ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith...

91
Challenges in Fiducial Inference Parts of this talk are joint work with T. C.M Lee (UC Davis), Randy Lai (U of Maine), H. Iyer (NIST) J. Williams, Y Cui (UNC) BFF 2017 Jan Hannig a University of North Carolina at Chapel Hill a NSF support acknowledged

Transcript of ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith...

Page 1: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

Challenges in Fiducial Inference

Parts of this talk are joint work withT. C.M Lee (UC Davis), Randy Lai (U of Maine), H. Iyer (NIST)J. Williams, Y Cui (UNC)

BFF 2017

Jan Hanniga

University of North Carolina at Chapel Hill

aNSF support acknowledged

Page 2: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

outline

Outline

Introduction

Definition

Sparsity

Regularization

Conclusions

1

Page 3: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

introduction

Outline

Introduction

Definition

Sparsity

Regularization

Conclusions

Page 4: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

introduction

Fiducial?

▶ Oxford English Dictionary▶ adjective technical (of a point or line) used as a fixed basis of

comparison.▶ Origin from Latin fiducia ‘trust, confidence’

▶ Merriam-Webster dictionary1. taken as standard of reference a fiducial mark2. founded on faith or trust3. having the nature of a trust : fiduciary

2

Page 5: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

introduction

Aim of this talk

▶ Explain the definition of generalized fiducial distribution

▶ Challenge of extra information:▶ Sparsity▶ Regularization

▶ My point of view: frequentist▶ Justified using asymptotic theorems and simulations.▶ GFI tends to work well

3

Page 6: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

introduction

Aim of this talk

▶ Explain the definition of generalized fiducial distribution▶ Challenge of extra information:

▶ Sparsity▶ Regularization

▶ My point of view: frequentist▶ Justified using asymptotic theorems and simulations.▶ GFI tends to work well

3

Page 7: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

introduction

Aim of this talk

▶ Explain the definition of generalized fiducial distribution▶ Challenge of extra information:

▶ Sparsity▶ Regularization

▶ My point of view: frequentist▶ Justified using asymptotic theorems and simulations.▶ GFI tends to work well

3

Page 8: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition

Outline

Introduction

Definition

Sparsity

Regularization

Conclusions

Page 9: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition

Comparison to likelihood

▶ Density is the function f(x, ξ), where ξ is fixed and x isvariable.

▶ Likelihood is the function f(x, ξ), where ξ is variable and x isfixed.

▶ Likelihood as a distribution?

4

Page 10: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition

Comparison to likelihood

▶ Density is the function f(x, ξ), where ξ is fixed and x isvariable.

▶ Likelihood is the function f(x, ξ), where ξ is variable and x isfixed.

▶ Likelihood as a distribution?

4

Page 11: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition

Comparison to likelihood

▶ Density is the function f(x, ξ), where ξ is fixed and x isvariable.

▶ Likelihood is the function f(x, ξ), where ξ is variable and x isfixed.

▶ Likelihood as a distribution?

4

Page 12: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

General Definition

▶ Data generating equationX = G(U , ξ).▶ e.g. Xi = µ+ σUi

▶ A distribution on the parameter space is Generalized FiducialDistribution if it can be obtained as a limit (as ε ↓ 0) of

arg minξ

∥x−G(U⋆, ξ)∥ | {minξ

∥x−G(U⋆, ξ)∥ ≤ ε} (1)

▶ Similar to ABC; generating from prior replaced bymin.▶ Is this practicle? Can we compute?

5

Page 13: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

General Definition

▶ Data generating equationX = G(U , ξ).▶ e.g. Xi = µ+ σUi

▶ A distribution on the parameter space is Generalized FiducialDistribution if it can be obtained as a limit (as ε ↓ 0) of

arg minξ

∥x−G(U⋆, ξ)∥ | {minξ

∥x−G(U⋆, ξ)∥ ≤ ε} (1)

▶ Similar to ABC; generating from prior replaced bymin.▶ Is this practicle? Can we compute?

5

Page 14: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

General Definition

▶ Data generating equationX = G(U , ξ).▶ e.g. Xi = µ+ σUi

▶ A distribution on the parameter space is Generalized FiducialDistribution if it can be obtained as a limit (as ε ↓ 0) of

arg minξ

∥x−G(U⋆, ξ)∥ | {minξ

∥x−G(U⋆, ξ)∥ ≤ ε} (1)

▶ Similar to ABC; generating from prior replaced bymin.

▶ Is this practicle? Can we compute?

