CH6 CALLISTER

download CH6 CALLISTER

of 33

Transcript of CH6 CALLISTER

  • 8/13/2019 CH6 CALLISTER

    1/33

    Chapter 6 - 1

    ISSUES TO ADDRESS... Stress and strain : What are they and why are

    they used instead of load and deformation?

    Elastic behavior: When loads are small, how muchdeformation occurs? What materials deform least?

    Plastic behavior: At what point does permanentdeformation occur? What materials are most

    resistant to permanent deformation? Toughness and ductility : What are they and how

    do we measure them?

    Chapter 6:Mechanical Properties

  • 8/13/2019 CH6 CALLISTER

    2/33

    Chapter 6 - 2

    Elastic means reversible !

    Elastic Deformation1. Initial 2. Small load 3. Unload

    F

    d

    bondsstretch

    return toinitial

    F

    d

    Linear-elastic

    Non-Linear- elastic

  • 8/13/2019 CH6 CALLISTER

    3/33

    Chapter 6 - 3

    Plastic means permanent !

    Plastic Deformation (Metals)

    F

    d linearelastic

    linearelastic

    d plastic

    1. Initial 2. Small load 3. Unload

    p lanesstillsheared

    F

    d elastic + plastic

    bondsstretch& planesshear

    d plastic

  • 8/13/2019 CH6 CALLISTER

    4/33

    Chapter 6 - 4

    Stress has units:

    N/m2 or lb f /in2

    Engineering Stress Shear stress, t :

    Area, A

    F t

    F t

    F s

    F

    F

    F s

    t = F s A o

    Tensile stress, s :

    original areabefore loading

    Area, A

    F t

    F t

    s = F t A o

    2f

    2mNor

    inlb=

  • 8/13/2019 CH6 CALLISTER

    5/33

    Chapter 6 - 5

    Simple tension: cable

    Note: t = M / Ac R here.

    Common States of Stress

    A o = cross sectionalarea (when unloaded)

    F F

    o s =

    F A

    o t =

    F s A

    s s

    M

    M A o

    2R

    F s A c

    Torsion (a form of shear): drive shaftSki lift (photo courtesyP.M. Anderson)

  • 8/13/2019 CH6 CALLISTER

    6/33

    Chapter 6 - 6

    (photo courtesy P.M. Anderson)Canyon Bridge, Los Alamos, NM

    o s = F A

    Simple compression:

    Note: compressivestructure member(s < 0 here).(photo courtesy P.M. Anderson)

    OTHER COMMON STRESS STATES (1)

    A o

    Balanced Rock, ArchesNational Park

  • 8/13/2019 CH6 CALLISTER

    7/33

    Chapter 6 - 7

    Bi-axial tension: Hydrostatic compression:

    Pressurized tank

    s < 0 h

    (photo courtesyP.M. Anderson)

    (photo courtesy

    P.M. Anderson)

    OTHER COMMON STRESS STATES (2)

    Fish under water

    s z > 0

    s q > 0

  • 8/13/2019 CH6 CALLISTER

    8/33

    Chapter 6 - 8

    Tensile strain: Lateral strain:

    Shear strain:

    Strain is alwaysdimensionless.

    Engineering Strain

    q

    90

    90 - q y

    x q g = x /y = tan

    e = d

    Lo

    - d e L = L w o

    Adapted from Fig. 6.1 (a) and (c), Callister 7e.

    d /2

    d L /2

    Lowo

  • 8/13/2019 CH6 CALLISTER

    9/33

    Chapter 6 - 9

    Stress-Strain Testing Typical tensile test

    machine

    Adapted from Fig. 6.3, Callister 7e. (Fig. 6.3 is taken from H.W.Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of

    Materials , Vol. III, Mechanical Behavior , p. 2, John Wiley and Sons,New York, 1965.)

    specimen extensometer

    Typical tensile

    specimen

    Adapted fromFig. 6.2,

    Callister 7e.

    gauge

    length

  • 8/13/2019 CH6 CALLISTER

    10/33

    Chapter 6 - 10

    Linear Elastic Properties

    Modulus of Elasticity, E :(also known as Young's modulus)

    Hooke's Law :

    s = E e s

    Linear-elastic

    E

    e

    F

    F simpletensiontest

  • 8/13/2019 CH6 CALLISTER

    11/33

    Chapter 6 - 11

    Poisson's ratio, n

    Poisson's ratio, n :

    Units:E : [GPa] or [psi]n: dimensionless

    n > 0.50 density increases

    n < 0.50 density decreases(voids form)

    eL

    e

    - n

    e n = - L e

    metals : n ~ 0.33ceramics : n ~ 0.25polymers : n ~ 0.40

  • 8/13/2019 CH6 CALLISTER

    12/33

    Chapter 6 - 12

    Mechanical Properties Slope of stress strain plot (which is

    proportional to the elastic modulus) dependson bond strength of metal

    Adapted from Fig. 6.7,Callister 7e.

