Ch21 Lipit Biyosentezi Yonca Duman

160
Lipid Biosynthesis Lipid Biosynthesis 1

Transcript of Ch21 Lipit Biyosentezi Yonca Duman

Page 1: Ch21 Lipit Biyosentezi Yonca Duman

Lipid BiosynthesisLipid Biosynthesis

1

Page 2: Ch21 Lipit Biyosentezi Yonca Duman

Lipitlerin Hücresel Rolleri

� Enerji depolayan moleküller ve hücre membranlarının yapısını oluştururlar,

� Özel işlevleri olan lipitler

• Pigmentler ⇒ Retinal, karoten

• Kofaktörler ⇒ Vitamin K

• Deterjanlar ⇒ Safra tuzları• Deterjanlar ⇒ Safra tuzları

• Taşıyıcılar ⇒ Dolichol’ler

• Hormonlar ⇒ Vitamin D1 , seks hormonları

• Hücre içi ve dışı mesaj taşıyıcılar ⇒ eiconasoid’ler, fosfatidil inositol türevleri

• Membran proteinleri için tutunma yerleri ⇒ prenil grupları

2

Page 3: Ch21 Lipit Biyosentezi Yonca Duman

Fatty oxidation and biosynthesis occur:

� by different pathways,

� are catalyzed by different sets of enzymes,

� and take place in different parts of the cell. 3

Page 4: Ch21 Lipit Biyosentezi Yonca Duman

Acetyl-CoA carboxylase Reaction4

Page 5: Ch21 Lipit Biyosentezi Yonca Duman

Acetyl-CoA carboxylase Reaction

The formation of malonyl-

CoA from acetyl-CoA is an irreversible process, catalyzed by acetyl-CoA

carboxylase.

� The bacterial enzyme has three separate polypeptide subunits,

� In animal cells, all three activities are part of a single multifunctional

5

polypeptide.

� Plant cells contain both types of acetyl-CoA carboxylase.

In all cases, the enzyme contains a biotin prosthetic group covalently bound in amide linkage to the ε-ami-no group of a Lys residue in one of the three polypepti-des or domains of the en-zyme molecule.

Page 6: Ch21 Lipit Biyosentezi Yonca Duman

6

Page 7: Ch21 Lipit Biyosentezi Yonca Duman

7

Page 8: Ch21 Lipit Biyosentezi Yonca Duman

8

Page 9: Ch21 Lipit Biyosentezi Yonca Duman

9

Page 10: Ch21 Lipit Biyosentezi Yonca Duman

10

Page 11: Ch21 Lipit Biyosentezi Yonca Duman

11

Page 12: Ch21 Lipit Biyosentezi Yonca Duman

12

Page 13: Ch21 Lipit Biyosentezi Yonca Duman

13

C16

Page 14: Ch21 Lipit Biyosentezi Yonca Duman

14Harper's Illustrated Biochemistry (Lange, McGraw-Hill Medical, 28th Ed, 2009).

