Center for High Performance Buildings - Purdue …Center$for$High$Performance$Buildings$ ... •...

9
A center dedicated to partnering with industry in the development, demonstration, evaluation, and deployment of new technologies and analysis tools for high performance buildings. Center for High Performance Buildings

Transcript of Center for High Performance Buildings - Purdue …Center$for$High$Performance$Buildings$ ... •...

Page 1: Center for High Performance Buildings - Purdue …Center$for$High$Performance$Buildings$ ... • Liquid$Flooded$Ericsson$Power$Cycle$ ... • Virtual$SensorKBased$RTU$FDD$for$MultipleSimultaneousFaultDiagnoses$

A center dedicated to partnering with industry in the development, demonstration, evaluation, and deployment of new technologies and analysis

tools for high performance buildings.

Center for High Performance Buildings

Page 2: Center for High Performance Buildings - Purdue …Center$for$High$Performance$Buildings$ ... • Liquid$Flooded$Ericsson$Power$Cycle$ ... • Virtual$SensorKBased$RTU$FDD$for$MultipleSimultaneousFaultDiagnoses$

Center for High Performance Buildings

www.engineering.purdue.edu/CHPB 2

Overview  

The  Center  for  High  Performance  Buildings  (CHPB)  at  the  Ray  W.  Herrick  Laboratories  was  established  in  2013  through  a  construction  grant  from  the  National  Institute  of  Standards  and  Technology  (NIST).    Its  mission  is  to  partner  with  industry  to  develop,  demonstrate,  and  evaluate  new  technologies  and  analysis  tools  that  can  enable  dramatic  improvements  in  the  performance  of  buildings  in  terms  of  energy,  environmental  impact,  and  occupant  satisfaction  and  productivity.  The  CHPB  is  a  multi-­‐disciplinary  effort  involving  researchers  from  Mechanical,  Architectural,  Electrical,  and  Computer  Engineering  and  Psychological  Sciences.    The  team  has  the  expertise  and  unique  facilities  to  consider  a  wide  range  of  applications  related  to  engineered  environments  that  address  numerous  important  issues  in  indoor  environmental  quality,  human  comfort  and  productivity,  comfort  delivery  systems,  building  envelopes,  lighting,  equipment  efficiency  and  reliability,  environmental  impact,  controls,  automation,  etc.  The  team  can  span  the  spectrum  from  fundamental  research  to  technology  development  to  technology  evaluation  to  technical  assistance  covering  the  thrust  areas  depicted  in  the  adjacent  figure  and  employing  a  variety  of  unique,  state-­‐of-­‐the-­‐art  testbeds  that  include:  

1. fully-­‐instrumented  living  laboratory  offices  that  have  reconfigurable  facades,  comfort  delivery,  and  primary  equipment  to  allow  testing  for  impacts  of  new  building  technologies  on  energy  and  human  performance  indices  and  to  generate  data  needed  for  model  validations;    

2. perception-­‐based  engineering  (PBE)  facility  to  study  combined  impacts  of  lighting,  acoustics,  air  quality,  vibration,  temperature,  humidity  and  air  flow  on  occupant  perceptions  and  performance  in  a  controlled  manner;  

 3. laboratory-­‐scale  facilities  to  allow  controlled  testing  of  building  envelopes,  lighting/façade  

automation,  air  distribution,  cooling/heating  equipment,  heat  exchangers,  compressors;    The  building  has  a  LEED-­‐Gold  classification,  but  the  primary  goal  in  the  design  was  to  have  a  facility  that  will  allow  research  on  technologies  that  go  well  beyond  LEED.    

