CE FinalReport

download CE FinalReport

of 29

Transcript of CE FinalReport

  • 7/29/2019 CE FinalReport

    1/29

    SeismicEvaluation&Design:SpecialMomentResistingFrameStructure

    SanFranciscoStateUniversity,CanadaCollegeandNASASponsoredCollaboration

    FinalPaper2011August,15

    By:AndrewChan,JohnPaulino,MoisesQuiroz,andJoseValdovinos

    Advisor:Dr.ChengChen

    StudentAdvisor:QiMingZeng

  • 7/29/2019 CE FinalReport

    2/29

    1|P a g e

    TableofContentsIntroduction.................................................................................................................................................. 3

    DesignChallenge........................................................................................................................................... 4

    ProblemStatement................................................................................................................................... 4

    GeneralProcedure.................................................................................................................................... 5

    Execution....................................................................................................................................................... 5

    LocalBuckling................................................................................................................................................ 5

    LocalBucklingResults............................................................................................................................... 6

    ColumnsFlangeCheck.......................................................................................................................... 6

    ColumnsWebCheck............................................................................................................................. 7

    BeamFlangeCheck............................................................................................................................... 7

    BeamWebCheck.................................................................................................................................. 8

    LocalBucklingConclusion......................................................................................................................... 8

    DesignofBeamsandRequirements............................................................................................................. 9

    BeamNominalMomentCheck................................................................................................................. 9

    BeamDeflectionCheck........................................................................................................................... 10

    ShearStrengthofBeam.......................................................................................................................... 11

    DesignofColumnRequirements................................................................................................................ 12

    EffectiveLengthandSlendernessRatioLimitations............................................................................... 12

    CompressiveStrengthforFlexuralBuckling........................................................................................... 13

    AnalysisTechnique...................................................................................................................................... 14

    StructuralDesignMethods..................................................................................................................... 15

    EquivalentLateralForceProcedure.................................................................................................... 15

    SeismicResponseCoefficient.............................................................................................................. 15

    ResponseModification

    Factor............................................................................................................. 15

    ImportanceFactor............................................................................................................................... 15

    TimeHistoryAnalysis.............................................................................................................................. 16

    AnalysisImplementation............................................................................................................................ 16

    ASCE70512.8.1EquivalentLateralForceProcedure........................................................................... 16

    TimeHistoryAnalysis:............................................................................................................................. 17

  • 7/29/2019 CE FinalReport

    3/29

    2|P a g e

    Results:........................................................................................................................................................ 18

    SeismicSystemResearch............................................................................................................................ 22

    MomentFrameVsEccentricallyBracedFrame...................................................................................... 23

    ConclusionsonTypesofFrames............................................................................................................. 24

    Conclusions................................................................................................................................................. 24

    References.................................................................................................................................................. 25

    Appendix..................................................................................................................................................... 26

    LocalBucklingConstants......................................................................................................................... 26

    BeamConstants...................................................................................................................................... 26

    ColumnCalculations............................................................................................................................... 27

    EquivalentLateralForceProcedureWork.............................................................................................. 28

  • 7/29/2019 CE FinalReport

    4/29

    3|P a g e

    Introduction

    Civilengineeringisconsideredtobetheclassicalfieldofengineering.Butbytheturnofthe20th

    centurynewmaterialsandmethodsofconnectingthemhadbecomereadilyavailable. Andsomankind

    createdaneedforitselftopushfortaller,safer,stronger,andcheaperbuildings.

    Forourproject,weweretaskedwithdesigninga3storyofficebuildinginanearthquakeprone

    area. WeincorporatedourselvesintothestyleofconservativethinkingthatisreflectedintheAISCSteel

    ManualandASCE705MinimumDesignLoadsforBuildings. A requirementwasthatourstructure

    shouldconsistofspecialsteelmomentresistingframes. Andthatwouldincorporatethemostviewing

    areafortheinteriorofthestructurebutalsoprovidethestrengthtowithstandearthquakesthathave

    historicallyoccurredintheWalnutCreekarea.