Page 15: Ch21 Lipit Biyosentezi Yonca Duman

15

Page 16: Ch21 Lipit Biyosentezi Yonca Duman

ACPACP: Acyl carier protein

16

Fatty Acid Synthase Complex

Page 17: Ch21 Lipit Biyosentezi Yonca Duman

ACP ACP: Acyl carier protein

17

Page 18: Ch21 Lipit Biyosentezi Yonca Duman

18

Page 19: Ch21 Lipit Biyosentezi Yonca Duman

19D-

Page 20: Ch21 Lipit Biyosentezi Yonca Duman

20

Page 21: Ch21 Lipit Biyosentezi Yonca Duman

21

Page 22: Ch21 Lipit Biyosentezi Yonca Duman

22

Page 23: Ch21 Lipit Biyosentezi Yonca Duman

D-

23

Page 24: Ch21 Lipit Biyosentezi Yonca Duman

D-24

Page 25: Ch21 Lipit Biyosentezi Yonca Duman

25

Page 26: Ch21 Lipit Biyosentezi Yonca Duman

26

Page 27: Ch21 Lipit Biyosentezi Yonca Duman

27

Page 28: Ch21 Lipit Biyosentezi Yonca Duman

28

Page 29: Ch21 Lipit Biyosentezi Yonca Duman

29

Page 30: Ch21 Lipit Biyosentezi Yonca Duman

30

Page 31: Ch21 Lipit Biyosentezi Yonca Duman

31

Page 32: Ch21 Lipit Biyosentezi Yonca Duman

32

Page 33: Ch21 Lipit Biyosentezi Yonca Duman

33

Page 34: Ch21 Lipit Biyosentezi Yonca Duman

We can consider the overall reaction for the synthesis of

palmitate from acetyl-CoA in two parts.

First, the formation of seven malonyl-CoA molecules:

7 Acetyl-CoA + 7CO2 + 7ATP → 7 Malonyl-CoA + 7ADP + 7Pi

then seven cycles of condensation and reduction:

Acetyl-CoA + 7 Malonyl-CoA + 14NADPH + 14H+ →Palmitate + 7CO2 + 8 CoA + 14NADP+ + 6H2O

The overall process (the sum of two equations) is:

8 Acetyl-CoA + 7ATP + 14NADPH + 14H+ →Palmitate + 8 CoA + 7ADP + 7Pi + 14NADP+ + 6H2O

34

Page 35: Ch21 Lipit Biyosentezi Yonca Duman

35

Page 36: Ch21 Lipit Biyosentezi Yonca Duman

36

Page 37: Ch21 Lipit Biyosentezi Yonca Duman

37

Page 38: Ch21 Lipit Biyosentezi Yonca Duman

38

Page 39: Ch21 Lipit Biyosentezi Yonca Duman

39Harper's Illustrated Biochemistry (Lange, McGraw-Hill Medical, 28th Ed, 2009).

Page 40: Ch21 Lipit Biyosentezi Yonca Duman

40

Harper's Illustrated Biochemistry (Lange, McGraw-Hill Medical, 28th Ed, 2009).

Page 41: Ch21 Lipit Biyosentezi Yonca Duman

• [NADH]/[NAD+] very high

• [NADH]/[NAD+] low ≈ 8 × 10-4

41

• [NADH]/[NAD+] very high

Page 42: Ch21 Lipit Biyosentezi Yonca Duman

42

Page 43: Ch21 Lipit Biyosentezi Yonca Duman

43

Page 44: Ch21 Lipit Biyosentezi Yonca Duman

44

Page 45: Ch21 Lipit Biyosentezi Yonca Duman

45

Page 46: Ch21 Lipit Biyosentezi Yonca Duman

46Harper's Illustrated Biochemistry (Lange, McGraw-Hill Medical, 28th Ed, 2009).

Page 47: Ch21 Lipit Biyosentezi Yonca Duman

47

Page 48: Ch21 Lipit Biyosentezi Yonca Duman

48

Page 49: Ch21 Lipit Biyosentezi Yonca Duman

Sitratın hücre metabolizmasındaki merkezi rolü:

• [Asetil-CoA]mit ve [ATP]mit artarsa sitrat mitokon-driden sitoplazmaya geçerek sitoplazmik asetil-CoA öncülü olur.

• Asetil-CoA karboksilaz aktivasyonu için allosterik modülatör olur.

• PFK-1’i inhibe ederek glikolizi yavaşlatır, glikolize olan karbon akışını düşürür.

49

Page 50: Ch21 Lipit Biyosentezi Yonca Duman

50

Page 51: Ch21 Lipit Biyosentezi Yonca Duman

Omurgalılarda

Glukagon ya da Epineprhine ile tetikleme �

[ ] [ ]Protein kinaz

iAktif ĐnaktifProtein fosfatazAsetil-CoA karboksilaz + P Asetil-CoA karboksilaz �������⇀�↽��������

Epinephrine

Bitkilerde

Artan stromal pH ve artan stromal [Mg]+2 stromal asetil-CoA karboksilaz’ı aktiveeder (Bunun için bitkinin ışığa gereksinimi vardır).

