CE222 SM 09 Soil Permeability

download CE222 SM 09 Soil Permeability

of 47

description

Soil MechanicsBasics

Transcript of CE222 SM 09 Soil Permeability

  • SoilMechanicsICE222CE 222

    WaterinSoil:Permeability

    1

  • Flowofwaterthroughsoils 2

    Thestructureofthesolidparticlesinanysoilwillalwayshavevoids.Thesevoidsprovidethewaterandairwithcontinuouspaths of flowpathsofflow.

    Theflowwillaffectboththestructureandstabilityofthesoilmass. For example, the flow of water through an earth dammass.Forexample,theflowofwaterthroughanearthdamwilleventuallycreatelargerandlargerpaths,muchlikepipes,thatcouldeventuallyleadtothecollapseoftheentirestructurestructure. Loosesoil Densesoil

    water

  • Flowofwaterthroughsoils 3

    Th t d f th b h i f th fl f t d Thestudyofthebehavioroftheflowofwaterandairthroughsoilsisofgreatimportanceinthefieldofsoil and rock mechanicssoilandrockmechanics.

    Ingeneral,therearetwogeneralconditionsofflow: Steadystate,and Transientflow.

  • Steadyandunsteadyflow 4

    Thetermsteadystateconditionmeansasystemhasreachedequilibrium.

    In groundwater analyses it means the flow pattern has been established Ingroundwateranalyses,itmeanstheflowpatternhasbeenestablishedandisnotinprocessofchanging.Thisconditioniscalledsteadyfloworsteadystateflow.

    Theunsteadycondition(ortransientcondition)existswhensomethingisinprocessofchanging.

    During unsteady flow pore water pressure groundwater table location Duringunsteadyflow,porewaterpressure,groundwatertablelocation,flowratearechanging.

  • Steadyandunsteadyflow 5

  • Formsofwaterinsoils 6

    Adsorbedwaterinclays

    Vapormoisture

    Flowing ground waterFlowinggroundwater Permeability

    Seepage studies Seepagestudies

    Capillarymoisture

  • Hydrologicalcycle 7

    Hydrologyisthestudyofwatermovementsacrosstheearth.Itincludesassessmentsofrainfallintensities,streamflows,andlakewaterlevels,knownassurfacewaterhydrology,aswellasstudiesofgroundwater,knownasgroundwaterh d l h i f d ll d h d l i lhydrology.Thevariousmovementsarepartofgrandprocesscalledhydrologiccycle.

  • Groundwater 8

    Subsurfacewatermaybedividedintotwosections:

    Theportionbelowthegroundwatertableiscalledthephreaticzone.Thiswaterissubjectedtopositivepressureasaresultoftheweightoftheoverlyingwater.Mostg y gsubsurfacewaterisinthephreaticzone.

    The portion above the groundwater table is called theTheportionabovethegroundwatertableiscalledthevadosezone.Thiswaterhasanegativepressure,andisheldinplacebycapillaryactionandotherforcespresenttin the soilinthesoil.

  • Aquifersandaquicludes 9

    Sandandgravelscantransmitlargequantitiesofgroundwater,knownasaquifers.Claystransmitwaterveryslowly,knownasaquicludes.Intermediatesoils(suchassiltysand)passwaterataslowtomoderateratearecalledaquitards.

  • Artesianandsurficial springs 10

    Artesiansprings/wellsarewellsthatflowundertheirownpressure.Theserequireaslopingpermeablelayerofrock(Aquifer)witharecharge zone higher than the wellrechargezonehigherthanthewell.

  • Confinedaquifer 11

    Confinedaquifer: Awaterbearinglayer,overlainandunderlain by far less permeable soils

    Waterlevelinaquifer standpipe

    underlainbyfarlesspermeablesoils.

    Clay,silt

    x

  • BernoullisEquation 12

    Zvuh2

    ++= Zg

    hw

    2

    ++PressureTotal Velocity ElevationPressurehead,hp

    Totalhead,h

    Velocityhead,hv

    Elevationhead,hz

    BernoullisequationwasnamedaftertheSwissmathematicianDanial Bernoulli(1700 1782).

  • BernoullisEquationApplicationtosoilandrock

    13

    Theenergyofafluidismade of:madeof:

    Kineticenergy duetofluidparticle

    velocity

    Strain energy due toZ

    Strainenergyduetopressure

    P t ti l dDatum

    Potentialenergyduetoelevationwithrespect to datumrespecttodatum

  • 14BernoullisEquationApplicationtosoilandrock

    Expressingenergyinunitoflength:

    Velocityheadfluidparticle

    Total head =

    +

    PressureheadZ

    Totalhead+

    Elevation headDatum

    Elevationhead

  • 15BernoullisEquationApplicationtosoilandrock

    Forflowthroughsoils,velocity(andthusvelocityhead)isverysmall.Th fTherefore,

    Velocityheadfluidparticle0

    Total head =

    +

    PressureheadZ

    Totalhead+

    Elevation headDatum

    Elevationhead

    Totalhead=Pressurehead+Elevationhead

  • Fieldinstrumentation 16

    Anopenstandpipepiezometer consistspiezometerconsistsofaperforatedpipeinstalledinaboring

  • 17Hydraulicgradient

    Atanypointwithintheflowregime: Pressurehead=porewaterpressure/wp p /w Elevationhead=heightabovetheselecteddatum

    H dra lic gradient i bet een A and B is the total Hydraulicgradient,i betweenAandBisthetotalheadlossperunitlength.

