c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of...

18
Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o Ty恥e Co璽》夢er I》e幽os脆s童醜 一縄R㊧V童ew c踊le Takeo SATO* SATo,Takeo(1984) Manto type copper deposits in Chile-a revi 1αPαn,vo1.35(11),P.565-582. B房〃. GεoZ. 5μ7V. A眺纏c琶3Many manto type copper su1且de(1eposits occur in the Coa being hoste(1by Jurassic to Early Tertiary volcanic-dominant f are most commonly amygdaroidal Iava Hows an(1volcaniclastics Limestones and calcareous shales are also mineralized.Major copyrite,bomite an(1chalcocite in association with pyrite,hem Wallrock alteration is generally very weak or none. By examining published data on geology,geochemistry a host rocks and ore(ieposits,it is suggested that dehydration proce burial metamorphism might be responsible for the formation of copper deposits.Accumulation of thick eugeosynclinal piles co rich volcanics in the westem part of the Andean geosyncline du Cretaceous times may explain why the Chilean Coastal Range i type of coPPer (ieposits. 旦。 亙聡電登o磁眼c亘量⑪聡 Manto type stratifom copPer sumde de- posits are widely distributed,in the Coastal Range of north-central Ch丑e (F五9.1 and Table1)。They have several unique charac- tehstics in comparison with other types of stratiform coPPer depositsl(1)they are hosted by marine and continental volcanics of Jurassic to Eocene in age and,1ess com- monly,by limestones and shales interbedded with the volcanicsl(2)amygdules of lavas and matric“s of volcanic brecc五as and vo1- canic sandstones are the most favourable sites of mineralizationl(3) chalcopyrite, bornite and chalcocite are the major coPPer su1丘des coexisting with pyrite,hematite and/ or magnetite三(4) wallrock alteration is generally very weak or none,being undis- tinguishable from regional diagenetic alter- ation. *Mineral Deposits Department,Geological Survey of Japan,Higashi1.1-3,Yatabe,Tsukuba,Iba- raki,305 Japan The purpose of this article is recent knowledge on this uni coPPer deposits from literat present authofs own observatio stay in Chile in November-Dece 2. G錨e戯Geo夏⑪蟹一A醗且e査Rev量ew o 曲eTec鯉量c躍亟M我9鐡伽Evo恥⑳鑓 o髄he A麟e蹴Ge⑪sy麗髄聡e The Jurassic to Eocene volca the manto type copPer deposits ar ucts of the Andean orogenic cy interpreted to have been contro subduction of an oceanic(Paci且c)c the South American continen 1971; CoIRA α αZ., 1982). CoIRA α α (1982)divided the Andean oro into two principal stages,∫.6.,the Early Cretaceous stage and the CeOUS-ReCent Stage. The Jurassic-Early Cretaceou characte血ed by the accumulatio pile of volcanic-dominant sequ 一565一

Transcript of c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of...

Page 1: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83)

M我囎危o Ty恥e Co璽》夢er I》e幽os脆s童醜

一縄R㊧V童ew

c踊le

Takeo SATO*

SATo,Takeo(1984) Manto type copper deposits in Chile-a review。

     1αPαn,vo1.35(11),P.565-582.

B房〃. GεoZ. 5μ7V.

A眺纏c琶3Many manto type copper su1且de(1eposits occur in the Coastal Range of Chile

being hoste(1by Jurassic to Early Tertiary volcanic-dominant formations.The host rocks

are most commonly amygdaroidal Iava Hows an(1volcaniclastics of various compositions。

Limestones and calcareous shales are also mineralized.Major ore minerals are cha1-

copyrite,bomite an(1chalcocite in association with pyrite,hematite and/or magnetite。

Wallrock alteration is generally very weak or none.

     By examining published data on geology,geochemistry and mineralogy of the

host rocks and ore(ieposits,it is suggested that dehydration processes due to a(lvance(l

burial metamorphism might be responsible for the formation of the Chilean manto type

copper deposits.Accumulation of thick eugeosynclinal piles containing abundant copper.

rich volcanics in the westem part of the Andean geosyncline during the Jurassic an(i

Cretaceous times may explain why the Chilean Coastal Range is rich in this unique

type of coPPer (ieposits.

旦。  亙聡電登o磁眼c亘量⑪聡

  Manto type stratifom copPer sumde de-

posits are widely distributed,in the Coastal

Range of north-central Ch丑e (F五9.1 and

Table1)。They have several unique charac-

tehstics in comparison with other types of

stratiform coPPer depositsl(1)they are

hosted by marine and continental volcanics

of Jurassic to Eocene in age and,1ess com-

monly,by limestones and shales interbedded

with the volcanicsl(2)amygdules of lavas

and matric“s of volcanic brecc五as and vo1-

canic sandstones are the most favourable

sites of mineralizationl(3) chalcopyrite,

bornite and chalcocite are the major coPPer

su1丘des coexisting with pyrite,hematite and/

or magnetite三(4) wallrock alteration is

generally very weak or none,being undis-

tinguishable from regional diagenetic alter-ation.

*Mineral Deposits Department,Geological Survey of Japan,Higashi1.1-3,Yatabe,Tsukuba,Iba- raki,305 Japan

  The purpose of this article is to review

recent knowledge on this unique type of

coPPer deposits from literatures and the

present authofs own observationsl during his

stay in Chile in November-December,1981.

2. G錨e戯Geo夏⑪蟹一A醗且e査Rev量ew o鉦

曲eTec鯉量c躍亟M我9鐡伽Evo恥⑳鑓o髄he A麟e蹴Ge⑪sy麗髄聡e

  The Jurassic to Eocene volcanics hosting

the manto type copPer deposits are the prod-

ucts of the Andean orogenic cycle,which is

interpreted to have been contro皿ed by the

subduction of an oceanic(Paci且c)crust un(ler

the South American continent(RuTLAND,1971; CoIRA α αZ., 1982). CoIRA α αZ.

(1982)divided the Andean orogenic cycleinto two principal stages,∫.6.,the Jurassic-

Early Cretaceous stage and the Late Creta-

CeOUS-ReCent Stage.

  The Jurassic-Early Cretaceous stage 五s

characte血ed by the accumulation of a thick

pile of volcanic-dominant sequences in the

一565一

Page 2: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

i9ゆ

1

’7「㏄op甜1α二1 ダ

An↑ofGgqstq

24。S

26。S

Tq Itq l

β

280S

r嚢…

68W

Fig.5q

■ 〆

Lq Serenα 1:7堕1:醗

9 3

32

iii1Qiiii

:iiiliiii

.iil7iiii

pqrq SO

,,llsδ萌鱗”

甲~18iii頁i:ili:i:i:i:ili:i:,

72。W

O 100

7ぴW

200km

30。S

32。S

 1

 2

 3

4 5

 6

 7

89

10

11

12

13

14

15

16

17

18

Zone o f UPPer Cre-

o曾qceous (コnd Eocenevolcαnic-dominqntS. equences

Zone of Lower Cre_tdCeOUS VOICqniC-

dominqnt$equences

Zone of Jurqssicvoicqnic-dominαnt

sequences

⑭ Mqjor mqnto type  deposits

  Buenq EsperGnzq

  SusonG

  Mqntos Blqncos

  Puntq  dei Cobre

  Jq rdl n

  Amolqnqs

  Arqueros

  Tqlcunq

  Esperqnzα

  El Squce

  Los Mqqui串

  Guαyαc6n

  EI Soldqdo

  Cerro Negro  Po r t q l es

  AnimGS

  El SqlQdo

  LoAguirre 6

70。WFig.1 Map of north-central Chile showing distributions of Jurassic to Eocene volcan!g-

  dominant sequences and major manto type copper deposits(greatly simpli血ed from Mapa

  Geo16gico de Chile(1:1,000,000),1982/1983,Servicio Nacional de Geologia y Minerfa)。

copper

切ミ簿欝.

o、へ評恥

Qsご鵯.

9N硫9、く恥紀

o、、匙

、ま

3ぺ◎

恥斜≧

9自

Page 3: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

ハ4傭oTypεCOPρε7DεPOS’‘S(T.5α10)

Coastal R.ange of north-central Chile (Fig.

1)。 The volcano-sedimentaries,overlying

marine sediments of early Liassic age,are

several thousand meters thick and have great

lateral extensions. They grade into foss翌fer-

ous marine sed㎞ents toward east,and RUIZ

αα乙 (1965) 血ferred an eugeosync1血al en-

vironment for the volcanic-dominant se-

quences and a miogeosynclinal environment

for the ma血e sediments.According to amodem interpretation based on plate tectonics

by CoIRAααZ。(1982),the former is attrib-

uted to a magmatic arc and the latter to an

ensialic back arc basin.

  The products of the Jurassic magmatic arc

are typically exposed in the Antofagasta-

Tocopilla region,where they host several

manto type deposits(see Fig。1).They are

called the:La Negra formation and consist

mainly of lavas of andesite,10w-silica andes-

ite,high-K andesite and oliv血e basalt with

occasiona1血tercalations of volcanic breccias,

tuffs an(i sandstones (LosERT,1973;1974).