Đnsülin ile tetikleme

51

Page 52: Ch21 Lipit Biyosentezi Yonca Duman

52

Page 53: Ch21 Lipit Biyosentezi Yonca Duman

53

Page 54: Ch21 Lipit Biyosentezi Yonca Duman

54

Page 55: Ch21 Lipit Biyosentezi Yonca Duman

Mitochondrial fatty acid elongation Mitochondrial fatty acid oxidation

Mitochon-

drial elon-

gation (a

process

indepen-

dent of fatty

acid synt-

hase path-

way in cy-

tosol) oc-

55

tosol) oc-curs by the successive addition and reduc-tion of ace-tyl units in a reversal of fatty acid oxidation.

Page 56: Ch21 Lipit Biyosentezi Yonca Duman

Fatty acid elongation in the endoplasmic

reticulum involves the successive

condensations of malonyl-CoA with acyl-

CoA. These reactions are each followed by NADPH-dependent reductions similar to

56

NADPH-dependent reductions similar to those catalyzed by fatty acid synthase, the

only difference being that the fatty acid is

elongated as its CoA derivative rather than as its ACP derivative.

Page 57: Ch21 Lipit Biyosentezi Yonca Duman

57

Page 58: Ch21 Lipit Biyosentezi Yonca Duman

Electron transfer in the desaturation of fatty acids in vertebrates

(These reactions take place in the lumenal face of the smooth Endoplasmic Reticulum)

58

Page 59: Ch21 Lipit Biyosentezi Yonca Duman

Electron transfer in the desaturation of fatty acids in bacteria

59

Page 60: Ch21 Lipit Biyosentezi Yonca Duman

Stearoyl-ACP desaturase 9Plant chloroplast stroma

Stearate (18:0) Oleate (18:19), ( )→ ∆(18:1)

60

Page 61: Ch21 Lipit Biyosentezi Yonca Duman

61

Page 62: Ch21 Lipit Biyosentezi Yonca Duman

Action of plant desaturases

62

In plants, the desaturases that introduce double bonds at the ∆∆∆∆12

and ∆∆∆∆15 positions are located in the ER and the chloroplast. The ER enzymes act not on free fatty acids but on a phospholipid, phospha-tidylcholine, that contains at least one oleate linked to the glycerol.

Page 63: Ch21 Lipit Biyosentezi Yonca Duman

63

Page 64: Ch21 Lipit Biyosentezi Yonca Duman

64

Page 65: Ch21 Lipit Biyosentezi Yonca Duman

20:4 (∆5,8,11,14)Precursor for Eicosanoid (prostaglandins,

tromboxanes and leucotrienes) biosynthesis65

Page 66: Ch21 Lipit Biyosentezi Yonca Duman

66

Page 67: Ch21 Lipit Biyosentezi Yonca Duman

Biosynthesis of prostaglandins and thromboxanes in the smooth endoplasmic reticulum of mammalian cells

67

Page 68: Ch21 Lipit Biyosentezi Yonca Duman

68

Page 69: Ch21 Lipit Biyosentezi Yonca Duman

69

Page 70: Ch21 Lipit Biyosentezi Yonca Duman

70

Page 71: Ch21 Lipit Biyosentezi Yonca Duman

Non-Steroidal Anti Inflamatory Drugs (NSAID)

71

Page 72: Ch21 Lipit Biyosentezi Yonca Duman

Non-Steroidal Anti Inflamatory Drugs (NSAID)

72

Page 73: Ch21 Lipit Biyosentezi Yonca Duman

73

Page 74: Ch21 Lipit Biyosentezi Yonca Duman

74

Page 75: Ch21 Lipit Biyosentezi Yonca Duman

75

Leukotriene synthesis begins with the action of seve-ral lipoxygenases that catalyze the incorporation ofmolecular oxygen into arachidonate. These enzymes,found in leukocytes and in heart, brain, lung, andspleen, are mixed-function oxidases that use cytoch-rome P-450. The various leukotrienes differ in the po-sition of the peroxide group introduced by the lipoxy-genases. This linear pathway from arachidonate, un-like the cyclic pathway, is not inhibited by aspirin orother NSAIDs.