5

Page 15: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

General Definition

▶ Data generating equationX = G(U , ξ).▶ e.g. Xi = µ+ σUi

▶ A distribution on the parameter space is Generalized FiducialDistribution if it can be obtained as a limit (as ε ↓ 0) of

arg minξ

∥x−G(U⋆, ξ)∥ | {minξ

∥x−G(U⋆, ξ)∥ ≤ ε} (1)

▶ Similar to ABC; generating from prior replaced bymin.▶ Is this practicle? Can we compute?

5

Page 16: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Explicit limit (1)

▶ AssumeX ∈ Rn is continuous; parameter ξ ∈ Rp

▶ The limit in (1) has density (H, Iyer, Lai & Lee, 2016)

r(ξ|x) = fX(x|ξ)J(x, ξ)∫Ξ fX(x|ξ′)J(x, ξ′) dξ′

,

where J(x, ξ) = D

(ddξG(u, ξ)

∣∣∣u=G−1(x,ξ)

)▶ n = p givesD(A) = | detA|

▶ ∥· ∥2 givesD(A) = (detA⊤A)1/2

Compare to Fraser, Reid, Marras & Yi (2010)

▶ ∥· ∥∞ givesD(A) =∑

i=(i1,...,ip)

|det(A)i|

6

Page 17: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Explicit limit (1)

▶ AssumeX ∈ Rn is continuous; parameter ξ ∈ Rp

▶ The limit in (1) has density (H, Iyer, Lai & Lee, 2016)

r(ξ|x) = fX(x|ξ)J(x, ξ)∫Ξ fX(x|ξ′)J(x, ξ′) dξ′

,

where J(x, ξ) = D

(ddξG(u, ξ)

∣∣∣u=G−1(x,ξ)

)▶ n = p givesD(A) = | detA|

▶ ∥· ∥2 givesD(A) = (detA⊤A)1/2

Compare to Fraser, Reid, Marras & Yi (2010)

▶ ∥· ∥∞ givesD(A) =∑

i=(i1,...,ip)

|det(A)i|

6

Page 18: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Example -- Linear Regression

▶ Data generating equation Y = Xβ + σZ

▶ ddθY = (X,Z) and Z = (Y −Xβ)/σ.

▶ The L2 Jacobian is

J(y, β, σ) =

(det

((X,

y −Xβ

σ)⊤(X,

y −Xβ

σ)

))1/2

= σ−1|det(XTX)|1/2(RSS)1/2

▶ Fiducial happens to be same as independence Jeffreys,explicit normalizing constant

7

Page 19: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Example -- Linear Regression

▶ Data generating equation Y = Xβ + σZ

▶ ddθY = (X,Z) and Z = (Y −Xβ)/σ.

▶ The L2 Jacobian is

J(y, β, σ) =

(det

((X,

y −Xβ

σ)⊤(X,

y −Xβ

σ)

))1/2

= σ−1| det(XTX)|1/2(RSS)1/2

▶ Fiducial happens to be same as independence Jeffreys,explicit normalizing constant

7

Page 20: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Example -- Linear Regression

▶ Data generating equation Y = Xβ + σZ

▶ ddθY = (X,Z) and Z = (Y −Xβ)/σ.

▶ The L2 Jacobian is

J(y, β, σ) =

(det

((X,

y −Xβ

σ)⊤(X,

y −Xβ

σ)

))1/2

= σ−1| det(XTX)|1/2(RSS)1/2

▶ Fiducial happens to be same as independence Jeffreys,explicit normalizing constant

7

Page 21: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Example -- Uniform(θ, θ2)

▶ Xi i.i.d. U(θ, θ2), θ > 1

▶ Data generating equationXi = θ + (θ2 − θ)Ui, Ui ∼ U(0, 1).

▶ Compute Jacobian: ddθ [θ + (θ2 − θ)Ui] = 1 + (2θ − 1)Ui, with

Ui =Xi−θθ2−θ

.

▶ Using ∥· ∥∞ we have J(x, θ) = n x̄(2θ−1)−θ2

θ2−θ .

▶ Reference prior π(θ) = eψ( 2θ

2θ−1)(2θ−1)θ(θ−1) Berger, Bernardo &

Sun (2009) – complicated to derive.▶ In simulations fiducial was marginally better than reference

prior which was much better than flat prior.

8

Page 22: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Example -- Uniform(θ, θ2)

▶ Xi i.i.d. U(θ, θ2), θ > 1▶ Data generating equationXi = θ + (θ2 − θ)Ui, Ui ∼ U(0, 1).

▶ Compute Jacobian: ddθ [θ + (θ2 − θ)Ui] = 1 + (2θ − 1)Ui, with

Ui =Xi−θθ2−θ

.

▶ Using ∥· ∥∞ we have J(x, θ) = n x̄(2θ−1)−θ2

θ2−θ .