  • 8/13/2019 CH6 CALLISTER

    13/33

    Chapter 6 - 13

    Elastic Shearmodulus, G :

    t G

    g t = G g

    Other Elastic Properties

    simpletorsiontest

    M

    M

    Special relations for isotropic materials:

    2(1 n) E

    G = 3(1 - 2n)

    E K =

    Elastic Bulkmodulus, K:

    pressure

    test: Init.vol = V o.Vol chg.= V

    P

    P P P = - K

    VVo

    P V

    K V o

  • 8/13/2019 CH6 CALLISTER

    14/33

    Chapter 6 - 14

    Metals

    Alloys

    GraphiteCeramicsSemicond

    Polymers Composites

    /fibers

    E (GPa)

    Based on data in Table B2,Callister 7e .Composite data based onreinforced epoxy with 60 vol%of alignedcarbon (CFRE),aramid (AFRE), orglass (GFRE)fibers.

    Youngs Moduli: Comparison

    10 9 Pa

    0.2

    8

    0.6

    1

    Magnesium, Aluminum

    Platinum

    Silver, Gold

    Tantalum

    Zinc, Ti

    Steel, Ni Molybdenum

    G raphite

    Si crystal

    Glass - soda

    Concrete

    Si nitride Al oxide

    PC

    Wood( grain)

    AFRE( fibers) *

    CFRE *

    GFRE*

    Glass fibers only

    Carbon fibers only

    A ramid fibers only

    Epoxy only

    0.4

    0.8

    2

    46

    10

    2 0

    4 06 08 010 0

    200

    600800

    10 001200

    400

    Tin

    Cu alloys

    Tungsten

    Si carbide

    Diamond

    PTF E

    HDP E

    LDPE

    PP

    Polyester

    PS PET

    C FRE( fibers) *

    G FRE( fibers)*

    G FRE(|| fibers)*

    A FRE(|| fibers)*

    C FRE(|| fibers)*

  • 8/13/2019 CH6 CALLISTER

    15/33

    Chapter 6 - 15

    Simple tension:

    d = FL o E A o

    d L = - n Fw o E A o

    Material, geometric, and loading parameters all contribute to deflection.

    Larger elastic moduli minimize elastic deflection.

    Useful Linear Elastic Relationships

    F

    A o d /2

    d L /2

    Lo wo

    Simple torsion:

    a = 2 ML o p r o

    4 G

    M = momenta = angle of twist

    2r o

    Lo

  • 8/13/2019 CH6 CALLISTER

    16/33

    Chapter 6 - 16

    (at lower temperatures, i.e. T < T melt /3)Plastic (Permanent) Deformation

    Simple tension test:

    engineering stress, s

    engineering strain, e

    Elastic+Plasticat larger stress

    permanent (plastic)after load is removed

    e p

    plastic strain

    Elasticinitially

    Adapted from Fig. 6.10 (a),Callister 7e.

  • 8/13/2019 CH6 CALLISTER

    17/33

    Chapter 6 - 17

    Stress at which n o t i c e a b l e plastic deformation hasoccurred.

    when e p = 0.002

    Yield Strength, s y

    s y = yield strength

    Note: for 2 inch sample

    e = 0.002 = z /z

    z = 0.004 in

    Adapted from Fig. 6.10 (a),Callister 7e.

    tensile stress, s

    engineering strain, e

    s y

    e p = 0.002

  • 8/13/2019 CH6 CALLISTER

    18/33

    Chapter 6 - 18

    Room T values

    Based on data in Table B4,Callister 7e .a = annealedhr = hot rolledag = agedcd = cold drawncw = cold workedqt = quenched & tempered

    Yield Strength : ComparisonGraphite/Ceramics/Semicond

    Metals/ Alloys

    Composites/fibers Polymers

    Y i e l d s t r e n g

    t h ,

    s y ( M P a

    )

    PVC

    H

    a r d

    t o m e a s u r e

    ,

    s i n c e

    i n t e n s

    i o n , f r a

    c t u r e u s u a

    l l y o c c u r s

    b e f o r e y i e

    l d .