    AB

    BA

    lTHTHi = water

    ABl

    A BlengthAB,alongthestreamline

  • Hydraulicgradient 18

    Pi t iPiezometricheads

    Hydraulicgradient,i

    A

    B

  • Effectofhydraulicgradientonvelocity 19

    Inmostsoils,theflowofwaterthroughthevoidspacescanbeconsideredlaminar,thusv i

  • Darcyslaw 20

    In1856,Darcypublishedasimpleequationforthedischargevelocityofwaterthroughsaturatedsoils,whichmaybeexpressed asexpressedas

    kiv =where v = dischargevelocity,whichisquantityofwaterflowing

    inunittimethroughaunitgrosscrosssectionalareaof soil at right angle angles to the direction of flow.ofsoilatrightangleanglestothedirectionofflow.

    k = hydraulicconductivity(alsocalledcoefficientofpermeability)pe eab ty)

    Theactualvelocityofwater(i.e.seepagevelocityvs)throughthevoidspacesisgreaterthandischargevelocityv(seenextslidep g g y (fordetails).

  • Dischargevel.v&seepagevel.vs relation21

    svvAAvq == sv AAA +=( ) AAA + l( ) svsv vAvAAq =+=( ) ( ) ( ) V

    VvVVvLAAvAA s

    v

    svsvsv

    ++++ 1

    vs:seepagevel.

    ( ) ( ) ( ) vVVV

    vVVLA

    vA

    vv

    s

    v

    s

    v

    sv

    v

    sv

    v

    svs

    ====ve + 11 Vs nvv

    nv

    eevs =

    =

    += 11

    nvvs =

  • ExampleExample Waterflowsthroughthesandfilterasshownbelowbelow

    The cross sectional area & length of the soil mass Thecrosssectionalarea&lengthofthesoilmassare0.250m2 &2.00m

  • The hydraulic head difference is 0.160 mThe hydraulic head difference is 0.160 m The coefficient of permeability is 6.90x10-4

    m/sm/s Determine the flow rate of water through

    the soilthe soil

  • S l tiSolution

    From previous equation= kiq

    0800.0m002m160.0 ===

    Lhi

    q

    )m250.0)(0800.0)(m/s1090.6(m00.2

    24=qL

    /sm1038.1 35=

  • E lExample

    In a soil test, it took 16.0 min for 1508 cm3of water to flow through a sand sample

    The cross-sectional area was 50.3 cm2 The void ratio of the soil sample was 0.68.p Determine The velocity of water through the soilThe velocity of water through the soil

    (apparent velocity)Actual velocity/ Seepage velocity

  • S l tiSolutionol me / time * area

    /03120i/8741

    v = volume / time * areav = 1508 / 16.0 * 50.3

    )1(cm/s0312.0mincm/8741

    +===

    evv

    .

    /07710)68.01)(cm/s0312.0( +=actual ev

    cm/s0771.068.0

    ))(( ==actualv

  • Hydraulicconductivity 27

    Thehydraulicconductivity,k,inDarcysLawdescribestheeasewithwhichacertainliquidflowsthroughacertainsoil.Itd d l f l ddependsonseveralfactorsincluding:

    Soilproperties: Voidsize(dependsonparticlesize,gradation,voidratio,andother

    factors)

    Soilstructure Voidcontinuity Particleshapeandsurfaceroughness

    Degree of soil saturation Degreeofsoilsaturation

    Liquidproperties:Density Density

    viscosity

  • Typicalvaluesofhydraulicconductivity 28

  • Importanceofpermeability 29

    Thefollowingapplicationsillustratetheimportanceofpermeabilityingeotechnicaldesign:p y g g

    Permeabilityinfluencestherateofsettlementofsaturatedsoils under load.soilsunderload.

    Thedesignofearthdamsisverymuchbaseduponthepermeability of soils usedpermeabilityofsoilsused.

    Thestabilityofslopesandretainingstructurescanbegreatl affected b the permeabilit of the soils in ol edgreatlyaffectedbythepermeabilityofthesoilsinvolved.

    Filtersmadeofsoilsaredesignedbasedupontheirb lpermeability.