Page 76: Ch21 Lipit Biyosentezi Yonca Duman

76

Page 77: Ch21 Lipit Biyosentezi Yonca Duman

77

Page 78: Ch21 Lipit Biyosentezi Yonca Duman

78

Page 79: Ch21 Lipit Biyosentezi Yonca Duman

79

Page 80: Ch21 Lipit Biyosentezi Yonca Duman

Plants also derive important signaling molecules from fatty acids. As in animals,a key step in the initiation of signaling involves activation of a specific phos-pholipase. In plants, the fatty acid substrate that is released is αααα-linolenate. A li-poxygenase then catalyzes the first step in a pathway that converts linolenate tojasmonate, a substance known to have signaling roles in insect defense, resistan-ce to fungal pathogens, and pollen maturation. Jasmonate also affects seed ger-mination, root growth, and fruit and seed development.

80

Page 81: Ch21 Lipit Biyosentezi Yonca Duman

Sentezlenen ya da besinlerle alınan yağ asitleri � �

Triaçil gliserollere Membranların fosfolipid Dönüşüm komponentlerine dönüşüm � � Bol gıda alımında ve Hızlı büyüme sırasında aktif büyüme olmadığı sentezlenecek yeni zaman metabolik membranların fosfolipid enerjinin depolanması gereksinimleri için enerjinin depolanması gereksinimleri için için � �

Giserolün yağ açil esterlerinin oluşumu (aynı öncül moleküllerden başlar)

� (Yağ açil-CoA & L-gliserol-3-fosfat)

� Fosfatidik asit

Gliserolün

81

Page 82: Ch21 Lipit Biyosentezi Yonca Duman

82

Page 83: Ch21 Lipit Biyosentezi Yonca Duman

83

Page 84: Ch21 Lipit Biyosentezi Yonca Duman

84

Page 85: Ch21 Lipit Biyosentezi Yonca Duman

85

Page 86: Ch21 Lipit Biyosentezi Yonca Duman

86

Page 87: Ch21 Lipit Biyosentezi Yonca Duman

87

Page 88: Ch21 Lipit Biyosentezi Yonca Duman

88

Page 89: Ch21 Lipit Biyosentezi Yonca Duman

Adipose Tissue Generates Glycerol-3-phosphate by Glyceroneogenesis

89

Page 90: Ch21 Lipit Biyosentezi Yonca Duman

Glyceroneogenesis has multiple roles:

� In adipose tissue, glyceroneogenesis coupled with reesterification of free fatty acids controls the rate of fatty acid release to the blood,

� In brown adipose tissue, the same pathway may control the rate at which free fatty acids are

90

control the rate at which free fatty acids are delivered to mitochondria for use in thenmogenesis,

� And in fasting humans, glyceroneogenesis in the liver alone supports the synthesis of enough glycerol 3-phosphate to account for up to 65% of fatty acids reesterified to triacylglycerol.

Page 91: Ch21 Lipit Biyosentezi Yonca Duman

The triacylglycerol cycle

In mammals, triacylgly-cerol molecules are broken down and resynthesized in a triacylglycerol cycle

during starvation. Some of the fatty acids released by lipolysis of triacylglycerol in adipose tissue pass into the bloodstream, and the remainder are used for resynthesis of triacylglyce-rol. Some of the fatty acids released into the blood are

91

used for energy (in muscle, for example), and some are taken up by the liver and used in triacylglycerol syn-thesis. The triacylglycerol formed in the liver is trans-ported in the blood back to adipose tissue, where the fatty acid is released by extracellular lipoprotein lipase, taken up by adipo-cytes, and reesterifled into triacylglycerol.

Page 92: Ch21 Lipit Biyosentezi Yonca Duman

Regulation of glyceroneogenesis

92

Flux through the triacylglycerol cycle between liver and adipose tissue is controlled to a large degree bythe activity of PEP carboxykinase, which limits the rate of both gluconeogenesis and glyceroneogenesis.