PALAcIos(1978)(iist血guished tholeiitic,calc-

alka1血e and alkal血e suites,but could not

note any temporal nor spatial zonation among

them。The initial strontium isotopic ratios of

the Jurassic plutonic rocks,which are sup-

posed to be comagmatic with the contem-

poraneous volcanics (LosERT,1973),are as

low as O.70344suggesting a primitive source

for the Jurassic magmas(SHIBATAαα1.,1984).

  In the Early Cretaceous,the site of mag-

matism shifted eastward and the sedimentary

basin was narrowed.CoIRA窃αZ.(1982)suggested eastward m萱gration of the magmatic

arc an(i shr血kage of the back arc basin at

this stage.

  The Early Cretaceous sequences are com-

posed mainly of intermediate and felsic vo1-

canics intercalated with ma血e sediments;

ignimbrite and continental sed㎞ents occur

locally。They are hosting many manto type

deposits especially in the north Santiago area,

which will be described.in detail in a follow-

ing chapter.

  The site of magmatism shifted farther east

in Late Cretaceous to the westem footh皿s

of the Cord皿era Occidenta1,and the sedi-

mentary environment of the Andean geo-

syncline became totally continenta1。CoIRAααZ.(1982) inferred that the previous arc-

back arc basin pair was replaced,by a single

eastwar(i migrating magmatic arc at the end

of Early Cretaceous probably as a result of

the且nal open㎞g of the Atlantic and the

active westward movement of the SouthAmerican Plate。This can be interpreted as

the change of plate subduction regime from

Mariana type to Chilean type as de且ned by

UYEDA and KANAMoRI(1979).  The volcanism of Late Cretaceous and

Early Tertiary is characterized by extrusion

of felsic lavas and ign㎞brites,but basalt and

andesite were also produced.These volcanics

host some manto type deposits inclu(ling the

weHknown Mantos Blancos deposit,whichoccurs in Late Cretaceous,dacitic lavas.

  The initial strontium isotopic ratios of

the plutonic and volcanic rocks of this time

span increase with time from O.7022-0.7035

in Late Cretaceous to O.7043-0.7057 血

Early Tertiary(McNuTTαα1.,1975).This

t㎞e-dependent increase in initial ratio is

recognized to cont血ue量n younger rocks,an(i

McN’uTTααZ.(1975)supposed that the

magmas were generated by partial melting血rst in the subducted oceanic crust and then

in the hangingwall mantle peridotite.

  In summary,tectonic reg三me of the Andean

geosyncline changed greatly at the en(l of

Early Cretaceous,and at the same time the

depositional environment changed in general

from marine to continenta1。The chemistryof volcanics and the site of magma generation

also appear to have changed with time.It

is noteworthy that the manto type copper

deposits occur in the rocks of whole time

span from Jurassic to Early Tertiary and in

various Iithologies regardless of rock chemis-

try,sedimentary facies or regional tectonics.

一567一

       

_、幽

Page 4: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

B麗〃εだn o1孟hθσθ0108’6αZ Sμ7v6y o∫1αραnフVoZ.35,ハ1α 11

Table l Some Major Manto Type

No.

12

3

45

678

9

10

11

12

13

14

15

16

17

18

Name of Deposit orDistrict((1eposit type)

Buena Esperanza,(II)

Susana(II)

Mantos Blancos(m)

Punta del Cobre (1)

Jardin (III)

Amolanas(m)Arqueros(Ill?)

Talcuna(1)

 Socorro

 Vasquez Chilena Coca-Cola

 Andacollo

 Po(ierosa and Bienvenido

 TamborEsperanza (1?)

EI Sauce (1?)

Los Maquis(II)

Guayacan(1)

EI So1(1a(10 (III)

CerroNegro(1)

Portales(1?)

Animas(1)

EI Sala(io (III)

Lo Aguirre(III)

  Location(1at.S/10n.W)

22。11’/70。14/

22。40ノノ70。15ノ

23。26ノ/70。04〆

27。30〆/70。15/

27。43ノ/70。12ノ

28。02ノ/70。03/

29。45ノ/70。56’

29。53ノ/70。53ノ

30。04〆/70。37ノ

32。27ノ/71。04/

32。28ノ/71。04!

32。32771。05ノ

32。38〆/71。06’

32。34ノ/70。51/

32。38ノ/70。52ノ

32。40’/70。54/

32。45//70。58/

33。27ノ/70。56’

Formation(age)

La Negra(J)

La Negra(」)

Augusta Victoria(LK)

Cha,fiarcillo (EK)

Hornitos (E)

Homitos(E)

Arqueros(EK)

Quebrada Marquesa(EK)

Pucalume(LK)

Lo Prado

Lo Prado

Lo Prado

(EK)

(EK)

(EK)

Lo Prado (EK)

Las Chilca.s (LK)

La,s Chilcas (LK)

Cerro Morado(LK)

Veta Negra,(EK)

Veta Negra(EK)

HostRock

Amyg。andesite andbasalt

Amyg,andesite3nd basalt

Dacite

“Albitophyre’y and breccia

Rhyolite and ignimbrite

Rhyolite

Limestone

Lapilli tuff an(1sandstone

Conglomerate and sandstone

Limestone

Limestone and shale

Andesite and calcareous shale

Limestone,tuff br.and andesite

Volcanic breccia、

Carbonaceous and calcareous shale

Andesitic breccia

Rhyolite and welded tu躍

An(1esite

Abbreviations for age.J Jurassic,EK Early Cretaceous,LK Late Cretaceous,E Eocene。

3.  Genejfal C量亘aし亙漉c宜e酸s重重cs我】燈dl C且ξ亘ss量最回

   C面0賦O置伽C鯉e蹴M懸琶o Type   Copper }eposi宣s

  More than且fty manto type copper de-

posits are known in Chile(ε.9.,RuIzααZ.,

1965). Of these,18 deposits or(listricts are

relatively well described and listed in Table1.

Traditionally they have been classi血ed mainly

on the basis of host rock lithology (CARTERラ

19611RuIzαα1.,1965). In this paper,the

deposits w皿be subdivided on the basis of

the shape of deposits because the morphologi-

cal class重cation appears to be more con-

venient to sort the characteristics of the manto

type copper deposits that show various modes

of occuπence.

  Type亘含s1継曲側樋勧閾 躍幽e聖o曲  This type is characterized by occurrence

of many smal orebodies in a particular

stratigraphic horセon. Orebodies are tabular

in form and are connected each other by a

weakly mineralized zone。In many cases the

mineralized horizon is a Iithologic boundary

一568一

Page 5: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

ハ4傭oTypθCOPP87Z)6ρos’ごs(T。Sαごo)

Copper Deposits in Chile.

Sulfide Assemblage

cc,bn,cp,dg,cv,py

cc,cp,py,cv,bn

cc,bn,cp,py,cv,gn

cp,pycc,bn,dg,cv,cp,py,

sp,gn

bn,cc,cp

cc,cv,bn,cp,py,gn

bn,cp,cc,gn

cp,cc

cp,py

cp,py

cp,py,bn

cc,dg,bn,cp

bn,cp,cc,py

cp,bn,cc,cv,py

bn,cp,cv

bn,dg,cc,cv,py

Reserve(R)IProduction(P)    (in1,000tons)

2,500(P)

8,000 (R)

43,000 (P unti11981)22,500 (R)

3,500(Pfor1800-1978)

2,800 (R)

3,800(R.)

240(R)

215(R)

36(R)

140(R)

16(R)

810(R)

50(R)

650(R)

28,100(R)

1,600 (P unti11963)

180 (P for1978-1980)

11,100 (R)

Grade

3%Cu1.7%Cu,30-409/tAg

1.51-1.90%Cu

L6%Cu,21g/tAg

6%Cu

2.0%Cu

1.2%Cu,10g/tAg

1.50%℃u,509/tAg

1.50%Cu2.32%℃u,41g/tAg

1.5-1。7%Cu,15g/tAg

2.5%Cu

1.2-L5%Cu,15g/tAg

1.13%Cu,53g/tAg

4.75%Cu

1.8-2.2%Cu

1.5-2.096Cu

1.8%Cu

1.9%Cu

2.8%Cu

1.3-1.8%Cu

2.14%Cu

Source

:Ruizθω1.(1971)

Esp宣noza (1981b),

Palacios and Definis(1981)

Anonymons(1981)

Camus(1980)Zentilli(1974)

Zentilli(1974)

Kamono an(1Bori6(1982)

Kamono and Bori6(1982)

Kamono and Bori6(1982)

JICA(1980)

JICA(1980)

Ruizθ1α1.(1971),

JICA(1980)

Ruizαα1,(1965),1.1.M.Ch(1980)

Ruiz61α1. (1965,1971)

Ruizθ∫α1。 (1971)

JICA(1980)

JICA(1980)

1.1.M.Ch. (1980)