    Accomplishingthedesignandmodelingphasewouldbeahugestepforwardforusaswehave

    hadnopriordesignexperience. Ourplanwastohaveeverymemberdesigntheirownstructure. But

    witheveryonecontributingtheirworktotheoverallreport. Inthisapproach,ourhopewasthatforeveryonetohavegainedthemostunderstandingoftheconcepts. Thissortofdoeverythingapproach

    stemmedfromourinitialapprehensionofpouringthroughpagesoftwosteeldesigntextbooks,the

    ASCE705designprocedurecodesandAISCSteelmanualdesigncodes. Ourthoughtswerethatifwe

    weretojustcoveronesectionandnotunderstandwhatwasoccurringwiththeothersection,thenwe

    wouldmissalotofconnections. Untilweallkneweverypartwell,wewouldnotbeabletodesigna

    singlebuildingtogether.

    Thelayoutofthisreportfollowsachronologicalorder. Webeginbypresentingtheproblem

    statement,ourplanofapproachandthenadesignphase. Thedesignphaseconsistedofdetermining

    thebeamsandcolumnsbucklingrequirements. Thenactuallytestingfortheloadrequirementsforthebeamsandthencolumns. Eachofcoursehavingdifferentrequirements. Lastlywefinalizeandimprove

    uponourdesignsbasedonearthquakeloadsthatwesubjectontothestructure. Thisanalysisconsists

    oftwomethods,anEquivalentLateralForceandaperformancebasedtimehistory.

  • 7/29/2019 CE FinalReport

    5/29

    4|P a g e

    DesignChallenge

    TheproceduretookthroughoutthisinternshiphasbeentofollowwhatDr.Chenandour

    graduatestudentQiMinglaidoutforus. Partofthechallengewasthatresourcesweredifficultto

    procureandassowereliedheavilyonourgraduatestudentsknowledge. Butslowlywegotusedtothe

    laborious2100+pagesPDFonlinereferencematerialsalongwithmanualotherPDFreferencemanuals

    thatweprocured.

    ProblemStatement

    DesignathreestorybuildingintheWalnutCreekarea.Thebuildingwillbeanofficebuildingin

    anearthquakepronearea. Weweretousethestandard50[psf]orlbspersquareftasaliveloadfor

    eachfloor. Theroof,3rd

    floor,and2nd

    floorweredesignedtohold95[psf],90[psf],and92[psf]

    respectively. Thesquarefootageforeachfloorwastobe11250sqft. Andthecolumnsfromthebase

    tothetopfloorwere13ft,11ftand11ft. ThisbuildinghadtobedesignedaccordingtoAISCscodeand

    ASCEsequilateralforceprocedures. Theequilateralforceprocedureincludesequivalentearthquakeforcesmeanttoimitatehistoricalearthquakeloads. Andfinallywedesignedandmodeledthestructure

    inSAP2000repeatingthedesignphaseasnecessary.

  • 7/29/2019 CE FinalReport

    6/29

    5|P a g e

    GeneralProcedure

    1. UtilizetheEquivalentLateralForceProcedureinASCE072. UnderstandtheSteelDesignandtheStructuralAnalysisbookonbeamsandcolumnsalongwith

    typesofconnectionsandblockshear.

    3. FollowedtheEquivalentLateralForceProcedureanalysistechniqueaslaidoutintheASCE7manual.

    4. DesignedthebeammembersforeachflooraccordingtoAISCcodesfromtheLRFDSteelDesignbook,inexcel.

    5. DesignedthecolumnmembersforeachflooraccordingtoAISCcodesfromtheLRFDSteelDesignbook,inexcel.

    6. Modeledthebeamsandcolumnsalongwiththebaseshear,liveloads,anddeadloadsintoSAP2000. Rananalysis.

    7. UtilizeSAP2000sstorydeflectionbyelasticanalysistoaidinthestorydriftdeterminationundertheASCE07EquivalentLateralForceProcedure.