▶ Reference prior π(θ) = eψ( 2θ

2θ−1)(2θ−1)θ(θ−1) Berger, Bernardo &

Sun (2009) – complicated to derive.▶ In simulations fiducial was marginally better than reference

prior which was much better than flat prior.

8

Page 23: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Example -- Uniform(θ, θ2)

▶ Xi i.i.d. U(θ, θ2), θ > 1▶ Data generating equationXi = θ + (θ2 − θ)Ui, Ui ∼ U(0, 1).

▶ Compute Jacobian: ddθ [θ + (θ2 − θ)Ui] = 1 + (2θ − 1)Ui, with

Ui =Xi−θθ2−θ

.

▶ Using ∥· ∥∞ we have J(x, θ) = n x̄(2θ−1)−θ2

θ2−θ .

▶ Reference prior π(θ) = eψ( 2θ

2θ−1)(2θ−1)θ(θ−1) Berger, Bernardo &

Sun (2009) – complicated to derive.▶ In simulations fiducial was marginally better than reference

prior which was much better than flat prior.

8

Page 24: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Example -- Uniform(θ, θ2)

▶ Xi i.i.d. U(θ, θ2), θ > 1▶ Data generating equationXi = θ + (θ2 − θ)Ui, Ui ∼ U(0, 1).

▶ Compute Jacobian: ddθ [θ + (θ2 − θ)Ui] = 1 + (2θ − 1)Ui, with

Ui =Xi−θθ2−θ

.

▶ Using ∥· ∥∞ we have J(x, θ) = n x̄(2θ−1)−θ2

θ2−θ .

▶ Reference prior π(θ) = eψ( 2θ

2θ−1)(2θ−1)θ(θ−1) Berger, Bernardo &

Sun (2009) – complicated to derive.▶ In simulations fiducial was marginally better than reference

prior which was much better than flat prior.

8

Page 25: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Example -- Uniform(θ, θ2)

▶ Xi i.i.d. U(θ, θ2), θ > 1▶ Data generating equationXi = θ + (θ2 − θ)Ui, Ui ∼ U(0, 1).

▶ Compute Jacobian: ddθ [θ + (θ2 − θ)Ui] = 1 + (2θ − 1)Ui, with

Ui =Xi−θθ2−θ

.

▶ Using ∥· ∥∞ we have J(x, θ) = n x̄(2θ−1)−θ2

θ2−θ .

▶ Reference prior π(θ) = eψ( 2θ

2θ−1)(2θ−1)θ(θ−1) Berger, Bernardo &

Sun (2009) – complicated to derive.

▶ In simulations fiducial was marginally better than referenceprior which was much better than flat prior.

8

Page 26: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Example -- Uniform(θ, θ2)

▶ Xi i.i.d. U(θ, θ2), θ > 1▶ Data generating equationXi = θ + (θ2 − θ)Ui, Ui ∼ U(0, 1).

▶ Compute Jacobian: ddθ [θ + (θ2 − θ)Ui] = 1 + (2θ − 1)Ui, with

Ui =Xi−θθ2−θ

.

▶ Using ∥· ∥∞ we have J(x, θ) = n x̄(2θ−1)−θ2

θ2−θ .

▶ Reference prior π(θ) = eψ( 2θ

2θ−1)(2θ−1)θ(θ−1) Berger, Bernardo &

Sun (2009) – complicated to derive.▶ In simulations fiducial was marginally better than reference

prior which was much better than flat prior.

8

Page 27: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Important Simple Observations

▶ GFD is allways proper

▶ GFD is invariant to re-parametrizations (same as Jeffreys)

▶ GFD is not invariant to smooth transformation of the data ifn > p

▶ Does not satisfy likelihood principle.

9

Page 28: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Important Simple Observations

▶ GFD is allways proper

▶ GFD is invariant to re-parametrizations (same as Jeffreys)

▶ GFD is not invariant to smooth transformation of the data ifn > p

▶ Does not satisfy likelihood principle.

9

Page 29: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Important Simple Observations

▶ GFD is allways proper

▶ GFD is invariant to re-parametrizations (same as Jeffreys)

▶ GFD is not invariant to smooth transformation of the data ifn > p

▶ Does not satisfy likelihood principle.

9

Page 30: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Formal Defintion

Important Simple Observations

▶ GFD is allways proper

▶ GFD is invariant to re-parametrizations (same as Jeffreys)

▶ GFD is not invariant to smooth transformation of the data ifn > p

▶ Does not satisfy likelihood principle.

9

Page 31: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

definition Asymptotic results

Various Asymptotic Results

r(ξ|x) ∝ fX(x|ξ)J(x, ξ)where J(x, ξ) = D

(ddξ

G(u, ξ)∣∣∣u=G−1(x,ξ)

)

▶ Most start with C−1n J(x, ξ) → J(ξ0, ξ)

▶ Bernstein-von Mises theorem for fiducial distributionsprovides asymptotic correctness of fiducial CIs H (2009,2013), Sonderegger & H (2013) .