Abbreviations for minerals. bn:

py:

bornite,cc:chalocite,cp

pyrite,sp:sphalerite・

chalcopyrite,cv  covelline,(lg:digenite,gn  galena,

such as a boundary between volcanics an(1

sed㎞ents. Typical and well-described ex-

amples of this type are the Talcuna district

near La Serena(KAMoNoεしnd BoRI6,1982)

and the Punta del Cobre(iistrict near Copiapo

(CAMus, 1980)。

  In the Talcuna district,mineralization took

place in a2to12meters thick lapilli tuff/

tuffaceous sandstone horizon sandwitched by

a血underlying andesitic tuf[breccia/lava unit

and an overly血.g sandstone/s凱重stone unit(Fig・

2).Uppermost amygd』aloidal parts of the

underlying andesitic lavas are also mineral-

ized.The m1neralization continues at least

5㎞along this hor並on. Of this m血era1並ed

bed only restricted parts are of economic

grade and minable.NW-SE trending vertical

faults,which themselves are mineralized to

economic grade,apPear to have controled

thehighgradeparts(seeFig・2)・Thereisno distinct wallrock:alteration observed,but

the host volcano-se(iimentaries are regiona11y

altered into calcite-chlorite-analcime-hematite

assemblage w五th epidote and prehnite de一

一569一

Page 6: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

こ 

一〇乙9一 癬嚢灘

萎1

。(τ861 ‘gIHoE PuB oNoKv】旺uエoJJ PoUIPo田)写oP↓s∫P2unoIBこL o{P30dBul oi8010gD  Z。81旺嚢

u」杞 L日

濃融蜘難尋趣嬢癒溝講馨三1謙籍汰

PUD

 ユnS DII!qo」」D61∀91

el』OND川qo』』P61∀91       DP!puoつsヨ

    SD↓eζ)Dld  gD「

s↓!sodeG eseUD6UD囚

       1[Oμ!leo       I O1」!PG

        DUD×0と        』oq田D⊥       seUDつID臼       Dso』epod       OI lo:)Dpu∀

       Dp()Dつ0〔)   SU DU」oe人 D↓」∂日

        Due四つ        zenbSD〈

        o』」oつOS

  s↓!sodeG  」eddo()

例21

どI

HOI

68∠

99レ

2z

eUipuバS  十一

eu!1つ!↓u∀ 十

↓lnD」 一一3一一一

e壇り↓S PUD diG

           e↓1sePUD

封n↓川dDl‘DPつe』q”n⊥

   uo!↓DZ!rP』eu!U』」eddoつq↓琳

e↓!sepuD IDp!olDp6バu」D puD euo↓s

 -puDssnoeつ叫n↓‘昼n↓!目!dPr

UO!↓DZilD」eU!U』 e」一U囚 U↓!んへ eUO↓S

-puDs・ snoe()P揚n↓ puD ∂uo↓s↓1!S

   e覗sepuD puD euo手s↓巨s euo↓s-puDs snoeつD揚n↓ puD snoe」α)IDっ

euo尋spuPs puD DP()eJq }チn⊥

           eUO↓S↓1!SpuD …∋uo↓spuDs gnoeつD多’n↓

‘’多叫川!dDけouo1↓DU」a↓1∀

Eヨ

e↓!sepu∀圃

euo年spuDs puD e↓D』eu』ol6uoっ’團田n!〈nll∀[コ

o⊂m田刀〕>

o>ζ

〕>

o⊂m(∫)

「○刀ζ〉

.一i

6Z

 く8≧1刀→

.ζ〕>

※i蕪磁緩ili難曝蕪i蒙ξi澱

三……※……獄藤…1……講難灘l

liiii◎1瀬鞭i謙き二1鑓驚

iii:難簸襟.捻葦談鑓綾二蒔麟1ン澤さ1・・〈へくへく1〈へくへ※γ^8X灘誓華▽▽▽r▽▽▽▽▽▽▽▽▽▽晶▽▽▽▽

:i:※1〈1・1※1〈〈く1〈1ミ※斐銭騨▽1▽1▽1※1▽1▽1▽1▽1

般・〈※1〈段1題く.〈烹く≧≦1ン輪潅i聾1▽ン」▽翼▽二▽1▽;▽▽

へくくへく『/\/\/                     ▽ へくくくバ\/\/\         \/\/      A

A

 〈 〈 〈

〈 〈 〈 〈

 ヘ ヘ 〈

ヤ〈㍗へ、〈 へ 八 く

く く く く

 へ く く

く く く       /甥\

 パ\〈  \

 〈  \

    、〈 〈

 八 く く

く く へ く

 へ く 八

く へ く く

 /\/\ノ\/\/\/\/

  ノ\/\  \/   \   〈〈 へ

 八   /   /\/\/\/\/\/\/\∠

  /\/\\/\/\/  \/\ 〈 〈

へ く く く

 く く く

,蝦≧癒塗翫拭紫累ゴ輩

/\/\/\ /\ \/    ∠

 1 ▽▽  ▽

▽¥   / L   7 /

観L▽▽

   概L

▽ ▽

▽  ▽

≦〉/Xく鷺饗\1一一

  〈〉くく父父〉ぐ隻麦

く  く く   く  二’     \/

     〈

  ▽

▽1▽▽▽8憩1▽▽

▽▽

/\

o

o

o

o

o

o

o、

 ぐO l

  曳

o  o

o 〈

A均ど

〈 〈

 ム

〈 〈ク

〈\ /グ¥

 /黛z    /

〈 \

 へ

  ノ\ノ帆

 \

 ∠   /∠   /\  \ \/

\×〉く)〉

〈眠〃く/

   〈  〈

    A

/\/

 /\/\ \/\/\ /\/\/\ \/\/\/\ /\/\/\/ \/\/\/・ /\/\/\ \/\/\/へ      !

▽  ▽    ▽      ▽      ▽

 ▽ ▽ 7  ’ ▽       ▽ ▽

       ▽ ▽ ▽     ▽

      ▽ ▽ ▽ ▽   ▽.▽ ▽     ▽  ▽  ▽  ▽、▽  ▽  ▽  ▽

▽  ▽         ▽  ▽  ▽  ▽  ▽ ▽

         ▽ ▽ ▽ ▽ ▽

          ▽ ▽  ▽ ▽ ▽▽   .,㌧ !、く ▽    ▽  ▽  ▽  ▽ ’

▽ 』”\/\/ ▽  ▽▽▽∀ ,・’グ\/\  \   ▽   ▽’▽

 〉〈〉〈〉も》 ▽   ▽▽ \/\/\/    *2L▽  \/\∠  易,・・’      ▽  曳 ▽

猶▽

霧▽1靴▽窓

 ’’

  7 ■\汽\/

\!

 \

 /\ /\/\/\/\/\/\/\/\!λ

・<〉戴

〉◆く×〉〈〉◆尋

         ¥

L、 マ▽帆マ

 ▽’・

▽  ▽

 ▽▽ ▽

 ▽  ▽

 ▽

 

 

π●o〈r‘gε。10∠吐‘㍑η4zフノ∫oκ3♂Mns lzηβ010∂θ∂解∫o z卿∂〃ng薗

Page 7: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

ハ4傭oTyp8COPPθ7P8pos甜s(T.5伽)

veloped in stratigraphically lower levels。It

is noteworthy that bedded Mn-Fe oxidemineralization occurs in the tuffaceous sand-

stone/s丑tstone hortzon overlying the coPPer

horizon.It is more widespread than the

copper mineralization and becomes thicker

toward southwest,where the copper bed.dis-

apPears (Fig.2)。 Genetic relationship be-

tween the two m3neralizations are not wel

understood.

  In電he Punta del Cobre district,many ore-

bodies,occur in an andesitic breccia horizon

between underlying massive andesite andoverly血g shale. Here aga加.the site of eco-

nomic concentration of coPPer apPears to be

controlled by faults.Wallrock alteration is

not clearly distinguished from regional alter一

ation except for increase in amount of chlorite

and sericite toward orebo(1ies especially near

the mineralized faults.

  Other deposits with sim丑ar features include

Guayacan(R.uIzααZ。,19713CARTER.,1961),

Cerro Negro(RuIzααZ.,1971)and Animas

(JICA,1980).Though information is not

sumcient,many of the smal deposits Iisted

in RuIz訂α1。(1965)and JICA(1980)maybe include(i五n this type.

  Type鯉3S甑ke認勧曲買翻e脚s量重s  In this type many tabular orebodies occur

in lithologically favourable parts of host

rocksラsuch as amygdaloidal How tops of lavas

an(1 calcareous sed㎞ents altemating withshale or siltstone.