    8. RedesignedthebuildinginaccordancewithASCE07EquivalentLateralForceProcedures12.8.6StoryDriftDetermination.

    9. Assesandanalyzefourearthquakestoeachbuildingthroughatimehistoryanalysis.Execution

    Beingfreshnewengineeringstudentswetooktoanyandalladvicethatourgradstudent,Qi

    Ming,instructed. WewererecommendedtofollowtheAISCSteelmanual. Atfirstweweredauntedby

    howvastandconfusingitinitiallywas. ButafterspendingmuchqualitytimewiththePDFversionofthe

    book,wegrewtorelyonitseverystepsandrequirements. Thebookaidedinourunderstandingofwhy

    andhowtoanalysisstructures. Thesearetheresultsfromourworkdesigningeachmembersection.Alsoanappendixisattachedthatincludesthecalculationsandconstantsforeachresult.

    Webeganwiththelocalbucklingcheckforourbeamsandcolumns;thisrequirementensures

    thatthesectionmemberswepick,fromtheAISCdatabase,willconformresistcertainbuckling

    requirements.

    LocalBuckling

    Allbeamsandcolumnmembershavetopassawebandflangethicknessratiotest. Thisisalso

    referredtoasLocalBucklingreferencingtosectionB4ChapterBintheAISCSteelManual.Classificationofsectionsforbucklingisnecessarytopreventlocalbuckling.

    ChapterBsectionB4.requiresthatwecheckthebeamsandcolumnsofthemembersfor

    compact,noncompact,andslenderness. Forourpurposeswerequiredthatthebeamsandcolumnsbe

    compactandnonslender. Thiswasespeciallyimportantforourcolumnsectionsaselementsthatare

    tooslendernesswillcausebuckling.

  • 7/29/2019 CE FinalReport

    7/29

    6|P a g e

    Theclassificationforeachsectionbreaksdownintotwobasicelements,stiffenedand

    unstiffenedelements. ForanIBeamorWsection,thebeamcontainsacentralwebsandwiched

    betweenatopflangeandbottomflange. Generallywewantcompactsectionsforourbeams,thisis

    becausecompactbeamstendtobucklelessandsoitisadesiredtraitinbeams. Butforourcolumns,

    becausetheyholdverticalloads,wedesireanoncompactshape. Noncompactshapesallowforplastic

    andelasticbucklingbehaviorandaredesiredforearthquakeresistantframessincethecolumnswillbe

    allowedtosway.

    Figure4.9illustratesatypicallyWsectionforcolumnsections. Wearerequiredtocheckthat

    theratiobetweentheflangeelementsthicknessandwidthconformtotheAISCcode. Itisalso

    necessaryfortocheckthewebfortheheightandwebthickness.Thewebisconsideredthestiffened

    elementandtheunstiffenedelementsarethetopandbottomflanges.

    LocalBucklingResults

    ColumnsFlangeCheck

    Columns

    DesignStep1:AISC

    B4.Classificationof

    SectionsforLocal

    Buckling,Flange Upperlimit

    Width

    Thickness

    Ratiosof

    Members,

    Flange

    LocalStabilityCheckfor

    UnstiffenedElements,Flange

    Members

    AISC13thEd.LRFD

    Formula r=0.56*(E/Fy)1/2

    =bf/(2*tf) r=0.56*(E/Fy)1/2> =bf/(2*tf)

    W18X65 Roof 13.49 5.06 Okay

    W18X71 3rd 13.49 4.71 Okay

    W18X97 2nd

    13.49 6.41 Okay

  • 7/29/2019 CE FinalReport

    8/29

    7|P a g e

    ColumnsWebCheck

    Columns

    DesignStep1:AISC

    B4.Classificationof

    SectionsforLocal

    Buckling,Web Upperlimit

    Width

    Thickness

    Ratiosof

    Members,Web

    LocalStabilityCheckfor

    StiffenedElements,Web

    Members

    AISC13thEd.LRFD

    Formula r=1.49*(E/Fy)1/2

    =h/(tw) r=1.49*(E/Fy)1/2

    > =h/(tw)

    W18X65 Roof 35.88 35.70 Okay

    W18X71 3rd

    35.88 32.40 Okay

    W18X97 2nd

    35.88 30.00 Okay

    BeamFlangeCheck

    TransMember

    Check:

    Flange

    Check

    Member

    Properties

    Compact

    Checker

    NonCompact

    Checker

    Slender

    Checker

    CheckFlange

    Overall Formula =bf/(2*tf) p p< r > r

    W21X68 Roof 6.04 Yes,Compact No,Compact NotSlender

    W21X68 3rd 6.04 Yes,Compact No,Compact NotSlender

    W21X68 2nd 6.04 Yes,Compact No,Compact NotSlender

    LongMember

    Check:

    Flange

    Check

    Member

    Properties

    Compact

    Checker

    NonCompact

    Checker

    Slender

    Checker

    CheckFlangeOverall Formula =bf/(2*tf) p p< r > r

    W21X55 Roof 7.87 Yes,Compact No,Compact NotSlender

    W21X55 3rd 7.87 Yes,Compact No,Compact NotSlender

  • 7/29/2019 CE FinalReport

    9/29

    8|P a g e

    W21X55 2nd 7.87 Yes,Compact No,Compact NotSlender

    BeamWebCheck

    TransMember

    Check:

    Web

    Check

    Member

    Properties

    Compact

    Checker

    NonCompact

    Checker

    Slender

    Checker

    CheckWeb

    Overall Formula =h/(tw) p p< r > r

    W21X68 Roof 43.60 Yes,Compact No,Compact NotSlender

    W21X68 3rd 43.60 Yes,Compact No,Compact NotSlender

    W21X68 2nd 43.60 Yes,Compact No,Compact NotSlender

    LongMember

    Check:

    Web

    Check

    Member

    Properties

    Compact

    Checker

    NonCompact

    Checker

    Slender

    Checker

    CheckWeb

    Overall Formula =h/(tw) p p< r > r

    W21X55 Roof 50.00 Yes,Compact No,Compact NotSlender

    W21X55 3rd 50.00 Yes,Compact No,Compact NotSlender

    W21X55 2nd 50.00 Yes,Compact No,Compact NotSlender

    LocalBucklingConclusion

    Fromthedatabasetablesabove,wewereabletopickeachbeamandcolumnandtheyreflect

    therequirementsthatwerestatedabove. Forourcolumns,werequiredthemtobelessthantheupper

    limit rmeaningthatourcolumnmemberswerenoncompact. Thisisgoodnewsaswewillseelater

    thatnoncompactcolumnstendtoallowforelasticandplasticbucklingbehavior. Iftheyweretotally

    inelastictheywouldneverpassinanearthquakeasthecolumnswouldbeunabletoreformtheir

    originalshape.

    Forbeamswewereabletoachievecompactnessintheflangeandwebsections. Thisallowsfor

    minimalbucklingofourbeams. Thisisgoodnewsasforbeams;theyrequirethatthefloorshave

  • 7/29/2019 CE FinalReport

    10/29

    9|P a g e

    minimalbuckling. Iftheywerenotthen,forexamplesomeonebringsinheavyequipmentorthereisa

    largegatheringofpeople,thefloorwouldnoticeablebuckle! Soacompactbeamisthemostfavorable

    sectionforourbeamselections.

    Designof

    Beams

    and

    Requirements

    Forthebeamsdesign,wehadtwotypesperfloor. Onetypeisa30ftlonginthetransverse

    directionofthebuildingandthenextisa25ftlongbeaminthelongitudinaldirection. Thereareatotal

    of18beamsinthetransversedirectionand20beamsinthelongitudinaldirection. Andforeachfloor

    therewasadifferentdeadloadrequirementalongwiththeliveloadandtheearthquakeload,story

    force,distributedtoeachfloor.