Glucocorticoid Hormones

Page 93: Ch21 Lipit Biyosentezi Yonca Duman

Insulin resistance (IR) is a physiological condition where the natural hormone insulinbecomes less effective at lowering blood sugars. The resulting increase in blood glucose may raise levels outside the normal range and cause adverse health effects, depending on dietary conditions. Certain cell types such as fat and muscle cells require insulin to absorb glucose. When these cells fail to respond adequately to circulating insulin, blood glucose levels rise. The liver helps regulate glucose levels by reducing its secretion of glucose in the presence of insulin. This normal reduction in the liver’s glucose production may not occur in people with insulin resistance.

Insulin resistance in muscle and fat cells reduces glucose uptake (and also local storage of glucose as glycogen and triglycerides, respectively), whereas insulin resistance in liver cells results in reduced glycogen synthesis and storage and a failure to suppress glucose production

93

results in reduced glycogen synthesis and storage and a failure to suppress glucose production and release into the blood. Insulin resistance normally refers to reduced glucose-lowering effects of insulin. However, other functions of insulin can also be affected. For example, insulin resistance in fat cells reduces the normal effects of insulin on lipids and results in reduced uptake of circulating lipids and increased hydrolysis of stored triglycerides. Increased mobilization of stored lipids in these cells elevates free fatty acids in the blood plasma. Elevated blood fatty-acid concentrations (associated with insulin resistance and diabetes mellitus Type 2), reduced muscle glucose uptake, and increased liver glucose production all contribute to elevated blood glucose levels. High plasma levels of insulin and glucose due to insulin resistance are a major component of the metabolic syndrome. If insulin resistance exists, more insulin needs to be secreted by the pancreas. If this compensatory increase does not occur, blood glucose concentrations increase and type 2 diabetes occurs.

Page 94: Ch21 Lipit Biyosentezi Yonca Duman

Membrane Lipids

94

Page 95: Ch21 Lipit Biyosentezi Yonca Duman

95

Page 96: Ch21 Lipit Biyosentezi Yonca Duman

96

Page 97: Ch21 Lipit Biyosentezi Yonca Duman

Basit öncüllerinden fosfolipid moleküllerinin

oluşması için:

1. Omurga molekülün (gliserin ya da sfingosin) sentezi,

2. Ester ya da amid bağlarıyla yağ asitlerinin omurgaya

takılması,

3. Bazı hallerde hidrofilik başlık grubunun omurgaya bir

fosfodiester bağı ile bağlanması,

4. Son fosfolipid molekülünü oluşturmak üzere başlık

grubunun değiştirilmesi

gerekir.

97

Page 98: Ch21 Lipit Biyosentezi Yonca Duman

In eukaryotic cells, phospholipid

synthesis occurs primarily on the surfaces of the smooth endoplasmic

reticulum and the mitochondrial

98

inner membrane. Some newly formed phospholipids remain at the site of synthesis, but most are destined for other cellular locations.

Page 99: Ch21 Lipit Biyosentezi Yonca Duman

99

Page 100: Ch21 Lipit Biyosentezi Yonca Duman

100

Page 101: Ch21 Lipit Biyosentezi Yonca Duman

101

Page 102: Ch21 Lipit Biyosentezi Yonca Duman

Phospholipid synthesis in bacteria

102

Page 103: Ch21 Lipit Biyosentezi Yonca Duman

Phospholipid synthesis in bacteria

103

Page 104: Ch21 Lipit Biyosentezi Yonca Duman

104

Page 105: Ch21 Lipit Biyosentezi Yonca Duman

105

Page 106: Ch21 Lipit Biyosentezi Yonca Duman

Anionic phospholipid synthesis in eukaryotes

106

Page 107: Ch21 Lipit Biyosentezi Yonca Duman

Yeast Cells

107

Page 108: Ch21 Lipit Biyosentezi Yonca Duman

Yeast Cells

Mammalian Cells

108

Page 109: Ch21 Lipit Biyosentezi Yonca Duman

109

Page 110: Ch21 Lipit Biyosentezi Yonca Duman

Phosphatidylcholine synthesis from choline in mammalians

110

Page 111: Ch21 Lipit Biyosentezi Yonca Duman

Summary of

the pathways to

phosphatidyl-

choline and

phosphatidyl-

ethanolamine. Conversion of

111

Conversion of phosphatidyl-ethanolamine to phosphatidyl-choline in mammals takes place only in the liver.