  A well-described example of this type is

\4 ¥ ‘

 W

              ル レヨ      レ      ニ    ε   L    ・<へくぐく\’ レ  レ                              テ

機四         1

               !十

レレ十

  イ

十 /

i

           1十           A

          ノ          /   ぜ1          1 十  ノ

         1   1         1午   1         ノ       ’         ノ  十        1        !+        ず       ノ        汗  →/

          十ノ       ノ      ノ       1十  /

.ム 区孝 、/無 》・≧

         レ

      E

蚕懸

□圃】

・が

ミ、

ム・\[1コ

 ム  ♪ \       \占{1ム>  ム       ム

、 \

 \  ・ 十 ム ム

 ムム  ・ 十 ・    ム

ム\ レ 釜器蝕

レ ムム  ム・

〃       レ ム レ

  ム乙

ム  ム     ム

    ム ρレ ▲ ▲\仁タ占ム\

レ  ム   ム

    ム  ひ     ムム む  ・ 十 ・     A ム

ρ   レ  ム   ム  ム ム  ・ + 。 十  ム ム ・[巫り 十 。 十 9   β ▲

ムE皿

GGbbro

Ai†ered GqbbrQ(cq『ci†e一$erlci†e)

Al十ered Gqbbro(epido+e-chlori†e-cqlcl+e-serici+e)

BrecclQ Plpe(minerqlized)

   ム    まヤ   ペ          レ       \{1ム>      ム

ム  ム

  ムム

ρ

十 ム

                               匪

                               歴

                              ムE皿

型 ▲ 島 ム

7画   ム ム

唖 ム . ム

ム ムム

▲    ム     ム ム 4  ム

→一 ・ ▲ 9 ム

㌧、 σ 十   十   ム

し拝  .+▲。

ll・+ ・ + ・+

Il+ ・+ ・+・

ム.十 ム●十

ρ  ム

ム  ム

 し

寒魎

Andesi十e  Lqvos

    ム

ρ

、乙

ρ

ρ

レ    し    ひ

    十ム   ム

レ    十      十 !一、¥十     十

     告 r 十  、十か          ノ      ヤ

      ノ   十   ”十 一 十\・      ノ            ヤ

  + +’一+一+\・

   +み+ 一+ 一 ・    ノ  十  ●! 十  一  十  一  十

    ノ+  序一 +一 +一

  十1 一  十  一  十  一  十

  ノ!十  !   十  一  十  一  十  一

 !/

●1 十  一  十  一  十  一  十

Orebodies

:Fig.3W-E cross section of the Buena Esperanza deposit(PALAcIos and DEFINIs,1981).

一571一

Page 8: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

B麗ZZ訂’n oプ1h6σ60108∫cαZ5「μ7v召y o/1αPαn,70Z.35,1〉o.11

the Buena Esperanza deposits near Tocopilla

(LosERT,1973,19741PALAcIos and DEFINls,

1981),It is composed of at least28parallel

orebodies occurring血the Jurassic La Negra

formation(Fig.3)。Ore grade mineralization}

is confined to amygdaloid.al且ow tops of an-

desitic lavas and volcaniclastic lenses,occur-

ring as amygdule-f皿ings,thin veinlets and

disseminations.Weak mineralization extendsto massive basal parts of the lava fしows and

to the gabbroic intrusive and the breccia

pipeラwhich appear to have controlled the

site of mineralization(Fig。3)。Wallrock

alteration is not conspicuous, but deta丑ed

stu(iies by LosERT(1973)an(1PALAcIos and

DEFIMs(1981)indicate that the alteration

mineral assemblage in and near the ore-

bodies is albite-calcite-sericite-chlorite-hema-

tite,which is d迅!erent from that of regional

alteration in disapPearance of zeolites,prehn-

ite,pumpellyite and/or epidote.The Susana

deposit situated about50km south of Buena

Esperanza has similar features(EsPINozA,

1981b).

  The Los Maquis deposit near Cabildo

(CARTER,1961)is a good example of stacked

tabular deposits in calcareous sediments.It

occurs in a limestone member of the Early

Cretaceous Lo Prado formation and consists

of several tabula,r orebodies each O.5 to 3

meters thick.Orebodies are separated each

other by barren s丑tstone beds。 The Los

Maquis deposit is unique in that abundant

grossular gamet occurs as a gangue mineral

SUggeSting a COntaCt metaSOmatiC natUre Of

the mineralization(CARTERラ1961).

  Type皿3Pse翻os謝舗蓋疑o㎜団e聖osi重s

  This type is characterize(i by irregular

pseudostratiform orebodies generally obliquely

cutt血g the stratification of host rocks. Ore

minerals occur as五ne dissemination and

veinlets.Host rocks are various but most

commonly acid lava Hows and ign㎞brites。

  AtypicalexampleofthistypeistheMantos Blancos deposit near Antofagasta(Fig.4)。 Here irregular blanket-1ike ore-

bodies,each100to200meters thick,occurin the Augusta Victoria continental volcanic

formation of Late Cretaceous in age.A1-

though the volcanic sequence in the Mantos

Blancos district contains lava flows and fiow,

breccias of andesite and dacite, only the

dacitic units are mineralized (ANoNIMous,

1981)。Other examples of type III include

 E

ELVIRAPIT                     △                                     ム

rr.ノ~蹄.}、で、.級iムヘムムムムムムム

i婁コ.・・r、

400m

                                W            .MARl NA PIT △   ∠』  A    △                   OUINTA PI下

蕊簸/・鋤瓢,購驚綴薫             鰭無二鱗窪ll:響・とコ1、  7、ノー・ハ’丸!, r

      ヨコ             禦:’.∫賜ヲーゴ』艇』ヲ1※1鴛コr「「≦「 コ,.ゴ1∵』:r’』』・:耳・・※〕』』:・r∵』

・]1諮Σ早.怠ヲン鰹叢驚,            』・.〕.:1臼.・1.』漉1∵ヲ』砲’

 、=

  』・1・臼1M・’                      前ン        完          ・1鵯・1㌧一

膨     O×l DE     G、3-L7%Sol.Cu)

纒    CHALCOCITE     (1,8-2.5% lns.Cu)

匿ヨ雛盟RI臨尼YRITE「]HEMATITE(SPECULARITE)

lG・RELIMITS

                   DEE P

凶MAFICDIKES[銅INTRuSIVEANDESITE

MARi N A

「ZIR・CKC・NTACTS

慶ヨFAuLT14五]uPPERuNlT:ANDESITEFL・WANDFL・WBRECCIA

E三IMIDDLEuNIT:DACITEFL・WANDFL・WBRECCIA

E],L・WERuNIT;QUARTZ-EYEDACITE

Fig.4E』W cross section of the westem part of the Mantos Blancos deposit(after

 ANONIMous,1981).

一572一

Page 9: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

ハ4磁oTypεCOPP87Z)ερos’ごs(T。5αオo♪

Jardin and Amolanas(in Eocene rhyolitic

flows and ignimbrites),EI Soldado(in Early

Cretaceous volcano-sed㎞entaries 血clu(1ing

ign㎞brites),EI Salado (血Early Cretaceous

dacitic fiows and welded,tu廷s) and.:Lo

Aguirre(in Early Cretaceous andesites and

dacitic fbws).

  Another important feature of this type is

the presence of we11-developed alteration

halos.For example,the Mantos Blancos ore-

bodies are surroun(1ed by extensive albiti-

zation and s皿icification(ANoMMous,1981),

the El Soldado by albitization (TERRAzAs,

1977),and the EI Sala(10by siHcification and

sericitization (HuETE,1969). This is con-

trastive to other types,whose alteration is

generally very weak:.Ore mineralogy of type

IH deposits is,however,similar to that of

other types. It shoul(l be also noted that the

deposits of type III tend to have much larger

scales in terms of ore reserve and/or pro-

duction than the deposits of other types

(Table1).

4・跳亘曲面棚o置漁蜘丁脚eCo脚e翼   璽》e鯉o曲睡勲No曲s蹴翻悪o   A買e我一A盟 Ex購聖貝e⑪憂曲e量罵Re・

    蜘囎置Ge伽蜘s£臨鍔

  In an area between Cabildo an(i T皿t聾,

about50to lOO km north-northwest of San-

tiago,there is a cluster of many manto type

coPPer deposits(Figs。5a and b).Exami-nation of this area may provide basic infor-

mation for mderstanding regional geologicsetting of this type of(leposits.The following

descriptions are based mainly on THoMAs(1958),Rulz α αZ. (1965),LEvl (1969,

1970)and JICA(1980).  Ge⑪且o霧y

  The area is geologically composed of vo1-

canic-dominant sequences of more than20km in accumulated thickness and ranging

in age from Jurassic to Early Tertiary as wel

as many granitoid stocks and batholiths in-

truded in them(Fig.5and Table2)。It pro-

vi(ies a typical geologic traverse of the CoastaI

Range of the Andean orogenic belt,which

corresponds to the “eugeosyncline,,of RuIz

訂αZ.(1965)and the“magmatic ar♂ofCOIRAαα」.(1982).

  The Jurassic-Elarly Tertiary sequences are

composed mainly of intermediate and felsic

lavas,flow breccias,ignimbrites and pyro-

clastics with intercalations of limestone lenses

and clastic sediments.The Jurassic to Lower

Cretaceous units are characterized by relative

abundance of ignimbrites,and the“Middle”

and UpPer Cretaceous units by andesitic lavas

and flow breccias with subordinate felsic

Iavas and ignimbrites(Table2)。The de-

positional environment was partly mar盤1e

(predominantly shallow water)and partlyten℃strial dur血g Jurassic an(i Early Creta-

ceous, and  exclusively  terrestrial during

“Middle”Cretaceous to Early Tertiary.

  There are three major unconfomities in

this thick volcano-sed㎞entary p丑e。They are

the Pataguaunconformitybetween the Middle

Jurassic Me16n fomation and the LowerCretaceousl Lo Prado fonnation,the Peral皿o

unconfomity between the“Middle”Creta-ceous Cerro Morado fomation and the Upper

Cretaceous Las Chilcas formation,and the

Lo Valle unconfomity between the :LasChilcas formation and the Lo Valle formation

of Late Cretaceous and/or Early Tertiary血

age(see Table2).