   

CHPB Research Areas

Testbeds

Indoor Environment &

Human Perception

Building Tech. & Systems

Building Envelopes Lighting & Daylighting Comfort Delivery Modeling, Design Tools Optimal Building Controls Automated Diagnostics Renewable Energy System Optimization

Equipment • Compressors • Heat Pumps • Refrigerants • CHP • Geothermal Technology • Modeling & Testing • Appliances

• Comfort, Productivity, Human Health

• Indoor Air Quality • Prediction Models • Personalized Control • Interfaces

Page 3: Center for High Performance Buildings - Purdue …Center$for$High$Performance$Buildings$ ... • Liquid$Flooded$Ericsson$Power$Cycle$ ... • Virtual$SensorKBased$RTU$FDD$for$MultipleSimultaneousFaultDiagnoses$

Center for High Performance Buildings

www.engineering.purdue.edu/CHPB 3

Reconfigurable  Living  Laboratories  

• 4  nearly  identical  office  spaces,  each  housing  20  graduate  students    

• reconfigurable  to  enable  direct  comparisons  of  alternative  technologies  for  windows,  lighting,  comfort  delivery,  controls  and  acoustic  treatments  

• comfort  delivery  options  include  air  supply  from  ceiling,  floor  or  side-­‐wall  diffusers  along  with  radiant  floor  heating  and  radiant  chilled  beam  cooling  

• double  façades  with  different  options  for  ventilation  and  energy  recovery  

• well-­‐instrumented  and  separate  primary  equipment  for  each  LL  to  allow  direct  energy  comparisons  

• occupant  studies  (comfort,  annoyance,  productivity)  can  allow  full  operational  assessments  of  new  building  technologies    

• evaluation  of  promising  new  technology  in  a  real-­‐world  setting    

Air Living Laboratory

Hydronic Living Laboratory

Reconfigurable  Features  with  Opportunities  for:    1.  Double  Skin  Façade,  2.  Integrated  PV,  3.  Advanced  Glazing  Materials,  4.  Natural  Ventilation,  5.  Controllable  Glazing:  Visible  Light  Transmittance  and  Thermal  Performance,  6.  Underfloor  Air  Distribution  (Air)  or  Radiant  Floor  Heating  (Hydronic),  7.  Personnel  Ventilation  Control  (Air)  or  Integrated  Thermal  Mass  (Hydronic),    8.  Primary  Air  System  with  Broad  Delivery  Range  (Air)  or  Radiant  Ceiling  Panels   (Hydronic),   9.   Overhead   Air   Distribution   (Air)   or   Active   and   Passive   Chilled   Beams   (Hydronic),   10.  Overhead  Light  Fixtures  (Air)  or  Displacement  Ventilation  (Hydronic),  11.Wall  Light  Fixtures  (Air)  or  Overhead  Light  Fixtures  (Hydronic),  12.  Task  Fixtures  (Air)  or  Wall  Light  Fixtures  (Hydronic),  13.  Task  Fixtures  (Hydronic)  

Living Lab Double Façade

Living Lab Office Space

Page 4: Center for High Performance Buildings - Purdue …Center$for$High$Performance$Buildings$ ... • Liquid$Flooded$Ericsson$Power$Cycle$ ... • Virtual$SensorKBased$RTU$FDD$for$MultipleSimultaneousFaultDiagnoses$

Center for High Performance Buildings

www.engineering.purdue.edu/CHPB 4

Perception-­‐Based  Engineering  Laboratory  

The  Perception-­‐Based  Engineering  (PBE)  Laboratory  enables  occupant  response  testing  under  controlled  conditions  in  a  facility  that  is  highly  reconfigurable.  Lighting,  acoustics,  vibration,  air  quality,  temperature,  humidity  and  visual  stimuli  can  be  manipulated  to  examine  individual  and  combined  effects.    The  room  can  be  configured  to  simulate  building  environments  to  conduct  fundamental  stimulus-­‐perception  research  as  well  as  to  examine  how  stimuli  levels  influence  comfort  and  performance.  The  south  facing  façade  is  reconfigurable  in  order  to  study  effects  of  natural  daylighting  on  occupant  satisfaction/performance.    It  houses  a  six  degree-­‐of-­‐freedom  shaker  and  a  high-­‐resolution  motion  capture  system.  This  facility  can  enable  the  development  of  a  better  understanding  and  models  for  the  impacts  of  all  indoor  variables  on  human  comfort  and  productivity.    

HVAC&R  Equipment  Facilities  

A  wide  variety  of  facilities  exist  for  testing  HVAC&R  equipment  under  controlled  systems,  including  two  pairs  of  psychrometric  chambers,  a  compressor  calorimeter,  a  variety  of  small-­‐scale  compressor  test  stands,  a  wind  tunnel  for  testing  heat  exchangers  under  normal  and  fouled  conditions,  geothermal  heat  exchange,  centrifugal  chiller  for  fault  testing,  an  ice  storage  test  facility,  etc.    