Page 112: Ch21 Lipit Biyosentezi Yonca Duman

112

Page 113: Ch21 Lipit Biyosentezi Yonca Duman

Vertebrate heart tissue is uniquely enriched in ether lipids; about half of the heartphospholipids are plasmalogens. The membranes of halophilic bacteria, ciliatedprotists, and certain invertebrates also contain high proportions of ether lipids. Thefunctional significance of ether lipids in these membranes is unknown; perhapstheir resistance to the phospholipases that cleave ester-linked fatty acids frommembrane lipids is important in some roles.

Page 114: Ch21 Lipit Biyosentezi Yonca Duman

Platelet-activating factor, is a potent molecular signal. It is released from leukocytescalled basophils and stimulates platelet aggregation and the release of serotonin (avasoconstrictor) from platelets. It also exerts a variety of effects on liver, smoothmuscle, heart, uterine, and lung tissues and plays an important role in inflammationand the allergic response.

Page 115: Ch21 Lipit Biyosentezi Yonca Duman

Peroxisomes

115

Page 116: Ch21 Lipit Biyosentezi Yonca Duman

Plasmalogen synthesis in

peroxisomes

116

Page 117: Ch21 Lipit Biyosentezi Yonca Duman

117

Page 118: Ch21 Lipit Biyosentezi Yonca Duman

118

Page 119: Ch21 Lipit Biyosentezi Yonca Duman

119

Page 120: Ch21 Lipit Biyosentezi Yonca Duman

Biosynthesis of sphingolipids in smooth endoplasmic reticulum

120

Page 121: Ch21 Lipit Biyosentezi Yonca Duman

121

Page 122: Ch21 Lipit Biyosentezi Yonca Duman

122

Page 123: Ch21 Lipit Biyosentezi Yonca Duman

Polar Lipids Are Targeted to

Specific Cellular

Membranes.

After synthesis on the smooth ER, the polar lipids, inclu-ding the glycerophospho-

lipids, sphingolipids, and glycolipids, are inserted into specific cellular membranes in specific proportions, by mec-hanisms not yet understood.

123

hanisms not yet understood.

Membrane lipids are insoluble in water, so they cannot simply diffuse from their point of synthesis (the ER) to their point of insertion. Instead, they are delivered in membrane vesicles that bud from the Golgi complex then move to and fuse with the target membrane.

Page 124: Ch21 Lipit Biyosentezi Yonca Duman

124

Page 125: Ch21 Lipit Biyosentezi Yonca Duman

125

Page 126: Ch21 Lipit Biyosentezi Yonca Duman

Summary of cholesterol biosynthesis

Biosynthesis of cholesterol takes place in four stages:

1. Condensation of three acetate units to form a six-carbon intermediate, mevalonate,

2. Conversion of mevalonate to activated isoprene units,

3. Polymerization of six 5-

126

3. Polymerization of six 5-carbon isoprene units to form the 30-carbon linear squalene,

4. Cyclization of squalene to form the four rings of the steroid nucleus, with a further series of changes (oxidations, removal or migration of methyl groups) to produce cholesterol.

Page 127: Ch21 Lipit Biyosentezi Yonca Duman

127

Page 128: Ch21 Lipit Biyosentezi Yonca Duman

128

Page 129: Ch21 Lipit Biyosentezi Yonca Duman

129

Page 130: Ch21 Lipit Biyosentezi Yonca Duman

1. Mevolanate formation from 3 acetate

130

The third reaction is the committed and rate-limiting step and HMG-CoA reductase, anintegral membrane protein of the smooth ER,is the major point of regulation on the path-way to cholesterol biosynthesis.

Page 131: Ch21 Lipit Biyosentezi Yonca Duman

1. Mevolanate formation from 3 acetate

131

The third reaction is the committed and

rate-limiting step and HMG-CoA reductase,

an integral membrane protein of the

smooth ER, is the major point of regulation

on the pathway to cholesterol biosynthesis.