  The plutonic rocks in the area are pene-

contemporaneous with the intruded sequences。

They are mostly tonalite and granodiorite in

composition and belong to I-type magnetite

series・ For detaHs of the plutonic rocks,the

rea(ier should refer to亙sHIHARAαα1.(1984).

   Me訟mo買幽員s㎜/Re露o囎且A艮琶e置鋤纒

   The roc:ks of the area as well as pre-Neo-

gene sequences of the Andean geosyncline in

general have been regionally altered血to zeo-

1ite to greenschist facies(LEvI,1970).The

metamorphic grade increases stratigraphicaly

downward and the isograds are essentially

parallel with bedding without any apparent re-

Iation to granitoi(i 血trusives3 the orig血al

textures of the rocks are wel preserved with-

out any intemal deformation(:LEvI,1969,1970).

一573一

Page 10: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

B那ZZε枷oμh6σθoZo9∫cαZ3薩7vεyo〃αPαn,yoZ.35,1〉o.11

  Although the above-mentioned features血dicate that the regional alteration of this

area corresponds to burial metamorphism as

described in New Zealand.(CooMBs,1960),

detaile(l stu(iies by ]LEvl (1969, 1970) re-

vealed out that the metamorphism of the

area has some unique characteristicsl that is,

though metamorphic grade generally increases

with stratigraphic depth,abrupt discontinui-

ties in metamorphic grade are observe(l

at malor unconfomities.Since there are

three unconfomities in the Jurassic to:Lower

71。15, 71。OO,  「

32。30,

32045・

D

    T「 十十q Jm  十   十  Tr

   十  uqp  十      Jq

   十   十     Jm

JgP   Jo

    十十 十   Jm

  ノノ JG       Kl

   8  JmJq

Jm

C

Jm

m

  十馴Q

   ナ’弔 +

Klp

o

Kv

       ナ十     十  十 十

  十 十    十      十

Z   ざ㎝ 『三Ka『

流一

   牛 一 く『=『

  十    一~   _

  『Kc m一

 十十

 十

Pre・e

      vn

    デ   ゴー十

    十  十

  十  十・  十

十  十  十

 十  十  十

   十  十

    十  十

     十

       十

Kl c

A,

      ミ轡14

Jm

Pzc

十   lp

 軒

 件什

 赫

  汁E 誓  伸

  朴  Pzl       P 十←+←

  +卜 琴 →十     一伸

      十   Z  十  十  十  骨    十  十  十  十 十  +

   十  +  十  十

 + チ + +

Kv

     …麺墜ミ}

  17 章る§二    へい  ヘ  ナ     ー一+疹只ρ400〈ノハ6

  + + 桑なDギ

   十  =K酷

+  十

    十十 十

 十  丁

十  十  ポ  ーT

  十   丁

十   十   丁

 十十   十

.+亀

毒+

 ’十

 十十  十

 十

Kl c

十    Klc

一Kl c

E,

 十    十      十  十十       十

     十 十 十    十 十十    十 十  十   十・

     十    十  十  十  十 十 十  十 +  +  十 十十  十 十

T

T

K l c

[QUATERNARYロコTERTIARY

匡LASCHlLCASF・RMATI・N

匡亟CERR・M・RAD・F・RMATl・N

羅VETANEGRAF・RMATl・N

懸L・PRAD・F・RMAT!・N8,

融鼎☆・・C

CRETACEOUS

巨コTRIASSIC

回PALE・Z・IC図CEN瀦A塁亀鵬聖R鴨糊ORITEe椀〕

匪璽C・ASTBA砿纏摺ALITE,ADAMEUTEetc〕

 麟 ㊤ MANTO TYPE COPPER DEPOSITS

lO  Ei SGuce

I I Los Mqquls

33。001      12け

33015,

GuqyqCGn

13  EI Soldαdo

14=Cerro Negro

15・ PQr†Qles

16  Anirnqs

17曹 El SolQdO

一』5kmFig.5a Simplified geologic map and distribution of manto type copper deposits of the north

 Santiago area(after THoMAs,1958;CARTER an(1ALIsTE,19621」亙CA,1980)。

一574一

Page 11: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

1宅ハ

1

   m     Jq

2ρOl]A++謎、噸1 \\

   ぼaOOll B Jm \

なよ吾’藍:=;r

L」 βにぶム

・三・△£

   GuqyOCGn                 Kmo     駄P

KIP      v

・v麟

臓蹴,5訣〉v\

\\

〉    〉

                         レ

〉      十 十  △ △     十 十  十 V v

KcmCerro Negro

        去ム             ム ム  ヘ  ム         〉 〉  〉   〉   〉

 ム  ム      V  〉 V   V   V

  V   〉V   △  ムム〉   V   〉

El SoldGdo  Kl嘩柳躍v〉         \       V          レ    ム               レ  心’==. 岱V   V  〉9さ譲,♂=・ △〉v v v〉

十」心’1

 〉     〉〉

  V 〉〉      V

  V 〉    V

Kmo

A『

 十  十十  十  十

  V    V〉    V    〉    〉        v

                                   ペヤゼ                             レ

 〉 〉  V   v  V 〉   V〉 〉V    〉 V    v         V  〉

  V

V

Kcm

    2ρ0〕 C

L心ヒ

Klp\\『mp\\▽     \     v    V    V     〉        V          〉          レ         レ  レ        

 v v         V   V=さ   〉〉  〉 ・;㌧※V 〉     V

       〉

竃V V    〉V   V   〉 V V    V

Kmo

    

2ρOllD Jm

V 〉  〉

   〉 V     V

  VV    V

           El SGlqdo

               \V  〉  〉    〉  V      \

 V    〉  v V       V V               V

〉〉V V 〉 〉v V 〉 V十 + 十 △ △    V  〉  V 〉      十  十  十 V                       〉              十  十  十 十                       V              十 十 十 十 十

AnimqS Klc

Klp   Kmp \ 望     \  L V    〉 〉 〉 V    レ 〉 V L      〉〉 V    L VV  〉  〉           〉     L    V V  V

 V   〉       △〉   〉   〉 V   V              

ζvV v〉冷V》   〉   V

V

Kmo

Kcm

    へ△・=    △ △  △’甲 ’・〉     △ V     △△   V     △

  △   〉      〉 〉    △  V     △    V     V

Kcm

             △    ,△十  十  十  十  十  十   △

 十  十  十  十  十     △

++

++

++

++

++

++

燕 △

Cf

D7

Por†q I e写

  △  ム  ヘ 〉  〉 〉  V△  ム  ム

   ム

  VV

B夕

L

\\

aOOL㌦什骨

      2,000  汁           弊

汁  〉

“V

L       △   △ L L L  △    」      △

〉  V

△ V △△

     レ    レ

      V  v V v   V

V  〉   V〉

 v  V       vV   V 〉  〉   〉 十   十   十

 V  V〉 V 十  十  十〉    V     V

 〉  〉v    十  十  十・

  V

        Klp                        Kmp                            \                        \     \\    〉                                   レ                          ペ     へ        △ 〉             〉       △ 〉 〉v〉 △

奪〉蕪慧△さv死悩儀〉△vご〉△A会〉さ難

 v       V                                                VV      △                                〉 〉  VV

→十   →十

 イ十    〉

Kmo

 v           \〉    V            \ レ          V   〉 v V   〉 V         合』   v V     V  〉

 へ      〉       〉〉    △

 v

 十V 十〉

 十

▽〉

〉モ瀬v++

       十

Klc

      へ       〉    △十△ △v 〉  △

    △    V  〉     へ    V十 〉     〉

E’

  ▽:Mqn十〇十ype deposi十s

  Kic;Lqs Chilcqs FormQ十ion

  Kcm:CerrQ Morqdo Formα十ion

  Kmo:Ocoq Member of†he      Ve†αNegrαFormq十lon

  Kmp:Purehue Member of十he      Ve十q Negrq FormG十ion

  Klp’1Lo Prqdo Formq十ion

  Jm:Mel6n Formq†ion

  Jq:AjiGl Formq†ion

~Shqle

園r

      Sqndsfone qnd/or      conglomerG十e

巨廻Limes+・ne

圖賭1灘e贈y

圏      Ignimbri†e

区コ糠i艀,(離)

匝コ♀蹄臓ni+。id

圓      PGleozoic grQni†oid

Fig.5b Cross sections along A-A’to E-E,1ines in Fig.5a).

ミ§む

碧聴

9寒ミ

b電禽駄o

へs象む)

Page 12: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

B配ZZε伽oμh6GεoZo9εcαZS㍑7vεyo∫1αP偽γoZ.35,1〉o.11

Table2 Stratigraphic relations and lithologies of Jurassic to Early Tertiary formations of the

 Coastal Range of Central Chile(modi且ed from LEvI,1970).

STRATIGRAPHIC AGE THICK一目THILOGY AND DEPOSIT【ONAL ENVIRONMENT

UMT NESS

の⊃ >

o」L』匡 >rOく α:く LI Andesitic pyroclastic rocks,mostly ignimbrites,and lavas,

LO VALLEFORMATION

   くト   _LI  l一  匡α二   α=

o O]600m partly brecciated;mmoracid pyroclastic rocks,mostly [gnl-

mbrites;lacustrine,fluviati『e and mud flow deposits,partly

 \1-  oし」

 z

Iahars.