The  two  pairs  of  psychrometric  chambers  allow  testing  of  primary  heating  and  cooling  equipment  up  to  10  tons  from  temperatures  of  -­‐20  to  125  F  and  over  a  broad  range  of  humidity  conditions.    An  active  desiccant  dehumidification  system  is  employed  to  improve  moisture  removal  at  low  

PBE   Lab   Features:   1.Accessible   ceiling,   2.   Observation   panel,   3.   2-­‐D   shaker   table,   4.   Reconfigurable  walls/room,  5.  Overhead  doors,  6.  Reconfigurable  overhead  utilities,  7.  Reconfigurable  lighting,  8.  South  facing  daylight  exposure  aligned  with  reconfigurable  window/wall  in  lab,  9.  Control  room  and  subject  reception  area.  

PBE Laboratory PBE Lab Control Room

Psychrometric Chamber

Page 5: Center for High Performance Buildings - Purdue …Center$for$High$Performance$Buildings$ ... • Liquid$Flooded$Ericsson$Power$Cycle$ ... • Virtual$SensorKBased$RTU$FDD$for$MultipleSimultaneousFaultDiagnoses$

Center for High Performance Buildings

www.engineering.purdue.edu/CHPB 5

ambient  temperatures.

The  heat  exchanger  facility  allows  controlled  testing  of  evaporators,  condensers,  cooling  coils,  or  heating  coils  over  a  range  of  capacities  up  to  around  10  tons.    A  dust  injector  allows  evaluation  of  the  impacts  of  fouling  on  performance.  

The  geothermal  field  consists  of  16  vertical  U-­‐tube  heat  exchangers  with  bores  of  300  feet  deep.    The  heat  exchangers  

are  instrumented  to  allow  determination  of  ground  heat  transfer.      One  of  the  bores  is  instrumented  with  temperature  sensors  along  its  length  to  allow  detailed  model  validation.    Ground  heat  exchanger  flow  rates  and  inlet  temperatures  can  be  continuously  varied  to  enable  testing  of  advance  control  strategies.  There  is  an  opportunity  to  add  up  to  8  bore  holes  for  evaluation  of  new  ground-­‐source  heat  exchanger  technologies.  

 

Indoor  Air  Quality  Facility  

The  indoor  air  quality  chamber  allows  study  of  the  impact  of  air  distribution  on  indoor  environmental  conditions,  including  air  temperature,  humidity,  veIocity,  and  contaminant  concentration.    The  facility  consists  of  two  well-­‐insulated  chambers  to  simulate  an  indoor  space  adjacent  to  an  ambient  condition.    The  indoor  room  is  reconfigurable  to  allow  air  supply  from  ceiling,  wall,  or  under-­‐floor  diffusers.    It  is  also  reconfigurable  to  allow  consideration  of  different  types  of  indoor  environments,  such  as  offices,  classrooms,  industrial  workspaces,  air  craft  passenger  areas,  etc.  The  indoor  chamber  is  equipped  with  a  particle  image  velocimetry  (PIV)  system  to  enable  visualization  of  the  flow  field.      Measurement  arrays  of  thermocouples,  hot-­‐wire  anemometers,  humidity  sensors,  and  gas  sampling  tubes  connected  to  a  gas  chromatograph  allow  detailed  3-­‐dimensional  characterizations.      

 

Architectural  Engineering  Labs  

The  architectural  engineering  labs  consist  of  several  room-­‐scale  test  spaces  to  study  the  combined  impact  of  envelope/facade  systems,  lighting  and  thermal  systems  and  controls  on  energy  and  comfort.  The  facilities  include  side-­‐by-­‐side  test  offices  (with  reconfigurable  façade,  glazing,  curtain  wall,  shading,  lighting,  mixed-­‐mode  cooling,  radiant  cooling  systems)  and  flexible,  customized  controls  for  each  component.  The  spaces  are  fully  instrumented  with  indoor  and  outdoor  temperature,  illuminance,  solar  