▶ Consistency of model selection H & Lee (2009), Lai, H & Lee(2015), H, Iyer, Lai & Lee (2016).

▶ Regular higher order asymptotics in Pal Majumdar & H(2016+).

10

Page 32: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Outline

Introduction

Definition

Sparsity

Regularization

Conclusions

Page 33: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Model Selection

▶ X = G(M, ξM ,U), M ∈ M, ξM ∈ ξM

Theorem: (H, Iyer, Lai, Lee 2016) Under assumptions

r(M |y) ∝ q|M |∫ξM

fM (y, ξM )JM (y, ξM ) dξM

▶ Need for penalty – in fiducial framework additional equations0 = Pk, k = 1, . . . ,min(|M |, n)

▶ Default value q = n−1/2 (motivated by MDL)

11

Page 34: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Model Selection

▶ X = G(M, ξM ,U), M ∈ M, ξM ∈ ξM

Theorem: (H, Iyer, Lai, Lee 2016) Under assumptions

r(M |y) ∝ q|M |∫ξM

fM (y, ξM )JM (y, ξM ) dξM

▶ Need for penalty – in fiducial framework additional equations0 = Pk, k = 1, . . . ,min(|M |, n)

▶ Default value q = n−1/2 (motivated by MDL)

11

Page 35: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Model Selection

▶ X = G(M, ξM ,U), M ∈ M, ξM ∈ ξM

Theorem: (H, Iyer, Lai, Lee 2016) Under assumptions

r(M |y) ∝ q|M |∫ξM

fM (y, ξM )JM (y, ξM ) dξM

▶ Need for penalty – in fiducial framework additional equations0 = Pk, k = 1, . . . ,min(|M |, n)

▶ Default value q = n−1/2 (motivated by MDL)

11

Page 36: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Alternative to penalty

▶ Penalty is used to discourage models with many parameters

▶ Real issue: Not too many parameters but a smaller modelcan do almost the same job

r(M |y) ∝∫ξM

fM (y, ξM )JM (y, ξM )hM (ξM ) dξM ,

hM (ξM ) =

{0 a smaller model predicts nearly as well

1 otherwise

▶ Motivated by non-local priors of Johnson & Rossell (2009)

12

Page 37: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Alternative to penalty

▶ Penalty is used to discourage models with many parameters▶ Real issue: Not too many parameters but a smaller model

can do almost the same job

r(M |y) ∝∫ξM

fM (y, ξM )JM (y, ξM )hM (ξM ) dξM ,

hM (ξM ) =

{0 a smaller model predicts nearly as well

1 otherwise

▶ Motivated by non-local priors of Johnson & Rossell (2009)

12

Page 38: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Alternative to penalty

▶ Penalty is used to discourage models with many parameters▶ Real issue: Not too many parameters but a smaller model

can do almost the same job

r(M |y) ∝∫ξM

fM (y, ξM )JM (y, ξM )hM (ξM ) dξM ,

hM (ξM ) =

{0 a smaller model predicts nearly as well

1 otherwise

▶ Motivated by non-local priors of Johnson & Rossell (2009)

12

Page 39: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Alternative to penalty

▶ Penalty is used to discourage models with many parameters▶ Real issue: Not too many parameters but a smaller model

can do almost the same job

r(M |y) ∝∫ξM

fM (y, ξM )JM (y, ξM )hM (ξM ) dξM ,

hM (ξM ) =

{0 a smaller model predicts nearly as well

1 otherwise

▶ Motivated by non-local priors of Johnson & Rossell (2009)

12

Page 40: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Regression

▶ Y = Xβ + σZ

▶ First idea hM (βM ) = I{|βi|>ϵ, i∈M} – issue: collinearity

▶ Better:

hM (βM ) := I{ 12∥XT (XMβM−Xbmin)∥22≥ε(n,|M |)}

where bmin solves

minb∈Rp

1

2∥XT (XMβM −Xb)∥22 subject to ∥b∥0 ≤ |M | − 1.

▶ algorithm – Bertsimas et al (2016)▶ similar to Dantzig selector Candes & Tao (2007)

different norm and target

13

Page 41: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Regression

▶ Y = Xβ + σZ

▶ First idea hM (βM ) = I{|βi|>ϵ, i∈M} – issue: collinearity▶ Better:

hM (βM ) := I{ 12∥XT (XMβM−Xbmin)∥22≥ε(n,|M |)}

where bmin solves

minb∈Rp

1

2∥XT (XMβM −Xb)∥22 subject to ∥b∥0 ≤ |M | − 1.