    WefirststartedoutwithAISCChapterF,F1andF2. FromsectionF2.1wewereabletoassume

    thatthenominalmomentwouldbeequaltotheplasticmoment. Thisassumptionisokaybecauseour

    beamspassedthischeck;Zx/Sx

  • 7/29/2019 CE FinalReport

    11/29

    10|P a g e

    CHECK:

    Floor

    AISCSteelDesign

    Requirements Mubeam Murequired

    MubeamvsMu

    required

    Roof W21X55 5670 1669.090 Okay

    3rd W21X55 5670 1617.266 Okay

    2nd W21X55 5670 1637.996 Okay

    BeamDeflectionCheck

    Abeamwilldeflectnomatterwhatloadyouplaceonit. Eventhebeamsownweightaddsto

    thedeflections. Butthisisthemostimportantanddeterminingfactorforourdecisionsindeciding

    whichbeamsectiontoselect.

    TRANS

    MEMBER

    CHECK:

    Maximum

    PermissibleLive

    LoadDeflection MaterialProperty

    Formula

    Constant

    [inch] Check

    Floor

    AISCSteel

    Design

    Requirements =(5/384)*((wL*L4)/(E*Ix)) L/360 =(5/384)*((wL*L4)/(E*Ix))

  • 7/29/2019 CE FinalReport

    12/29

    11|P a g e

    2nd W21X55 0.697 0.833 Okay

    ShearStrengthofBeam

    Thewebsectionofthebeamgenerallyhastohandletheshearforcesfromtheloadsaboveit.

    Usuallyhowevertheshearstrengthofthebeamismuchgreaterthantherequiredshearstrengthfrom

    theprovidedloads. Belowareourresultsfromtheshearstrengthcheck.

    Anexampleofshearisprovided:

    TRANS

    MEMBER

    CHECK:

    Step3,CheckShear

    Strength MaximumShear

    VurequiredTransverseShear

    perMember[kipsft] CheckShear

    Floor

    AISCSteelDesign

    Requirements v*Vn,[kips] Vurequired=(1/2)*wu*L v*Vn>Vu

    Roof W21X68 244.971 34.912 Okay

    3rd W21X68 244.971 33.876 Okay

    2nd W21X68 244.971 34.290 Okay

    LONG

    MEMBER

    CHECK:

    Step3,CheckShear

    Strength MaximumShear

    VurequiredLongitudinalShear

    perMember[kips] CheckShear

    Floor

    AISCSteelDesign

    Requirements v*Vn,[kips] Vurequired=(1/2)*wu*L v*Vn>Vu

    Roof W21X55 210.6 33.382 Okay

    3rd W21X55 210.6 32.345 Okay

    2nd W21X55 210.6 32.760 Okay

  • 7/29/2019 CE FinalReport

    13/29

    12|P a g e

    DesignofColumnRequirements

    Whilethedesignofthebeamsisimportantforeachfloor,itisthecolumnsthathavetosupport

    theweightoftheentirebuilding. Soitisthecolumnsthatwehavetopaythemostattentionto. After

    checkingthelocalstabilityabove,wenowhavecolumnsthatareabletohandleplasticandelastic

    bucklingconditions. UnderAISCChapterE,DesignforCompressionMembers,itstatesthatwemust

    checktheeffectivelengthandslendernessratiosofourcolumnmembers. Thisisimportantasthereisa

    limitthatourcolumnmustnotexceedintermsofitseffectivelength. Onceitexceedsthislimitour

    columnswouldbegreatlysusceptibletobuckling. Bucklingisbad,butwealsowanttotakein

    considerationhighceilings. Generallyclientsortheownerswouldwanttoincludehighceilingsandthus

    highcolumnsastheyallowforamoreappealingaestheticfeeltotheenvironment.

    EffectiveLength

    and

    Slenderness

    Ratio

    Limitations

    Thereisaneffectivelengththateachcolumnprovides. Iftheeffectivelengthislowthenthere

    willbesomeminoraxisbuckling,asshowninFig(a)above. Butiftheeffectivelengthishighthenthere

    willbesomemajoraxisbuckling,asshowninFig(b)above. Soitisimportanttocheckforthislimitation.

    Wealsocheckedourmembersslendernessratioasthispertainstoeffectivelengths. Asbucklingisa

    majorandrealconcernallofourchosenmemberspassedthetests.

  • 7/29/2019 CE FinalReport

    14/29

    13|P a g e

    Columns AISC13thEd.LRFDFormula

    SlendernessRatio,

    ChapterE2.