Page 132: Ch21 Lipit Biyosentezi Yonca Duman

2. Transformation of mevalonate activated isoprene units

132

Page 133: Ch21 Lipit Biyosentezi Yonca Duman

3. Polimerization of 6 activated isoprene units having 5 carbons to squalene having 30 carbons

133

Page 134: Ch21 Lipit Biyosentezi Yonca Duman

134

Page 135: Ch21 Lipit Biyosentezi Yonca Duman

135

Page 136: Ch21 Lipit Biyosentezi Yonca Duman

136

Page 137: Ch21 Lipit Biyosentezi Yonca Duman

4. Formation of the rings of the

steroid nucleus from squalene

and the other reactions for the

synthesis of cholestrol as end

product

137

Page 138: Ch21 Lipit Biyosentezi Yonca Duman

138

Page 139: Ch21 Lipit Biyosentezi Yonca Duman

139

Page 140: Ch21 Lipit Biyosentezi Yonca Duman

140

Page 141: Ch21 Lipit Biyosentezi Yonca Duman

Bile acids and their salts are relatively hydrophilic cholesterolderivatives that are synthesized in the liver and aid in lipiddigestion.

141

Page 142: Ch21 Lipit Biyosentezi Yonca Duman

142

Page 143: Ch21 Lipit Biyosentezi Yonca Duman

Lipoproteins. (a) Structure of a low-density lipoprotein (LDL). Apolipoprotein B-100 (apoB-100) is one of the largest single

143

of the largest single polypeptide chains known, with 4,636 amino acid residues (Mr 513,000).

Page 144: Ch21 Lipit Biyosentezi Yonca Duman

(b) Lipoproteins. Four classes of lipoproteins, visualized in the electron microscopeafter negative staining. Clockwise from top left: chylomicrons, 50 to 200 nm indiameter; VLDL, 28 to 70 nm; HDL, 8 to 11 nm; and LDL, 20 to 25 nm.

144

Page 145: Ch21 Lipit Biyosentezi Yonca Duman

145

Page 146: Ch21 Lipit Biyosentezi Yonca Duman

146

Page 147: Ch21 Lipit Biyosentezi Yonca Duman

147

Page 148: Ch21 Lipit Biyosentezi Yonca Duman

148

Page 149: Ch21 Lipit Biyosentezi Yonca Duman

149

Page 150: Ch21 Lipit Biyosentezi Yonca Duman

150

Page 151: Ch21 Lipit Biyosentezi Yonca Duman

151

Page 152: Ch21 Lipit Biyosentezi Yonca Duman

152

Page 153: Ch21 Lipit Biyosentezi Yonca Duman

153

Page 154: Ch21 Lipit Biyosentezi Yonca Duman

(stimulates dephosphorylation)

(stimulates phosphorylation)

Phosphorylated form is

inactive

Dephosphorylated form

is active

The third reaction is the committed and rate-limiting step and HMG-CoA reductase, anintegral membrane protein of the smooth ER,is the major point of regulation on the path-way to cholesterol biosynthesis.

154

A high cellular cholesterol level diminishestranscription of the gene that encodes theLDL receptor, reducing production of thereceptor and thus the uptake of cholesterolfrom the blood (hypercholesterolemia).

Page 155: Ch21 Lipit Biyosentezi Yonca Duman

Pathological accumulations of cholesterol in blood vessels (atherosclerotic

plaques) can develop, resulting in obstruction of blood vessels (atherosclerosis).

155

These compounds, and several synthetic analogs, resemble mevalonate are competitive inhibitorsof HMG-CoA reductase, thus inhibiting cholesterol synthesis. Lovastatin treatment lowers serumcholesterol by as much as 30%. When combined with an edible resin that binds bile acids andprevents their reabsorption from the intestine, the drug is even more effective.

Page 156: Ch21 Lipit Biyosentezi Yonca Duman

156

Page 157: Ch21 Lipit Biyosentezi Yonca Duman

157

Page 158: Ch21 Lipit Biyosentezi Yonca Duman

158

Page 159: Ch21 Lipit Biyosentezi Yonca Duman

159

Page 160: Ch21 Lipit Biyosentezi Yonca Duman

160