▶ algorithm – Bertsimas et al (2016)

▶ similar to Dantzig selector Candes & Tao (2007)different norm and target

13

Page 42: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Regression

▶ Y = Xβ + σZ

▶ First idea hM (βM ) = I{|βi|>ϵ, i∈M} – issue: collinearity▶ Better:

hM (βM ) := I{ 12∥XT (XMβM−Xbmin)∥22≥ε(n,|M |)}

where bmin solves

minb∈Rp

1

2∥XT (XMβM −Xb)∥22 subject to ∥b∥0 ≤ |M | − 1.

▶ algorithm – Bertsimas et al (2016)▶ similar to Dantzig selector Candes & Tao (2007)

different norm and target

13

Page 43: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

GFD

r(M |y) ∝ π|M|2 Γ

(n− |M |2

)RSS

−(n−|M|−1

2)

M E[hεM (β⋆M )]

Observations:

▶ Expectation with respect to within model GFD (usual T)

▶ r(M |y) negligibly small for large models because of h,e.g., |M | > n implies r(M |y) = 0.

▶ Implemented using Grouped Independence MetropolisHastings (Andrieu & Roberts, 2009).

14

Page 44: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

GFD

r(M |y) ∝ π|M|2 Γ

(n− |M |2

)RSS

−(n−|M|−1

2)

M E[hεM (β⋆M )]

Observations:

▶ Expectation with respect to within model GFD (usual T)▶ r(M |y) negligibly small for large models because of h,

e.g., |M | > n implies r(M |y) = 0.

▶ Implemented using Grouped Independence MetropolisHastings (Andrieu & Roberts, 2009).

14

Page 45: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

GFD

r(M |y) ∝ π|M|2 Γ

(n− |M |2

)RSS

−(n−|M|−1

2)

M E[hεM (β⋆M )]

Observations:

▶ Expectation with respect to within model GFD (usual T)▶ r(M |y) negligibly small for large models because of h,

e.g., |M | > n implies r(M |y) = 0.▶ Implemented using Grouped Independence Metropolis

Hastings (Andrieu & Roberts, 2009).

14

Page 46: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Main Result

TheoremWilliams & H (2017+)Suppose the true model is given byMT . Then under certainconditions, for a fixed positive constant α < 1,

r(MT |y) =r(MT |y)∑nα

j=1

∑M :|M |=j r(M |y)

P−→ 1 as n, p → ∞.

15

Page 47: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Some Conditions

▶ Number of Predictors: lim infn→∞p→∞

n1−α

log(p) > 2,

▶ For the true model/parameter pT < log nγ

εMT(n, p) ≤ 1

18∥XT (µT −Xbmin)∥22

where bmin minimizes the norm subject to ∥b∥0 ≤ pT − 1.▶ For a large model |M | > pT and large enough n or p,

9

2∥XT (HM −HM(−1))µT ∥22 < εM (n, p),

whereHM andHM(−1) are the projection matrix forM andM with a covariate removed respectively.

16

Page 48: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Some Conditions

▶ Number of Predictors: lim infn→∞p→∞

n1−α

log(p) > 2,

▶ For the true model/parameter pT < log nγ

εMT(n, p) ≤ 1

18∥XT (µT −Xbmin)∥22

where bmin minimizes the norm subject to ∥b∥0 ≤ pT − 1.

▶ For a large model |M | > pT and large enough n or p,

9

2∥XT (HM −HM(−1))µT ∥22 < εM (n, p),

whereHM andHM(−1) are the projection matrix forM andM with a covariate removed respectively.

16

Page 49: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Some Conditions

▶ Number of Predictors: lim infn→∞p→∞

n1−α

log(p) > 2,

▶ For the true model/parameter pT < log nγ

εMT(n, p) ≤ 1

18∥XT (µT −Xbmin)∥22

where bmin minimizes the norm subject to ∥b∥0 ≤ pT − 1.▶ For a large model |M | > pT and large enough n or p,

9

2∥XT (HM −HM(−1))µT ∥22 < εM (n, p),

whereHM andHM(−1) are the projection matrix forM andM with a covariate removed respectively.

16

Page 50: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Simulation

▶ Setup from Rockova & George (2015)▶ n = 100, p = 1000, pT = 8.▶ Columns ofX either a) independent or b) correlated with

ρ = 0.6

▶ εM (n, p) = ΛM σ̂2M

(n0.51

9 + |M | log(pπ)1.1

9 − log(n)γ)+with

γ = 1.45.