  • Useofpermeability 30

    Knowledgeofpermeabilitypropertiesofsoilsisnecessaryfor:y

    Estimatingthequantityofundergroundseepage;

    Solvingproblemsinvolvingpumpingseepagewaterfromconstructionexcavation;

    Stabilityanalysesofearthstructureandearthretainingwallssubjectedtoseepageforces.

  • Lab.DeterminationofHydraulicconductivity 31

    Twostandardlaboratorytestsareusedtodeterminethehydraulicconductivityofsoil:y y

    Theconstantheadtest(suitableforgranularsoils)

    Thefallingheadtest(suitableforclayeysoils)

  • Constantheadtest 32

    ( ) tkiAAvtQ ==Thetotalvolumeofwatercollectedis

    ( )QQ =volumeofwatercollectedA =xsecareaofsoilspeciment d ti f t ll tit =durationofwatercollection

    hi = thkAQ =L tLkQ

    QLk =Aht

  • Fallingheadtest 33

    thkAQ Flowrate,qisdefinedasQ/t

    == hkAQqtL

    kAQ === LkAtq

    dhaq =Also dtaq =Also

    Fromaboveeqs.dhahkA =

    qdtL

    q =flowrate(flowperunittime)a = xsec area of standpipea =xsecareaofstandpipeA =xsecareaofsoilspecimen

    dhaL

    =hdh

    AkaLdtRearranging

  • Fallingheadtest 34

    =hdh

    AkaLdt

    Lettheheadish1 att=0,andh2 att=t

    Integratingleftsidewithlimitsfrom0totandtherightsidewithlimitsfromh1 toh2

    2

    1loghh

    AkaLt e=

    Re arranging 1loghaLk =Rearranging2

    loghAt

    k e=

  • Empiricalrelationsforhydraulicconductivity 35

    Forfairlyuniformsand(i.e.,sandwithasmalluniformitycoefficientcu),Hazen(1930)proposedanempiricalrelationshipforhydraulicconductivity in the formconductivityintheform

    ( ) 210cm/sec cDk =wherec=aconstantthatvariesfrom1.0to1.5,andD10 =theeffective size, in mm.effectivesize,inmm.

    AboveequationisbasedonHazensobservationsofloose,clean,filter sandsfiltersands.

  • Equivalenthydraulicconductivityinstratifiedsoils

    36

    FromDarcyslaw Totalflowissumofflowsthrueachlayer

  • 37Equivalenthydraulicconductivityinstratifiedsoils

    Thevelocityofflowthrualllayersissame

    Totalheadloss,h,isequaltosumofheadlossesinalllayers

    FromDarcyslaw

  • 38Equivalenthydraulicconductivityinstratifiedsoils

    (i)

    Above equation can be written asAboveequationcanbewrittenas

    (ii)

    SolvingEq.(i)and(ii)

  • Varved soil 39

  • Varved soil 40

    Varve depositsattributedto GlacialLakeMissoula, Montana,USA.

  • Hydraulicconductivityofcompactedclayeysoils 41

    Followingobservationsaremadefromtestresults:

    Forsimilarcompactioneffortandmoldingmoisturecontent,th it d f k dthemagnitudeofkdecreaseswiththedecreaseinclodsize.

    Foragivencompactioneffort,kdecreaseswithincreaseinmoldingmoisturecontent.g

  • Hydraulicconductivityofcompactedclayeysoils 42

    Forsimilarcompactionpeffortanddryunitweight,asoilwillhavea lower hydraulicalowerhydraulicconductivitywhenitiscompactedonthewetd f hsideoftheoptimum

    moisturecontent.

  • Fieldcompactionconsiderations 43

    Patternofflowthroughacompactedclaywithimproperbondingbetweenlifts

  • Fieldpermeabilitytest:wellpumpingtest 44

  • Wellpumpingtest 45

    tLhkAQ

    =

    ==LhkA

    tQqFlowrate,qisdefinedasQ/t

    The e pression for the flow rate of groundwater into the ell hich isTheexpressionfortheflowrateofgroundwaterintothewell,whichisequaltotherateofdischargefrompumping,canbewrittenas

    dh ( ) dh

    =drdhkAq ( )

    =

    drdhkrhq 2

    22 2 hr kd

    =

    2

    1

    2

    1

    2h

    h

    r

    r

    dhhqk

    rdr

    Integrating

    1logrrq e

    ( )2221 2hhr

    k =

  • Wellpumpingtest confinedaquifer 46

    WaterenteringintowellWaterenteringintowell

  • Wellpumpingtest confinedaquifer 47

    BecausewatercanenterthetestwellonlyfromtheaquiferofthicknessH,thesteadystateofdischargeis

    ( ) = dhkrHq 2( ) = drkrHq 2 22 2 rr kHd

    =

    2

    1

    2

    1

    2r

    r

    r

    r

    dhqkH

    rdr

    1logrrq e

    ( )212

    2 hhHr

    k =