トく く一 乙0 幽乙乙ε σ1VOOIVFOR〃17γ

  LAS

 CHILCASFORMATlON

の⊃o国oくト]

2600 to

Mostly 刊uviatile and mud flow(in part lahar) deposits;

subordinate brackish-water sediments、 Andesitic lavas

partiy brecciated, and subordinate andesitic  pyroclastic   =

PERAUしLO匡o 7000m rocks l scarce acid ignimbrites.

STRATA ]トく一 ρだR,4乙ノL乙O U〈〆00〈〆FOR〃17》!

一皿一’♂’一〃NOVICIADO の

MEMBER ⊃o

= 山 Brecciated andesitic lavas and clastic rocks,mostly mudZO一

CERRO oく

fIows (probably lahars);subordinate acid [avas.

トく

MORADO ト]

Σ匡

FORMATlON 匡o

oL

=ω

5500

( OCOA 」o

to Andesitic iavas,partly brecciated;scarce acid ignimbrites

にσ国Z

MEMBER o一Σ=

7500m and continental ciastic rocks,mostly mud 刊ows (probablyIahars)∂ndlacustrinedeposits.

く」■]> PUREHUE

MEMBER

o↑>」匡く国

Andesiticiavas,partIybrecciated,andcontinentalclastlcrocks,mostIy lacustrine and deltaic deposits;subordinateacid ignimbrites and mud flows (probably [ahars)

ZOFくΣ

LO PRADOFORMATION  S.S.

ω⊃o]

700 to

l500m

Acid pyroclastic rocks,mostly ignimbrites and brecclated

lavas;marIne near-shore clastic rocks and limestones;conセinentalfluvidtileand/ordeltaicsedimentslsubordinatgandesitic Iavas

匡O」 PACHACAMA

Qくト O to Acld ignimbrites and lavas,and continental clastic rocks;

oFORMATlON 国

匡o

1000m subordinate  andesitlc  lavas.

Oく匡 > Marine clastic rocks,partly turbidites,and subordinate(ユ PATAGUA 」

匡 2000m marlnechertsandlimestQnesl subordinateacidignimbri一

oFORMATION く

国 tes and andesitiC lavas.

」 PA払G崩 捌00解OR〃’7γ

ZOFく

FORQUETA〇一ωωく

Continental clastic rocks,mostly mud fIows (probabIy

lahars)and fluviati[e sedimentsl andesitic lavas,most【yΣ MEMBER 匡 brecciated,and acid ignimbrites.匡O」

⊃「

2100 to

Z、o NOGALES

]Jo

5500mAcid ignimbrites,and marine near-shore ciastic rocks

」]Σ

MEMBERo’

一Σ

and [imestones.

AJIAL

O   o←u」あ  」   の

750 Acid ignimbrites,very subordinate andesitic brecciated

FORMATlON>一〇 く一 〇 α=

巽……ヨ

 to

l300mlavas,and marine hear-shore clastic rocks and Iimestones.

QUEBRADA   o  一>・(ノ》

」 の300 Marine clastic rocks and limestones;minor acid

DEL POBREFORMATlON

匡くく に国 ⊃

  「

 to

Iゴ50mignimbrites and scarce andesit1c lavas.

PRE-JURASSIC BASEMENT

Page 13: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

ハ4αnオo TyρεCoρρε7D8pos髭s(T,S伽o♪

Tertiary formations in this area(see Table2),

four metamorphic series are recognセed in

them;∫.ε.,one below the Patagua unconformi-

ty,one between the Patagua and the Pera1皿o

unconformities,one between the Pera1虹10and

the Lo Valle unconformities,and the last

above the Lo Valle unconfomity。Amongthese the丘rst two range from prehnite-pump-

eUyite facies at the top to greenschist facis3t

the bottoml the third series in the Upper Cre-

taceous formations ranges from zeolite facies

to prehnite-pumpellyite facies in most places

with local occurrences of greenschist facies

at the bottoml and the last series in the

Upper Cretaceous and/or Lower Tertiaryformation is of zeolite facies throughout.

  LEvl (1969) also noted that,血 a s血91e

lava flow unit,the non-amygdaloidal base is

relatively unaltered,whereas the amygdaloidal

top is strongly altere(1. This suggests that

deuteric action has played an important role

in the burial metamorphism in this area,

which is supported by considerable changes

in chemical composition du血g metamor-

phism(LEvI,19741CHAvEz an(1NIsTERENKo,

1974) an(l presence of ve血ets conta血ing

calcite,zeolites, epidote, etc.in the altered

rocks (LEvI,1970).

  ⑪置e恥卿s亘重s

  The north Santiago area is one of the

richest area of the manto type coPPer de-

posits.JICA (1980)1isted up about30deposits in the area(Fig.5),of which major

eight are shown血Table L

  Stratigraphic horizons of the host rocks

range from the Lo Prado to the LasChilcas formationsl no deposits are known

in the Jurassic formation or the Upper Cre-

taceous and/or Lower Tertiary:Lo Valle

formation(see:Fig5).The deposits occurin various host roc:ks such as lavas,ignim-

brites,flow breccias,volcaniclastics,calcare-

ous shales and limestones。Their shapes and

modes of occurrence are also various㎞.clud_

・ing aU the three types mentioned earlier.

  There is no apparent regional control on

the site of mineralization.Although smal1

量ntrusive bodies, faults and/or stratigraphic

horizons apPear to have locaHy controlled

mineralization in some places(CARTER,19611

HuETE,19691TERR.AzAs,19771JICA,1980),regional distribution of the deposits in this

area are not related to any particu1&r strati-

graphic horizons,depositional environment of

host rocks or plutonic bodies.

5。亘》量s鐸ss量翻s

  Ge鵬es量s

  An exhalative sedimentary orig㎞seems to

be favoured by some Ch且ean geologists for.

the manto type coPPer deposits(ε.9。,Rulz

8∫αZ.ラ1971∋CAMus,1980;EsPINozA,1981a)。

However these authors have failed to present,

nor has the present author could observe

in the fie1(i,any deHnite proof for the syn-

genetic orig血 of 血e deposits。 For instance

synsedimentary and other features character-

istic to volcanic-hosted or sed㎞ent-hos、ted

massive sulfide deposits,for which syngenetic

origins are almost unanimously accepted,are

completely lacking in the manto type de-

posits.The following discussions will there-

fore be made under a working hypothesisthat the Chilean manto type copper depos玉ts

are of epigenetic orig豊n.

  In consideration of the mineralizing pro-

cesses of the manto type deposits,the fo1-

10wing characteristics of the deposits are

㎞portant:

1) The mineralization occurs in varioushorizons in Jurassic to Eocene volcano-sedi-

mentary sequences of marine and continental

origins.

2) The mineralization took:place most fa-

vourably in porous rocks such as amyg(1aloi-

dal lavas and volcanic breccias or in chemi-

cally weakl rocks such as calcareous beds.

3) The site of mineralization is localy con-

trolled in many cases by faults and in some

other cases by intrusive bodies.

4) Except for type III,there is no(listinct

wallrock&1teration near the orebodies,but

the host volcano-sedimentary pile is exten-

sively altered by diagenetic or burial meta-

morphic processes.

一577一

Page 14: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

β尻IZ8だn oノ孟hθσεolo9∫cαZ S配7vθy o∫1αραn,70Z.35,1〉o.11

5) The ore mineralogy is characterized by

assemblages of low sulfur to metals ratios。

6) Calcite is the only common ganguemineraL

  Many of these features suggest that the

mineralization is(ie且nitely of hy(1rothermal

origin,but the lack of distinct wallrock alter-

ation might indicate that the responsible Huids

did not posses very different chemistriesl nor

temperatures from those of comate or meta-

morphic waters that must have been in equi-

1ibrium with the regionally altered host rocks.

  NlsTERENK:oααZ。(1973)reported且11ing

temperature of Huid inclusions from some

manto type deposits.In the Buena Esperanza

deposit,且ling temperatures of inclusions in

calcite from the ores range from650to195。C,which are almost the same with those

in authigenic calcite and quartz from andes-

ite stratigraphically far below the mineralized

horizon。This suggests that the mineralizing

Huid had similar temperatures to comate or

metamorphic waters。It is also suggestedfrom these temperature data that the gabbroic

intrusive at Buena Esperanza(see Fig.3)did

not act as a source of the mineralizing Huid

nor heat.

  In contrast,五11ing temperatures of inclu-

sions in amygdule-f皿ing quartz from the El

Salado deposit belonging to type III are very

high ranging from273。to430。C,and halitecrystals were observed in the inclusions sug-

gest血g high salinities of the inclusion fluids

(NlsTER.ENKoεωZ.,1973).At El Salado,a

granitic intrusive is intruded underneath the

ore deposit. It is conceivable that the 血_

trusive provided heat or possibly the miner-

alizing 且uid itself responsible for the for-

mation of the EI Salado deposit.The same

may apply to other type III deposits which

are spatially in close association with gran-

itoid intrusives and surrounded by wel-

developed alteration halos.