    Nylon 6,6

    LDPE

    70

    20

    40

    6050

    100

    10

    30

    2 00

    3 00

    4 005 006 007 00

    10 00

    2 0 00

    Tin (pure)

    Al (6061) a

    Al (6061) ag

    Cu (71500) hr Ta (pure) Ti (pure) a Steel (1020) hr

    Steel (1020) cd

    Steel (4140) a

    Steel (4140) qt

    Ti (5Al-2.5Sn) a W (pure)

    Mo (pure) Cu (71500) cw

    H a r d

    t o m e a s u r e ,

    i n c e r a m

    i c m a

    t r i x a n

    d e p o x y m a

    t r i x c o m p o s

    i t e s , s

    i n c e

    i n t e n s i o n ,

    f r a c

    t u r e u s u a

    l l y o c c u r s

    b e f o r e y i e

    l d .

    H DPE PP

    humid

    dry

    PC PET

  • 8/13/2019 CH6 CALLISTER

    19/33

    Chapter 6 - 19

    Tensile Strength, TS

    Metals : occurs when noticeable necking starts. Polymers : occurs when polymer backbone chains are

    aligned and about to break.

    Adapted from Fig. 6.11,Callister 7e.

    s y

    strain

    Typical response of a metal

    F = fracture orultimatestrength

    Neck actsas stressconcentrator

    e n g

    i n e e r i n g

    TS

    s t r e s s

    engineering strain

    Maximum stress on engineering stress -strain curve.

  • 8/13/2019 CH6 CALLISTER

    20/33

    Chapter 6 - 20

    Tensile Strength : Comparison

    Si crystal

    Graphite/Ceramics/Semicond

    Metals/ Alloys

    Composites/fibers Polymers

    T e n s

    i l e s t r e n g

    t h ,

    T S

    ( M P a

    )

    PVC

    Nylon 6,6

    10

    100

    200300

    1000

    Al (6061) a

    Al (6061) ag

    Cu (71500) hr

    Ta (pure) Ti (pure) a Steel (1020)

    Steel (4140) a

    Steel (4140) qt

    Ti (5Al-2.5Sn) a W (pure)

    Cu (71500) cw

    L DPE

    PP

    PC PET

    20

    3040

    20003000

    5000

    Graphite

    Al oxide

    Concrete

    Diamond

    Glass-soda

    Si nitride

    H DPE

    wood ( fiber)

    wood(|| fiber)

    1

    GFRE (|| fiber)

    GFRE ( fiber)

    C FRE (|| fiber)

    C FRE ( fiber)

    A FRE (|| fiber)

    A FRE( fiber)

    E-glass fib C fibers Aramid fib

    Room Temp. valuesBased on data in Table B4,Callister 7e .a = annealedhr = hot rolledag = agedcd = cold drawncw = cold workedqt = quenched & tempered

    AFRE, GFRE, & CFRE =aramid, glass, & carbonfiber-reinforced epoxycomposites, with 60 vol%

    fibers.

  • 8/13/2019 CH6 CALLISTER

    21/33

    Chapter 6 - 21

    Plastic tensile strain at failure:

    Adapted from Fig. 6.13,Callister 7e.

    Ductility

    Another ductility measure: 100x A

    A ARA%

    o

    fo -=

    x 100 L

    L L EL %

    o

    o f - =

    Engineering tensile strain, e

    E ngineeringtensile

    stress, s

    smaller % EL

    larger % EL Lf Ao A f Lo

  • 8/13/2019 CH6 CALLISTER

    22/33

    Chapter 6 - 22

    Energy to break a unit volume of material Approximate by the area under the stress -strain

    curve.

    Toughness

    Brittle fracture: elastic energyDuctile fracture: elastic + plastic energy

    very small toughness(unreinforced polymers)

    Engineering tensile strain, e

    E ngineeringtensile

    stress, s

    small toughness (ceramics)

    large toughness (metals)

    Adapted from Fig. 6.13,Callister 7e.

