *S V V S S SI I I

Page 51: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 51

Example 11.13

Q: The following figure shows a load being fed by a

voltage source through a transmission line. The

impedance of the line is represented by the (4 + j2)Ω

impedance and a return path. Find the real power and

reactive power absorbed by; (a) the source, (b) the

line, and (c) the load.

Page 52: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 52

Example 11.13 (cont.)

(a)

20.

(4 2) (15 10)

19 8

22

62 22.

0 0=

83

10.67 22.83 A20.62 22.83

eq

rmr s

s

s

m

j j

j

Z

IV

Z

* (220 0 )(10.67 2

(2163.5 910.8)

2.83 )

2347.4 22.83 VA

s

rms rs ms

j

S V I

Page 53: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 53

Example 11.13 (cont.)

(b)

The complex power absorbed by the line is

(4 2) (4.472 26.57 )(10.67 22. 47.7283 ) 4 .4 V9line

r s mm r sj IV

*

line

2

line line

2

455.4 j227

(47.72 49.4 )(10.67 22.83 )

509.2 26.57 VA

or

(10.67) (4 2) VA

.7

455.4 227.7

line

rms rms

rms j j

S V I

S I Z

Page 54: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 54

Example 11.13 (cont.)

(c)

*

(15 10) (18.03 33.7 )(10.67 22.83 )

V

(192.38 10.87 )(10.67 22.83 )

2053

192.38 1

33.7

0.87

( V1708 11 9) A3

Load

rms

Load

rms

Load

rms rms

j

j

I

V I

V

S

s line Load S S S

Page 55: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 55

Example 11.14

Q:

Calculus the total: (a) apparent power, (b) real power,

(c) reactive power, and (d) pf, supplied by the source

and seen by the source.

1 260 30 and 40 45 . Z Z

Page 56: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 56

Example 11.14 (cont.)

• The complex powers absorbed by the impedances are

• The total complex power is

1

1

2

2

120 10A rms2 40

3 3

60 30

120 10A5 rms

40 45

VI

Z

VI

Z

2 2

rms

*

1

2 2

ms

*

2

1

2r

(120)240 30 VA

60 30

(120)360 45 VA

40 45

207.85 120

254.6 254.6

jV

Vj

S

S

Z

Z

2t 1 462.4 134.6 VAj SS S

Page 57: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 57

Example 11.14 (cont.)

1 2

t

1 2

t

The total complex power is

VA

(a) The total apparent power is

VA

(b) The total real power is

Re( ) W or

(c) The total r

462 4 134 6

481 6

4

eactiv

4

e

.

p

62

o

t

t t t

. j .

S .

P P PP

S S

S

S

S

1 2134

wer i

.6

s

Im( ) VAR or t tt Q QQ Q S

Page 58: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 58

Example 11.14 (cont.)

p

(

f

d) The powe

0.

r f

96

actor

/ 462.4 / 481.6t tP S

1

*

s

2 (1.532 1.286) (2.457 1.721)

(4 0.4 4

Result checking: The complex power

35) A rms.024 6.21

463 135

(120 10 )(4.024 6.21 )

488.88

supplied by the sourc

16.21

VA

e

t

t j j

j

j

I I

VI

I

S

Page 59: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 59

Power Factor Correction

• Most practical loads are inductive since motors

are the most useful driving force in this world.

• Hence, we can use a parallel-connected

capacitor to attain the goal of power factor

correction

Power factor correction: the process of increasing the

power factor without altering the voltage or current to the

original load.

Page 60: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 60

Illustration of Power Factor Correction

Page 61: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 61

Phasor Diagram for Inductive Load

by Capacitor Compensation

2

1

IIII

VI

IV

I

CL

C

LL

Cj

LjR

Page 62: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 62

Capacitor Compensation

1 1

1 2

1 1 1 2 2 2

1 1

2

2

2 2 2

1 2 1

T

tan

tan

(

o increase pf from cosθ to cosθ without

altering the real power,

cos cos

tan tan )

sin

sin

Applying the ac power conservation gives

C

Q P

P S P S P

S

S

Q Q

Q P

Q P

2

rms

*

1 2

2 2

rms r

22rm

ms

srms

1 2

2

Not real poe tha wer

because is

t the

zero

is not affected by

the pf corre

But

(tan tan )

ction .

C

C

C

C

rms

VQ CV

X

Q QC

ωV

P

P

V

Q P

V V

SZ

Page 63: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 63

PF Correction for Capacitor Load

• Similar idea can be used to realize power factor

correction for a capacitive load.

• The required shunt inductance L can be calculated as

2 2

rms r

2

rm1

mss2

LL

L

V VQ L

L Q

VQ Q

X

Page 64: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 64

Example 11.15

Q: When connected to a 120-V (rms), 60-Hz power line,

a load absorbs 4 kW at a lagging power factor of 0.8.

Find the value of capacitance necessary to raise the pf

to 0.95.

Sol:

If pf = 0.8, then

1 1

1

1

1 1 1

cos 0.8 36.87

40005000 VA

cos 0.8

sin 5000sin36.87 3000VAR

PS

Q S

Page 65: Chap 11 AC Power Analysis -Rev

Chap 11 AC Power Analysis 65

Example 11.15 (cont.)

When pf is raised to 0.95,

2 2

2

2

2 2 2

1 2

2 2

rms

cos 0.95 18.19

40004210.5 VA

cos 0.95

sin 1314.4 VAR

3000 1314.4 1685.6 VAR

1685.6 F

2 60 120310.5

C

C

PS

Q S

Q Q Q

Q

VC