Access to Geothermal Field

Heat Exchanger Wind Tunnel

Page 6: Center for High Performance Buildings - Purdue …Center$for$High$Performance$Buildings$ ... • Liquid$Flooded$Ericsson$Power$Cycle$ ... • Virtual$SensorKBased$RTU$FDD$for$MultipleSimultaneousFaultDiagnoses$

Center for High Performance Buildings

www.engineering.purdue.edu/CHPB 6

radiation,  air  velocity  and  humidity  sensors,  a  weather  station,  power  meters  and  imaging  photometer  camera  systems.  Except  for  comparative  testing  of  technologies  under  real  weather  conditions,  the  facilities  are  used  for  accurate  and  realistic  assessment  of  building  design  and  control  options  on  energy  use,  indoor  conditions  and  comfort  indices,  and  prototyping  of  new  predictive  control  algorithms  and  new  building  technologies.  Moreover,  the  facilities  are  used  to  develop  and  study  renewable  energy  technologies,  such  as  photovoltaic-­‐thermal  systems  and  solar  collectors  (solar  heating  and  cooling).          

 

 

 

Page 7: Center for High Performance Buildings - Purdue …Center$for$High$Performance$Buildings$ ... • Liquid$Flooded$Ericsson$Power$Cycle$ ... • Virtual$SensorKBased$RTU$FDD$for$MultipleSimultaneousFaultDiagnoses$

Center for High Performance Buildings

www.engineering.purdue.edu/CHPB 7

Faculty  

James E. Braun Director of the Center for High Performance Buildings

Herrick Professor of Engineering [email protected], (765) 494-9157

Modeling, analysis, and optimization with applications to: Intelligent Controls, Automated

Diagnostics, Component & System Improvements, and Building Simulation Tools

Stuart Bolton Professor of Mechanical Engineering

[email protected], (765) 49-42139

Noise Control, Sound Absorbing Materials and Systems, Sound Propagation and Transmission, Source Characterization, and Sound Field Visualization and Simulation

Qingyan Chen

Vincent P. Reilly Professor of Mechanical Engineering [email protected], (765) 496-7562

CFD for air flow in & around buildings with applications to: Indoor Air Quality, Homeland

Security, Energy Analysis

George Chiu Professor of Mechanical Engineering [email protected], (765) 494-2688

Dynamic Systems and Control, Mechatronics, Embedded Systems and Real-Time Control

Patricia Davies

Professor of Mechanical Engineering Director, Ray W. Herrick Laboratories [email protected], (765) 49-49274

Impacts of Noise on People: Annoyance, Speech Interference, Sleep Disturbance;

Sound Quality and Sound Perception. System Identification and Signal Processing.

Eckhard A. Groll Reilly Professor of Mechanical Engineering

Director, Office of Professional Practice [email protected], (765) 496-2201

Experiments and modeling with applications to: Alternative Refrigeration Technologies, Natural

Refrigerants, and Component & System Performance

Page 8: Center for High Performance Buildings - Purdue …Center$for$High$Performance$Buildings$ ... • Liquid$Flooded$Ericsson$Power$Cycle$ ... • Virtual$SensorKBased$RTU$FDD$for$MultipleSimultaneousFaultDiagnoses$

Center for High Performance Buildings

www.engineering.purdue.edu/CHPB 8

W. Travis Horton Assistant Professor of Civil Engineering

[email protected], (765) 494-6098

Ground-Coupled Heat Pumps, Building Energy Performance Analysis

Jianghai Hu Associate Professor of Electrical Engineering

[email protected], (765) 496-2395

Panagiota Karava Assistant Professor of Civil Engineering

[email protected], (765) 494-4573

Mixed-Mode Buildings, Building-Integrated Solar Energy Systems, Buildings Systems Modeling and Identification, Model-Predictive Control, Human-Building Interactions

Neera Jain

Assistant Professor of Mechanical Engineering [email protected]

Dynamic modeling and optimal control applied to building systems and equipment

Robert Proctor

Distinguished Professor, Cognitive [email protected], (765) 494-0784

Human Performance, Human Factors and Human-Computer Interaction, and Experimental

Research Methods

Ming Qu Associate Professor of Civil Engineering

[email protected], (765) 494-9125

Solar Energy Systems, Intelligent Controls, Absorption Systems

Thanos Tzempelikos Associate Professor of Civil Engineering [email protected], (765) 496-7586