17

Page 51: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Highlight of simulation results

▶ See Jon Williams’ poster for details on theory and simulation

▶ WhenX independent – usually select the correct model▶ WhenX correlated – usually select too small of a model

▶ Conditions of Theorem violated▶ based on conditions: p decreased to 500 to satisfy,

performance improves.

18

Page 52: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Highlight of simulation results

▶ See Jon Williams’ poster for details on theory and simulation▶ WhenX independent – usually select the correct model▶ WhenX correlated – usually select too small of a model

▶ Conditions of Theorem violated▶ based on conditions: p decreased to 500 to satisfy,

performance improves.

18

Page 53: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Highlight of simulation results

▶ See Jon Williams’ poster for details on theory and simulation▶ WhenX independent – usually select the correct model▶ WhenX correlated – usually select too small of a model

▶ Conditions of Theorem violated

▶ based on conditions: p decreased to 500 to satisfy,performance improves.

18

Page 54: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Highlight of simulation results

▶ See Jon Williams’ poster for details on theory and simulation▶ WhenX independent – usually select the correct model▶ WhenX correlated – usually select too small of a model

▶ Conditions of Theorem violated▶ based on conditions: p decreased to 500 to satisfy,

performance improves.

18

Page 55: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Comments

▶ Standardized way of measuring closeness in other models?▶ What if small model not the right target, e.g., gene

interactions?

19

Page 56: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Comments

▶ Standardized way of measuring closeness in other models?

▶ What if small model not the right target, e.g., geneinteractions?

19

Page 57: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

sparsity

Comments

▶ Standardized way of measuring closeness in other models?▶ What if small model not the right target, e.g., gene

interactions?

19

Page 58: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Outline

Introduction

Definition

Sparsity

Regularization

Conclusions

Page 59: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Recall

▶ A distribution on the parameter space is Generalized FiducialDistribution if it can be obtained as a limit (as ε ↓ 0) of

arg minξ

∥x−G(U⋆, ξ)∥ | {minξ

∥x−G(U⋆, ξ)∥ ≤ ε}

▶ Conditioning U⋆ on {x = G(U⋆, ξ)}– “regularization by model”

20

Page 60: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Recall

▶ A distribution on the parameter space is Generalized FiducialDistribution if it can be obtained as a limit (as ε ↓ 0) of

arg minξ

∥x−G(U⋆, ξ)∥ | {minξ

∥x−G(U⋆, ξ)∥ ≤ ε}

▶ Conditioning U⋆ on {x = G(U⋆, ξ)}– “regularization by model”

20

Page 61: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Most general iid model

▶ Data generating equation:

Xi = F−1(Ui), Ui, i.i.d. Uniform(0,1)

▶ Inverting (solving for F ) we get

F ∗(x−i ) ≤ U∗i ≤ F ∗(xi).

There is a solution iff order of U∗i matches order of xi.

21

Page 62: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Most general iid model

▶ Data generating equation:

Xi = F−1(Ui), Ui, i.i.d. Uniform(0,1)

▶ Inverting (solving for F ) we get

F ∗(x−i ) ≤ U∗i ≤ F ∗(xi).

There is a solution iff order of U∗i matches order of xi.

21

Page 63: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Most general iid model

▶ Data generating equation:

Xi = F−1(Ui), Ui, i.i.d. Uniform(0,1)

▶ Inverting (solving for F ) we get

F ∗(x−i ) ≤ U∗i ≤ F ∗(xi).

There is a solution iff order of U∗i matches order of xi.

x x x x• •

••

0

1

U⋆i

xi

21

Page 64: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Most general iid model

▶ Data generating equation:

Xi = F−1(Ui), Ui, i.i.d. Uniform(0,1)

▶ Inverting (solving for F ) we get

F ∗(x−i ) ≤ U∗i ≤ F ∗(xi).

There is a solution iff order of U∗i matches order of xi.

x x x x0

1

F ∗

xi lower upper

• •

••

21

Page 65: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Most general iid model

▶ Data generating equation:

Xi = F−1(Ui), Ui, i.i.d. Uniform(0,1)

▶ Inverting (solving for F ) we get

F ∗(x−i ) ≤ U∗i ≤ F ∗(xi).

There is a solution iff order of U∗i matches order of xi.

x x x x0

1

F ∗

xi lower upper

• •

••

▶ See Yifan Cui’s poster for extension to censored data.21

Page 66: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Additional Constraints

▶ Location scale family with known density f(x) and cdf F (x),e.g.,N(µ, σ2).

▶ Condition U∗i on existence µ∗, σ∗ so that

F (σ∗−1(xi − µ∗)) = U∗i , for all i

x x x x0

1

F ∗

xiN(4.5, 32) lower upper

• •

••

▶ GFD is r(µ, σ) ∝ σ−1∏n

i=1 σ−1f

(σ−1(xi − µ)

)

22

Page 67: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Additional Constraints

▶ Location scale family with known density f(x) and cdf F (x),e.g.,N(µ, σ2).