  As to the source of mineralizing Huids,

information is too scarce to draw any con-

clusion・However it apPears very suggestive

in considering the fluid source that the host

rocks underwent advanced burial metamor一

phism,and that the alteration and gangue

mineralogy is essentially the same with that

of the metamo甲hosed host rocks except for

some type III deposits・

  As cited earlier,LEvI (1969, 1970)

demonstrated that the burial metamoq⊇hism

in the north Santiago area took place re-

peatedly.The manto type copper deposits in

this area are confine(i to the sequences that

underwent prehnite-pumpellyite to greenschist

facies metamorphisml none is present in the

Lo Valle formation that has suffered only

zeolite facies metamorphism。

  It is suggested here that metamorphic

water produced by dehydration processes of

prehnite-pumpellyite and higher facies meta-

morphism is one of the most plausible candi-

dates for the mineralizing fiuid responsible

for the Chilean manto type copper deposits。

  S囎ce⑪昼c⑪齢e置  If it is correct that the mineralizing Huid is

of metamorphic origin,the source of copPer

is most likely the host volcano-sed㎞entary

rock:s.Trace element geochemistry of the

Chilean  volcanics have been  studied  by

CHAvEz and NIsTERENKo(1974),ZENTILLI(1974),CAMPANo an(1GuERRA(1975)andPALAclos (1978). S血ce aU the Jurassic an(1

Cretaceous,volcanics have been more or less

altered』,the samples analyzed by these authors

include“little altere(i”rocks.

  CHAvEz and NlsTERENKo(1974)analyzed

Cretaceous andesites from some localities of

the Coastal Range and foun(1that their coP-

per contents vary considerably from place to

to place。It is noteworthy in their data that

the andesites of the Arqueros formation,

which underlies the Talcuna district,contain

anomalously high copper averaging256ppm.

  ZENTILH(1974)studied geochemistry of

Jurassic to ,Quaternary volcanics along a

latitudinal section between26and29degrees

south.Although some elements such as Yexhibit systematic variations along the sec-

tion,coPPer shows no regular pattem.By

comparing the Chilean volcanics with the辻

equivalents in the Circum-Pac坦c belt,he

found that coPPer is slightly higher in the

一578一

Page 15: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

ハ4αnオo TyρεCoρρ87Dεpos∫1s(T。5碗o)

Chilean rocks but when only andesites are

compared Chilean andesites are lower in

copper.However,although he did not note,

his analytical data seem to indicate that the

coPPer contents of the Chilean andesites vary

with age.For example,the Jurassic andes-

ites contain90to375ppm Cu whne theNeogene andesites contain10to32ppm Cu。  Geochemistry of the Jurassic volcanics was

studied血deta最by CAMPANo and GuER.RA(1975) and PALAclos (1978). PALAclos(1978) (iivi(ied the Jurassic basalts and an-

desites of the La Negra formation in northem

Chile into tholeiitic,calc-alkaline an(i alka1血e

suite,and reported the廿average copPer con-

tents as66ppm(SiO2ニ55。4%),113ppm(SiO2=・57.8%)and72ppm(SiO2=55.6%),

respectively.Ee also compared the Jurassic

calc-alkaline suite with the Ceneozoic qua,rtz-

1atiandesites from the Central Andes andfound that the former is much higher in cop-

per than the latter(44ppm),again suggest-

ing an apParent (iecrease of coPPer content

with age。

  Geochemistry of the altered or meta-

morphosed volcanics as compared with that

of ‘‘fresh” equivalents has been  studied

by LosERT  (1973, 1974), CHAvEz  an(i

NIsTERENKo(1974)and LEvl(1974).A且of these authors have noticed that copper was

highly mobile during regioml alteration or

burial metamorphism.They are in generalagreement with that copper as well as sulfur

is depleted to a considerable degree in the

altered rocks especially in epi(iotized rocks.

  JoLLY(1974),in his study of the Michi-

gan native coPPer district,showed that copPer

was leached from epidotized or more highly

metamorphosed rocks in the zone of de-

hydration,percolated upward to lower tem-

perature levels,and was precipitated 血 the

zone of hydration where pumpellyite,preh-

nite laumontite and chlorite are the principal

hydration minerals.This model can be rea-

sonably aPPlied to behaviour of coPPer in

the metamorphosed rocks of the Andeangeosyncline, an(i also to the genesis of the

Chilean manto type copper deposits.

  The ava皿able analytical data in the litera-

tures cited above seem to suggest that some

major districts of the manto type coPPer

deposits are un(ierlain regionaly by thick

volcanic sequences that are primar虹y rich in

copper。The Antofagasta-Tocop皿a district in

the Jurassic volcanics and the Talcuna dis-

trict underla㎞by the anomalously copper-

rich Arqueros formation are such examples.

  Combining the above discussions together,

the Chilean manto type copper deposits may

be concluded to be burial metamorphic or

diagenetic-hydrothermal in origin.Some type

III deposits may have been affected by local

high-temperature convection cells caused by

granitoid intrusives,which might have also

provided mineralizing fしuids and coPPer at

least partian.y.

  Other coPPer deposits of s㎞i【ar orig血

are those of the Michigan native copper

district,U.S.A.,which are associated with

the subaerial Keweenawan basalts.Accord一血g to JoLLY (1974), copPer sulfi(ies a.re

rare in the Keweenawan rocks,because sulfur

is oxidized to SO2gas in subaerial environ-

ment an(l escapes into the atmosphere be-

fore solidification. In contrast,the Jurassic

to Cretaceous volcanics of the Andean geo-

syncline contains a signi且cant proportion of

subaqueous volcanics which were erupted

under shallow marine or continental lacus-

trine environments.CHAvEz an(l NlsTERENKo

(1974)estimate that68to83%of the cop-

per in the“fresh”Cretaceous andesites from

Chile is present as sulfides probably in the

form of magmatic su1丘de globules。It is likely

that these magmatic su1且des are the dominant

source of both copper and sulfur in the manto

type deposits。This may explain the lowsulfur/metal ratio of the manto type deposits,

because sulfur/metal ratios of magmatic su1-

fide globules are generally low(CzAMANsKE

andMooRE,19771SKINNER and:PEcK,1969).

  In conclusion,advance of burial metamor-

phism to prehnite-pumpellyite or higher

facies 血 coPPer-rich, subaqueous volcanics

is suggested to be the necessary factor for

the formation of the manto type copper de一

一579一

Page 16: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

鷹皿F一司

BμZZα’n o∫オh6σε0108∫cαZ3μ7vεy o/1αραn,ヨVoZ.35,ハ70.11

posits.Accumulation of thick eugeosync1五nal

P虹es contain血g abundant coPPer-rich vol-

canics in the Andean geosyncline during the

Jurassic to Cretaceous times and repeated

burial metamorphism having taken place in

them may explain why the Ch丑ean Coastal

Range forms a unique卑etallogenic province

characterized by this peculiar type of coPPer

deposits。

Aek皿ow畳e調geme醜s31wish to acknowledgethe excellent field guide and warm hospitality

provided by Dr.Carlos ULRIKsEN G.andML Hisashi:KAMoNo duringmy stay in Ch五e.

Special thanks are due to Dr.Femando

HENRIQuEz,who intruduced me to publi-cations and university reports written in Span-

ish,and Mrs.Minoru SuMITA and Hisashi

KAMoNoラwho generously allowed me to have

access to their unpublishe(i data.

Re置eπe亘且ees

ANoNIMous(1981)Mantos Blancos.ル伽∫n8ハ4αg.,

      vo1。147,P.458-471.

CAMPANo,P.and GuERRA,N.(1975) Distribuci6n

      de Cr,Ni,Co,Cu,Zn y Pb en Rocas Igneas

      y Sedimentares del Norte de Chile.Thεsls

      sめアn漉θ41o LαUn∫vε7s∫磁44ε1〉oπ8,61P.

CAMus,F。(1980) Posible modelo gen6tico para

      los yacimientos de cobre del distrito minero

      Punta del Cobre. Rεv∫s∫α G60Z.Ch∫」ε,no.

      11,p.51-76.

CARTER,W,D,(1961)Yacimientos de cobre tipo

      manto.1nsム1nvεsオ.GεoZ.Ch∫1ε,Bol顔n,

      no,10,30P.

        an(1ALlsTE,N.(1962) Cua(1rangulo

      Me16n。 1nsオ.1nvεs∫.G801.,unpub.rep.

CHAvEz,L an(i NIsTERENKo,G.(1974) Algunos

      aspectos de la geoqufmica de las andesitas

      de Chile.In KLoHN,E.ed.,Colo9μio soゐ76

      F6n67nεnOS48!伽7α016nyMε薦溺07万S解0

      εnRo6αS70ZO4n’σαsyln!7泥S’VαS,PεP.

      GεoZ。,Un∫v。4εCh’Z6,PめZ.,no.41,p.97-

      127.

CoIRA,B。,DAvIDsoN,J.ラMPoDozIs,C.and RAMos,

      V。(1982) Tectonic and magmatic evolu-

      tion of the An(les of Nortem Argentina and

      Chile。 Eαπh So∫.R8v.,vo1.18,P.303-332.

CooMBs,D.S.(1960) :Lower grade mineral facies

      in New Zealand. 211h ln1θ7nα∫. G召oZ.

      Con87.,ハ70748n,part 13ラp.339_351.