Building Envelope, Lighting and Daylighting, Dynamic Facades, Human Comfort

 

 

Page 9: Center for High Performance Buildings - Purdue …Center$for$High$Performance$Buildings$ ... • Liquid$Flooded$Ericsson$Power$Cycle$ ... • Virtual$SensorKBased$RTU$FDD$for$MultipleSimultaneousFaultDiagnoses$

Center for High Performance Buildings

www.engineering.purdue.edu/CHPB 9

Recent  Research  Project  Examples  

• Optimal  Design  of  Building  Systems  • Old-­‐Flooded  Vapor  Compression  A/C  Systems  for  Hot  Climates  • Model  Predictive  Control  for  Buildings  with  Mixed-­‐Mode  Cooling  • Performance  of  Heat  Exchangers  and  Heat  Sinks  after  Air-­‐Side  Fouling  and  Cleaning  • Secondary  Loop  Air  Conditioner  for  Residential  Application  Using  Propane  • Cold  Climate  Heat  Pump  using  Vapor  Injected  Compression  • Heat  Pump  System  with  Liquid  Flooded  Compression  • Visual  Comfort  Assessment  in  Spaces  with  Smart  Façade  Controls  • Development  of  shading  and  lighting  control  algorithms  • Commercial  Building  Retrofit  Assessments  • Optimization  Methodology  for  Energy-­‐Efficient  Housing  • Air  Cycle  Heat  Pumps  for  Industrial  Applications  • Investigation  of  Methods  to  Reduce  the  Effects  of  Mal-­‐distribution  on  Evaporator  Performance  • Development  and  Assessment  of  Heuristic  Control   Strategies   for  a  Multi-­‐Zone  Commercial  Building  

Employing  a  Direct  Expansion  System  • Distributed  Model  Predictive  Control  for  Building  HVAC  Systems  • Development  of  Plug-­‐and-­‐Play  Optimal  Control  Algorithms  for  Small  Commercial  Buildings  • Analysis  of  a  Rotating  Spool  Expander  for  Organic  Rankine  Cycles  in  Heat  Recovery  Applications  • Design  and  Test  Organic  Rankine  Cycle  with  a  Scroll  Expander  • Increasing  Net  Work  Output  of  Organic  Rankine  Cycles  for  Low-­‐Grade  Waste-­‐Heat  Recovery  • Liquid  Flooded  Ericsson  Power  Cycle  • Econometric  Modeling  and  Optimization  of  CHP  Operations  of  the  Wade  Power  Plant  • Waste  Heat  Recovery  Options  in  Large  Gas-­‐Turbine  Combined  Power  Plants  • Optimizing  the  Control  of  Free  Cooling  and  Energy  Storage  Options  at  Purdue  • High  COP  Heat  Pumps  for  Commercial  Energy  Applications  • Low-­‐Cost  Virtual  Power  and  Capacity  Meter  for  Rooftop  Units  • RTU  Economizer  Diagnostics  using  Bayesian  Classification  • Virtual  Sensor-­‐Based  RTU  FDD  for  Multiple  Simultaneous  Fault  Diagnoses  • Methodology  for  Evaluating  Performance  of  Diagnostics  for  Air-­‐Conditioners  • Mechanistic  Modeling  of  a  Dual-­‐Unit  Variable-­‐Speed  Ductless  Heat  Pump  System  • Inverse  Modeling  to  Simulate  Fault  Impacts  for  Air  Conditioning  Equipment  • Inverse  Heat  Pump  Modeling    • Integration  of  Humans  and  their  Environment  in  Building  Design  and  Operation    • System  Identification  and  Model-­‐Predictive  Control  of  Office  Buildings  with  Integrated  Photovoltaic-­‐

Thermal  Collectors,  Radiant  Floor  Heating  and  Active  Thermal  Storage  • Integration   of   Occupant   Interactions   with   Window   Blinds   on   Model   Predictive   Control   of   Mixed-­‐

Mode  Buildings  • Plug-­‐and-­‐Play  Cyber-­‐Physical  Systems  to  Enable  Intelligent  Buildings