▶ Condition U∗i on existence µ∗, σ∗ so that

F (σ∗−1(xi − µ∗)) = U∗i , for all i

x x x x0

1

F ∗

xiN(4.5, 32) lower upper

• •

••

▶ GFD is r(µ, σ) ∝ σ−1∏n

i=1 σ−1f

(σ−1(xi − µ)

)

22

Page 68: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Additional Constraints

▶ Location scale family with known density f(x) and cdf F (x),e.g.,N(µ, σ2).

▶ Condition U∗i on existence µ∗, σ∗ so that

F (σ∗−1(xi − µ∗)) = U∗i , for all i

x x x x0

1

F ∗

xiN(4.5, 32) lower upper

• •

••

▶ GFD is r(µ, σ) ∝ σ−1∏n

i=1 σ−1f

(σ−1(xi − µ)

)22

Page 69: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Constraint complications

Toy example: X = µ+ Z, µ > 0.

▶ Option 1: condition Z⋆|x− Z⋆ > 0

▶ r(µ) = φ(x−µ)Φ(x) I{µ>0}

▶ Lower confidence bounds do not have correct coverage.

▶ Option 2: projection to µ > 0▶ r(µ) = (1− Φ(x))I{0} + φ(x− µ)I{µ>0}▶ Correct coverage; possible to get {0} as CI – sure bet against

▶ Option 3: mixture▶ r(µ) = min( 12 , 1− Φ(x)))I{0} +max( 1

2Φ(x) , 1)φ(x− µ)I{µ>0}▶ Correct/conservative coverage, no {0} for reasonable α CIs.

23

Page 70: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Constraint complications

Toy example: X = µ+ Z, µ > 0.

▶ Option 1: condition Z⋆|x− Z⋆ > 0

▶ r(µ) = φ(x−µ)Φ(x) I{µ>0}

▶ Lower confidence bounds do not have correct coverage.

▶ Option 2: projection to µ > 0▶ r(µ) = (1− Φ(x))I{0} + φ(x− µ)I{µ>0}▶ Correct coverage; possible to get {0} as CI – sure bet against

▶ Option 3: mixture▶ r(µ) = min( 12 , 1− Φ(x)))I{0} +max( 1

2Φ(x) , 1)φ(x− µ)I{µ>0}▶ Correct/conservative coverage, no {0} for reasonable α CIs.

23

Page 71: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Constraint complications

Toy example: X = µ+ Z, µ > 0.

▶ Option 1: condition Z⋆|x− Z⋆ > 0

▶ r(µ) = φ(x−µ)Φ(x) I{µ>0}

▶ Lower confidence bounds do not have correct coverage.

▶ Option 2: projection to µ > 0▶ r(µ) = (1− Φ(x))I{0} + φ(x− µ)I{µ>0}▶ Correct coverage; possible to get {0} as CI – sure bet against

▶ Option 3: mixture▶ r(µ) = min( 12 , 1− Φ(x)))I{0} +max( 1

2Φ(x) , 1)φ(x− µ)I{µ>0}▶ Correct/conservative coverage, no {0} for reasonable α CIs.

23

Page 72: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Constraint complications

Toy example: X = µ+ Z, µ > 0.

▶ Option 1: condition Z⋆|x− Z⋆ > 0

▶ r(µ) = φ(x−µ)Φ(x) I{µ>0}

▶ Lower confidence bounds do not have correct coverage.

▶ Option 2: projection to µ > 0▶ r(µ) = (1− Φ(x))I{0} + φ(x− µ)I{µ>0}▶ Correct coverage; possible to get {0} as CI – sure bet against

▶ Option 3: mixture▶ r(µ) = min( 12 , 1− Φ(x)))I{0} +max( 1

2Φ(x) , 1)φ(x− µ)I{µ>0}▶ Correct/conservative coverage, no {0} for reasonable α CIs.

23

Page 73: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Shape restrictions - preliminary results

▶ Example: Positive iid data with concave cdf(MLE is the Grenander estimator)

▶ Condition U⋆ on concave solution (Gibbs sampler)▶ Project unrestricted GFD to space of concave functions

(quadratic program)

24

Page 74: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Shape restrictions - preliminary results

▶ Example: Positive iid data with concave cdf(MLE is the Grenander estimator)

▶ Condition U⋆ on concave solution (Gibbs sampler)

▶ Project unrestricted GFD to space of concave functions(quadratic program)

24

Page 75: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Shape restrictions - preliminary results

▶ Example: Positive iid data with concave cdf(MLE is the Grenander estimator)