  • 8/13/2019 CH6 CALLISTER

    23/33

    Chapter 6 - 23

    Resilience, U r

    Ability of a material to store energy Energy stored best in elastic region

    If we assume a linearstress-strain curve thissimplifies to

    Adapted from Fig. 6.15,

    Callister 7e.

    y y r 2 1

    U e s @

    ees= y d U r 0

  • 8/13/2019 CH6 CALLISTER

    24/33

    Chapter 6 - 24

    Elastic Strain Recovery

    Adapted from Fig. 6.17,Callister 7e.

  • 8/13/2019 CH6 CALLISTER

    25/33

    Chapter 6 - 25

    Hardness Resistance to permanently indenting the surface.

    Large hardness means: --resistance to plastic deformation or cracking in

    compression.--better wear properties.

    e.g.,10 mm sphere

    apply known force measure sizeof indent afterremoving load

    d D Smaller indentsmean largerhardness.

    increasing hardness

    mostplastics

    brasses Al alloys

    easy to machinesteels file hard

    cuttingtools

    nitridedsteels diamond

  • 8/13/2019 CH6 CALLISTER

    26/33

    Chapter 6 - 26

    Hardness: Measurement

    Rockwell No major sample damage Each scale runs to 130 but only useful in range

    20-100.

    Minor load 10 kg Major load 60 (A), 100 (B) & 150 (C) kg

    A = diamond, B = 1/16 in. ball, C = diamond

    HB = Brinell Hardness TS (psia) = 500 x HB TS (MPa) = 3.45 x HB

  • 8/13/2019 CH6 CALLISTER

    27/33

    Chapter 6 - 27

    Hardness: MeasurementTable 6.5

  • 8/13/2019 CH6 CALLISTER

    28/33

    Chapter 6 - 28

    True Stress & StrainNote: S.A. changes when sample stretched

    True stress

    True Strain

    i T AF =s

    oi T ln=e e+=e

    e+s=s1ln

    1

    T

    T

    Adapted from Fig. 6.16,Callister 7e.

  • 8/13/2019 CH6 CALLISTER

    29/33

    Chapter 6 - 29

    Hardening

    Curve fit to the stress -strain response:

    s T = K e T ntrue stress ( F / A) true strain: ln( L/Lo)

    hardening exponent:n = 0.15 (some steels)to n = 0.5 (some coppers)

    An increase in s y due to plastic deformation.

    s

    e

    large hardening

    small hardening s y 0

    s y 1

  • 8/13/2019 CH6 CALLISTER

    30/33

    Chapter 6 - 30

    Variability in Material Properties

    Elastic modulus is material property Critical properties depend largely on sample flaws

    (defects, etc.). Large sample to sample variability. Statistics

    Mean

    Standard Deviation 2

    1

    2

    1 --=

    n x x s i

    n

    n x x n

    n

    =

    where n is the number of data points

  • 8/13/2019 CH6 CALLISTER

    31/33

    Chapter 6 - 31

    Design uncertainties mean we do not push the limit.

    Factor of safety, N

    N y

    working

    s=s

    Often N isbetween1.2 and 4

    Example: Calculate a diameter, d , to ensure that yield doesnot occur in the 1045 carbon steel rod below. Use afactor of safety of 5.

    Design or Safety Factors

    40002202 / d

    N ,p

    5N

    y working

    s=s 1045 plain

    carbon steel:s y = 310 MPaTS = 565 MPa

    F = 220,000N

    d

    Lo

    d = 0.067 m = 6.7 cm

  • 8/13/2019 CH6 CALLISTER

    32/33

    Chapter 6 - 32

    Stress and strain : These are size-independentmeasures of load and displacement, respectively. Elastic behavior: This reversible behavior often

    shows a linear relation between stress and strain.To minimize deformation, select a material with a

    large elastic modulus ( E or G).

    Toughness : The energy needed to break a unitvolume of material.

    Ductility : The plastic strain at failure.

    Summary

    Plastic behavior: This permanent deformationbehavior occurs when the tensile (or compressive)uniaxial stress reaches s y .

  • 8/13/2019 CH6 CALLISTER

    33/33

    Chapter 6 - 33

    Core Problems:

    Self-help Problems:

    ANNOUNCEMENTS

    Reading: