Cellulosic Bio Nanocomposite

23
CELLULOSIC BIO NANOCOMPOSITES Submitted by Avin Ganapathi Product Design and Manufacturing NIE Mysore 1

Transcript of Cellulosic Bio Nanocomposite

Page 1: Cellulosic Bio Nanocomposite

1

CELLULOSIC BIO

NANOCOMPOSITES

Submitted byAvin GanapathiProduct Design and ManufacturingNIE Mysore

Page 2: Cellulosic Bio Nanocomposite

2

CONTENTS

Introduction

Literature survey

Advantages

Application

Conclusion

Reference

 

Page 3: Cellulosic Bio Nanocomposite

3

Cellulose

Fig.1 Plant cellulose

Page 4: Cellulosic Bio Nanocomposite

4

Cellulose Fibers

Fig.2 Structural constitution of natural fiber cell

Page 5: Cellulosic Bio Nanocomposite

5

Chemistry of Cellulose

Fig.3 Cellulose Structure

Source - Wikipedia

Page 6: Cellulosic Bio Nanocomposite

6

Cellulose fibers are being used as potential reinforcing materials because of-

Abundantly available Low weight. Biodegradable. Non-toxic. Cheaper. Renewable.

Cellulose Fibers

Page 7: Cellulosic Bio Nanocomposite

7

Cellulose NanofibersName Source Process

Cellulose nanowhiskers

Ramie H2SO4 hydrolysis

MCC(wood pulp) H2SO4 hydrolysis

MCC H2SO4 hydrolysis

Grass fiber H2SO4 hydrolysis

MCC LiCl:DMAc

Cellulose NanocrystalsCotton Whatman filter paper H2SO4 hydrolysis

Bacterial cellulose H2SO4 hydrolysis

Cotton (cotton wool) H2SO4 hydrolysis

MCC H2SO4 hydrolysis

MCC Sonication

Cellulose nanowhiskers Cotton linters HCl hydrolysis

Whiskers Cellulose fibers H2SO4 hydrolysis

Nanofibers Wheat strawHCl + Mechanical Treatment

Nanocrystalline cellulose MCC H2SO4 hydrolysis

Microfibrillated CellulosePulp Gaulin Homogenizer

Pulp Daicel -

Pulp Daicel -Nanofibrillated cellulose Cellulose nanofibrils

Sulfite pulp MechanicalMicrocrystalline cellulose

Alpha-cellulose fibers Hydrolysis

Cellulose Crystallites Cotton Whatman filter paper H2SO4 hydrolysis

Nanocellulose Sisal fibers H2SO4 hydrolysis

Cellulose Microcrystal Cotton Whatman filter paper HCl hydrolysis

Nanofibers Soybean podsChemical treatment + high pressure defibrilator

Table 1. The different terminologies used to describe cellulose nanoparticles.

Page 8: Cellulosic Bio Nanocomposite

8

Manufacturing

Fig.4.1 Cellulose extraction processes

CELLULOSE NANOFIBRILS

CELLULOSE NANO CRYSTALS

Page 9: Cellulosic Bio Nanocomposite

9

Manufacturing

Fig 4.2 Fiber extraction

Page 10: Cellulosic Bio Nanocomposite

10

4.3

Page 11: Cellulosic Bio Nanocomposite

11

Manufacturing

Figure 4.4: Isolation of nanofibers by chemomechanical treatment.

Page 12: Cellulosic Bio Nanocomposite

12

Properties

The properties of cellulosic fibers are influenced by factors like -

Chemical composition Internal fiber structure Micro fibril angle Cell dimensions

Page 13: Cellulosic Bio Nanocomposite

matrixfibre BC coated fibre

BC

Fig. 5. Schematic showing the different types of hierarchical composites. Left: conventional fibre reinforced polymer composites, middle: BC coated fibre reinforced hierarchical composites and right: BC coated fibre reinforced hierarchical nanocomposites. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Page 14: Cellulosic Bio Nanocomposite

14Fig. 6. Scanning electron micrographs showing (a) neat sisal fibres, (b), densely BC coated sisal fibres at low

magnification, and (c) ‘‘hairy’’ BC coated sisal fibres. The insets show the fibre morphology at high magnification, where BC network could still be observed.

Page 15: Cellulosic Bio Nanocomposite

15

Table 2BET surface area, single fibre tensile modulus and tensile strength of neat and BC coated sisal fibres; dense layer and ‘‘hairy fibres’’, respectively.

Sample BET surface area (m2 g - 1 ) Single fibre tensile propertiesTensile modulus (GPa)

Tensile strength (MPa)

Neat sisal fibres DCNS fibres HNSF fibres

0.10 ± 0.01

0.77 ± 0.03

0.49 ± 0.03

24.1 ± 3.1

12.5 ± 1.3

22.9 ± 2.2

535 ± 69

253 ± 27

456 ± 50

Source-K.-Y. Lee et al. / Composites: Part A 43 (2012) 2065–2074

Page 16: Cellulosic Bio Nanocomposite

16

Sample ET (GPa) rT (MPa) e (%) Wc (MJ m - 3 ) EF (GPa) rF (MPa)

Neat PLLA 0.97 ± 0.02 62.6 ± 1.0 7.2 ± 0.7 2.7 ± 0.6 3.70 ± 0.04 86.1 ± 6.9

PLLA–sisal 1.28 ± 0.03 58.7 ± 1.0 6.5 ± 0.4 2.4 ± 0.2 4.85 ± 0.10 105.6 ± 1.5

PLLA–DCNS 1.35 ± 0.03 57.3 ± 1.3 5.2 ± 0.2 2.1 ± 0.5 5.19 ± 0.07 99.2 ± 2.8

PLLA–HNSF 1.29 ± 0.03 57.8 ± 1.6 5.7 ± 0.3 1.9 ± 0.2 4.96 ± 0.16 102.0 ± 2.5

PLLA–sisal–BC 1.46 ± 0.02 60.9 ± 1.9 4.8 ± 0.4 1.6 ± 0.3 5.74 ± 0.05 100.0 ± 2.2

PLLA–DCNS–BC 1.63 ± 0.04 67.8 ± 1.2 4.9 ± 0.2 1.8 ± 0.2 6.19 ± 0.08 95.5 ± 2.3

PLLA–HNSF–BC 1.59 ± 0.05 69.2 ± 1.2 5.1 ± 0.3 1.9 ± 0.2 5.77 ± 0.13 96.8 ± 2.0

Table 3Summary of mechanical properties of neat PLLA and its composites. ET, rT, e, Wc, EF, rF indicate tensile modulus, tensile strength, engineering elongation at

break, engineering work of fracture, flexural modulus and flexural strength, respectively.

Source-K.-Y. Lee et al. / Composites: Part A 43 (2012) 2065–2074

Page 17: Cellulosic Bio Nanocomposite

17

0.00 0.02 0.06 0.080

10

20

30

40

50

60

0.00 0.02 0.06 0.080

10

20

30

40

50

60

70

PLLA

PLLA-NS

PLLA-DCNS

PLLA-HNSF

Stre

ss (M

Pa)

0.04

Engineering Strain

PLLA

PLLA-NS-BC

PLLA-DCNS-BC

PLLA-HNSF-BC

Stre

ss (M

Pa)

0.04

Engineering Strain

Fig. 7. Characteristic tensile stress strain curves of neat PLLA and its hierarchical composites.

Page 18: Cellulosic Bio Nanocomposite

18

Literature surveySl no. TITLE AUTHOR CONCLUSION

1 Cellulosic Bionanocomposites: A Review of

Preparation, Properties and Applications

Gilberto Siqueira, Julien Bras and Alain Dufresne Major studies have shown that cellulose

nanoparticles could be used as fillers to improve

mechanical and barrier properties of

biocomposites.

2 A Review on Potentiality of Nano Filler/Natural Fiber FilledPolymer Hybrid Composites

Naheed Saba , Paridah Md Tahir and Mohammad Jawaid

This review article intended to presentinformation about diverse classes of natural fibers, nanofiller, cellulosic fiber basedcomposite, nanocomposite, and natural fiber/nanofiller-based hybrid composite withspecific concern to their applications.

3 Short sisal fibre reinforced bacterial cellulose polylactide nanocompositesusing hairy sisal fibres as reinforcement

Koon-Yang Lee, Puja Bharadia, Jonny J. Blaker, Alexander Bismarck

These fibres were used to produce hierarchical sisal fibrereinforced BC polylactide (PLLA) nanocomposites.

Page 19: Cellulosic Bio Nanocomposite

19

Advantages

Low density Renewable natureWide variety of filler available through the world Low energy consumption High specific properties Modest abrasivity during processingBiodegradability.

Page 20: Cellulosic Bio Nanocomposite

20Fig. 8 Application in automobile

Page 21: Cellulosic Bio Nanocomposite

21

Application

Electronic Industry

Digital Displays

Aerospace

Electrical

Automobile Industry

Page 22: Cellulosic Bio Nanocomposite

22

Conclusion

The mechanical properties such as high strength and stiffness, the surface reactivity, the specific organization as well as the small dimensions of nanocellulose may well impart useful properties to (nano)composite materials reinforced with fibers .

Page 23: Cellulosic Bio Nanocomposite

23

Reference Cellulosic Bionanocomposites: A Review of Preparation, Properties and

Applications Gilberto Siqueira 1,2, Julien Bras 1 and Alain Dufresne 1, Division of Manufacturing.

  A Review on Potentiality of Nano Filler/Natural Fiber FilledPolymer Hybrid

Composites Naheed Saba , Paridah Md Tahir and Mohammad Jawaid Polymers 2014, 6, 2247-2273;

Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement Koon-Yang Lee, Puja Bharadia, Jonny J. Blaker, Alexander Bismarck 2012 Elsevier Ltd Composites: Part A 43 (2012) 2065–2074