▶ Condition U⋆ on concave solution (Gibbs sampler)▶ Project unrestricted GFD to space of concave functions

(quadratic program)

24

Page 76: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Shape restrictions - preliminary results

▶ Example: Positive iid data with concave cdf(MLE is the Grenander estimator)

▶ Condition U⋆ on concave solution (Gibbs sampler)▶ Project unrestricted GFD to space of concave functions

(quadratic program)

Condition Projection

24

Page 77: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Shape restrictions - preliminary results

▶ Example: Positive iid data with concave cdf(MLE is the Grenander estimator)

▶ Condition U⋆ on concave solution (Gibbs sampler)▶ Project unrestricted GFD to space of concave functions

(quadratic program)

Condition Projection

24

Page 78: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Comments

▶ When to use conditioning vs. projection?

▶ Connection to ancillarity and IM.▶ Computational cost a consideration?

25

Page 79: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Comments

▶ When to use conditioning vs. projection?▶ Connection to ancillarity and IM.

▶ Computational cost a consideration?

25

Page 80: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

regularization

Comments

▶ When to use conditioning vs. projection?▶ Connection to ancillarity and IM.▶ Computational cost a consideration?

25

Page 81: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

conclusions

Outline

Introduction

Definition

Sparsity

Regularization

Conclusions

Page 82: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

conclusions

Fiducial Future

▶ What is it that we provide?▶ GFI: General purpose method that often works well

▶ Computational convenience and efficiency▶ Fiducial options in software.

▶ Theoretical guarantees▶ Applications

▶ The proof is in the pudding

26

Page 83: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

conclusions

Fiducial Future

▶ What is it that we provide?▶ GFI: General purpose method that often works well

▶ Computational convenience and efficiency▶ Fiducial options in software.

▶ Theoretical guarantees▶ Applications

▶ The proof is in the pudding

26

Page 84: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

conclusions

Fiducial Future

▶ What is it that we provide?▶ GFI: General purpose method that often works well

▶ Computational convenience and efficiency▶ Fiducial options in software.

▶ Theoretical guarantees▶ Applications

▶ The proof is in the pudding

26

Page 85: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

conclusions

Fiducial Future

▶ What is it that we provide?▶ GFI: General purpose method that often works well

▶ Computational convenience and efficiency▶ Fiducial options in software.

▶ Theoretical guarantees

▶ Applications▶ The proof is in the pudding

26

Page 86: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

conclusions

Fiducial Future

▶ What is it that we provide?▶ GFI: General purpose method that often works well

▶ Computational convenience and efficiency▶ Fiducial options in software.

▶ Theoretical guarantees▶ Applications

▶ The proof is in the pudding

26

Page 87: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

conclusions

List of successful applications

▶ General Linear Mixed Models E, H & Iyer (2008); Cissewski &H (2012)

▶ Confidence sets for wavelet regression H & Lee (2009) andfree knot splines Sonderegger & H (2014)

▶ Extreme value data (Generalized Pareto), Maximum mean,and model comparison Wandler & H (2011, 2012ab)

▶ Uncertainty quantification for ultra high dimensionalregression Lai, H & Lee (2015), Wandler & H (2017+)

▶ Volatility estimation for high frequency data Katsoridas & H(2016+)

▶ Logistic regression with random effects (response models)Liu & H (2016,2017)

27

Page 88: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

conclusions

I have a dream …

▶ One famous statistician said (I paraphrase)

“I use Bayes because there is no need to proveasymptotic theorem; it is correct.”

▶ I have a dream that by the time I retire people will havesimilar trust in fiducial inspired approaches.

Thank you!

28

Page 89: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

conclusions

I have a dream …

▶ One famous statistician said (I paraphrase)

“I use Bayes because there is no need to proveasymptotic theorem; it is correct.”

▶ I have a dream that by the time I retire people will havesimilar trust in fiducial inspired approaches.

Thank you!

28

Page 90: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

conclusions

I have a dream …

▶ One famous statistician said (I paraphrase)

“I use Bayes because there is no need to proveasymptotic theorem; it is correct.”

▶ I have a dream that by the time I retire people will havesimilar trust in fiducial inspired approaches.

Thank you!

28

Page 91: ChallengesinFiducialInference · ChallengesinFiducialInference Partsofthistalkarejointworkwith T.C.MLee(UCDavis),RandyLai(UofMaine),H.Iyer(NIST) J.Williams,YCui(UNC) BFF2017 JanHanniga

conclusions

I have a dream …

▶ One famous statistician said (I paraphrase)

“I use Bayes because there is no need to proveasymptotic theorem; it is correct.”

▶ I have a dream that by the time I retire people will havesimilar trust in fiducial inspired approaches.

Thank you!

28