CzAMANsKE,G.K.and MooRE,」.G.(1977)Com-      position an(i phase chemistry of sulfide

      globules in basalt from Mi(i-Atlantic rift

      valley near37。N lat.GθoZ.Soo.!4nz。Bμ〃.ラ

      vo1.88,P.587-599。

EspINozA,S。(1981a) Volcanismo y metalog6nesis,

      una introducci6n al tema.In!誕惚s4θ1ε7.

      CoZo卿030わ7ε7010αn∫sn¢oyM磁lo96nθ一

      s∫s。 Dep.Geociencias,Univ。del Norte,

      p.16-27.

        (1981b) Esbozo metalog6nico(1el dis-

      trito Carolina de Michlla,II Regi6n,Chile、

      InZo1α34θ1ε7.Colo卿osoゐ78アolcαn一

      ∫sηzo y ハ4ε観096nθsis,Dep.Geocienciasシ

      Univ.del Norteンp.71-81.

HuETE,C.(1969) Geologfa del Distrito Minero

      de Catemu y de la Mina EI Salado.Dεp.

      σεoc∫6nc∫α,Un∫v.4召Ch∫1召,43p.

1。1.M.Ch。(1980)  Lα ハ4∫nθ76α 8n Chilε. Inst.Ing.

      Minas Ch且e,131p.

IsHIHARA,S.,ULRnζsEN,C.E.,SATo,K.,TERAsHIMA,

      S.,SATo,T.and ENDo,Y.(1984) Plutonic

      rocks of North-Central Chile. Bz6〃.σε01.

      Sμ7v.∫opαn,vo1。35,p.503-536.

JICA(1980) R6ρoπo∫P701εo13祝7v6y onハ4∫nθmZ

      Rεso〃768s ∫n 1h8 弼V6s1 Sαn!如go !歪78α. Ja-

      pan Intem.Cooper&tion Agency,47p.(in

      Japanese)。

JoLLY,W.T.(1974)Behavior of Cu,Zn,and Ni

      during prehnite-pumpellyite rank metamor-

      phism of the Keweenawan basalts,northem

      Michigan.E60n。σ601.,vo1.69,p,1118-

      1125.

KAMoNo,H.and BoRI6,R.(1982) 1nvεn艀∫o PoZか

      n1α41∫oos y Es魏4’0 σ60」68∫co D∫S!7∫10

      ハ4∫nε70 TαZc麗nα. CORFO-AM亙 82/14,

      145p.

LEvl,B.(1969) Burial metamorphism of a Cre-

      taceous volcanic sequence west from San-

      tiago, Chile. Con∫7. ハ4’nε7α1. Pθかol.ラ vo1.

      24,p.30-49.

        (1970) Burial metamorphic episodes in

      the Andean geosyncline,Central Chile.

      σεol.Rz4n4schα配, vo1.59, P.994-1013.

        (1974) Variaci6n de algunos elementos

      en trazas (iurante la alteraci6n regional de

      coladas andesiticas del Cretacico Medio en

      Chile. In KLo正【N,E.ed., CoZo(1躍o soわ76

      Fθn6〃3θnOS48!伽7α0∫61ηMε孟㈱07戸S襯0

      6n Rooαs IVolo4n∫cαs y lnか麗slvαs, Dep.

      Geo1.,Univ。de Chile,PubL,no.41,p.129_

      137.

一580一

Page 17: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

ハ4傭oTypεCO迎θ7Dθpos’孟s(T。3αオo)

LosERT,」.(1973) Genesis of Copper Minerali-

  zations an(1Associated Alterations in the

  Jurassic Volcanic Rocks of the Buena Es-

  peranza Mining Area.D8p.GεoZ。,Un∫v。

  4ε Ch’」ε,Pub1.,no.40,64P.

   (1974) Alteration and associated cop-

  per mineralization in the Jurassic volcanic

  rocks of the Buena Esperanz&mining area

  (Antofagasta province,northem Chile).In

  KLoHN,E.ed.,CoZo(~躍o so67εFεn6η2εnos

  48!位87α0∫6nyハ4伽7no7ガS7noεnRoOαS  70Zc4n加s y ln枷3∫vαs,Dep。Geo1.,Univ.

  de Chile,Pub1.,no。41,P。51-85.

McNuTT,:R。H:.,CRocKETラ」.H.,CLARK,A.H。,

  CAELLEs,J.C.,FARRAR,E.,HAYNEs,S.J.

  and ZENTI皿,M.(1975)Initia187Sr/86Sr  ratios of plutonic an(1volcanic rocks of the

  central Andes between latitudes26。and  29。 south. Eαπh PJαnε1. So∫. Lεπ., vol.

  27,p.305-313。NIsTERENKo,G.V.,LosERT,」.,CHAvEz,:L,and

  NAuMov,V.B.(1973) Temperatums y  presiones de formaci6n algunos yacimientos

  cupriferos de Chile. R8vな厩 σ80Z。 Ch∫1θ,

  no.1ラP。74-84.PALAclos,C.(1978) The Jurassic Paleovolcanism

  in Northern Chile. D∫ssθπαだon s泥わη¢〃1ε4

  ガo EZ》67hα74-1ζα71s-Un∫vε7s1δ∫ z麗 丁撹7∫ng6n,

  99P.   and DEFINls,A.(1981) Petrologfa del

  yacimientos Buena Esperanza,II Regi6n,

  norte en Chile. In.4ααs4ε1ε7.CoZo(1μ’o

  soわ76 70Zoαn’s配o y ハ4ααZo96n8s∫s,Dep.

  Geociencias,Univ.del Norte,p.48_67.

RuIz,C.F.,AGuIRRE,L.CoRvALAN,」.,KLoHN,C.,

  KLoHN,E.and LEvl,B。(1965) G80Zo9毎

  y y’αo∫n¢∫ε1π03 ハ48‘αZ6∫ε70s 4θ Ch∫Z8. Inst,

  Inv.Geo1.Chile,305P.Rulz,C.F.,AGu凪RE,A.,EGERT,E.,EspINozA,W。,

  :PEEBLEs,F.,QuEzADA,R。and sER踏No,  M. (1971)  Strata-boun(1 coPPer sulphide

  deposits of Chile. 300.ハ4∫n∫ng σεo乙 1α一

  Pαn,Spεo.1s5μθ,no.3,P.252-260。

RuTLAND,R.W.R.(1971)Andean orogeny and sea

  floor spreading. 1〉α∫z678, vo1.233, P。252-

  255.SHIBATA,K.,ULRIKsEN,C.E.an(11sHIHARA,S.  (1984)  Rb-Sr ages an(1 initia1 87Sr/86Sr

  ratios of late Paleozoic granitic rocks from

  northemChile.飾〃.GεoJ.5『κ7v.1叩αn,

  voL35,P。537-545.SKINNER,B.J.and PEcK,D.L.(1969) An im-

  miscible su1五de melt from Hawaii.Eoon.

  G80Z.ハ40no97.,no.4,P.310-322.

TERRAzAs,R.(1977) PetrograffaンAlteraci6n Hi-

  drotermal y Mineralizaci6n del Yacimiento

  Cuprifero EI Soldado,Provincia Valparaiso,

  Chile.Thθs∫s5めnτ漉ε41o Un∫v.4θCh∫1θ,

  100p。THoMAs,H。(1958) Geologfa de Ia Cordillera de

  la Costa entre el Valle(1e la Ligua y la

  Cuesta de Barriga. 1ns1.1nv6s1.σ801.Ch∫18

  Bo1.,voL2,86P.UYEDA,S・and KANAMoRI,H.(1979) Back-arc  opening an(l the mode of sub(1uction. 10κ7.

  G60ρhy3,R8s.,vo1.84,P.1049-1061.

ZEN皿H,M.(1974) Geological Evolution and

  Metallogenetic Relationships in the Andes

  of Northem Chile between26。 and 29。  South.Th6s∫s sめ溺漉64∫o g房θ6n’s Un∫v.,

  349P.

チリ国のマント型銅鉱床

佐藤壮郎

要  旨

チリの海岸山脈地域には,ジュラ紀から第三紀前期の火山岩に富む地層を母岩とする多くのマント型

銅鉱床を産する.鉱床はアミグデュールに富む溶岩あるいは火山角礫岩を母岩とすることが最も普通で

あるが,石灰岩を母岩とすることもある.主要な鉱石鉱物は,黄銅鉱,斑銅鉱及び輝銅鉱であり,黄鉄

鉱,赤鉄鉱,磁鉄鉱を伴う.母岩の変質は一般に非常に微弱である.

文献等により鉱床及び母岩の産状,地球化学的特性,鉱物組成などを検討した結果,埋没変成作用の

進行により放出された変成水により鉱床が形成されたことが示唆される.初成的に銅に富む火山岩を多

一581一

一」

Page 18: c踊le - Geological Survey of Japan / AIST · 2013. 5. 14. · Bulletin of the Geological Survey of Japan,vo1.35(11),p.565-582,1984 553.43:553.21(83) M我囎危o

       β配1Zα’n o/1h8σεolo8’【:αZ Sμ7v8y o11σPαn,レ「oZ.35,2〉o.11

量に含む地層が,アンデス地向斜に厚く堆積したことが,チリの海岸山脈地域がマント型銅鉱床で特徴

づけられる特異な鉱床生成区を形成している理由であろう.

(受付:1984年9月12日1受理:1984年10月1日)

一582一