    AISCChapterE

    SectionE2.

    Check

    Status

    Floors

    ChapterE2.SlendernessLimitations

    andEffectiveLength (KL/ry)

    Donotexceed

    200

    (KL/ry)

  • 7/29/2019 CE FinalReport

    15/29

    14|P a g e

    W18X65 Roof

    InelasticColumns,

    Fcr 32.01 611.34

    W18X71 3rd

    InelasticColumns,

    Fcr 32.18 669.24

    W18X97 2nd

    InelasticColumns,

    Fcr 38.81 1106.04

    Columns

    DesignStep1:AISCE1.

    GeneralProvisions

    Sumof

    FactoredLoads

    Design

    Compressive

    Strength

    Relationshipbetween

    LoadandStrength

    Members

    AISC13thEd.LRFD

    Formula

    Purequired=

    1.2*D+1.6*L c*Pn Pu c*Pn

    W18X65 Roof 95.04 550.20 Okay

    W18X71 3rd 188.12 602.32 Okay

    W18X97 2nd 282.40 995.44 Okay

    Andfinallywecheckthatourcolumnmeetsthecompressivestrengthrequiredbyourfactored

    loads. Noticethatweexceedtherequiredloadsbyalargefactor. Thisisbecausethecolumns

    determiningfactorisinthestorydriftcalculation. Thestorydriftincludesthestoryforcesand

    earthquakeloadsintoconsideration,andisamuchstrictercode.

    AnalysisTechnique

    Thejobofacivilengineeristoensurethatthebuildingswecreatearebuilttowithstandthe

    testsoftimeandnature. Andbecauseofsuch,ithasbeenprovennecessarytoperformanumberof

    analysistechniquesinourbuildingdesigns. Suchtwotechniquesaretimehistoryanalysis,a

    performancebasedanalysistechnique,andASCE705sequivalentlateralforceprocedure. Thelatteris

    aprocedurethatisdesignedtomimicrealloadscausedbyearthquakes,whiletheformerismeanttotestthebuildingperformanceagainstanactualearthquake. Ourthreestorywillbedesignedaccording

    tobothmethods. Ourgoalistodeterminewhichmethodwillproducethebestresultswiththemost

    minimaldesignspecifications.

  • 7/29/2019 CE FinalReport

    16/29

    15|P a g e

    StructuralDesignMethods

    SafetyandUsabilityarethemajorthingsEngineerstakeintoconsiderationwhendesigninga

    structure.Thereareseveralapproachestodesigningstructuresthatmustwithstandseismic,wind,snow,

    andotherloads.Oneapproachistocreatemodelsthataregoodapproximatesoftheactualstructure

    andobservehowthesemodelsrespondtothedifferentloadsappliedtothem.Theotherapproachis

    thedetailedanalysisofthestructure.Detailedanalysiscanalsohavevariousapproaches,suchasthe

    EquivalentLateralForceProcedureandTimeHistoryAnalysis.

    EquivalentLateralForceProcedure

    TheEquivalentLateralForceProcedureinvolvesapplyingstaticforcesonthestructureand

    analyzinghowitreactstotheseforces.Also,theforcesareusuallyappliedatthejointsofthemembers,

    whichmakesthecrosssectionalmembersactliketwoforcemembers.Themostimportantforceinthis

    procedureisthebaseshear,orthesumofallthelateralforcesaffectingthestructure.Thestrengthor

    capacityofthemembersmustbeabletowithstandthebaseshear.Tofindoutiftheappropriatemembersareselected,engineersperformthestorydriftcheck.Otherfactors,suchastheseismic

    responsecoefficient,responsemodificationfactorandimportantfactormustbetakenintoaccount

    whenfollowingthisprocedure.ASCE7section12.8carefullyenumeratestheequationsandconditions

    thatmustbesatisfiedwhenfollowingtheEquivalentLateralForceProcedure.

    SeismicResponseCoefficientTheSeismicResponseCoefficient,Cs,isusedtodeterminethebaseshearofthestructure.

    AccordingtoASCE7,thebaseshearcanbeobtainedbymultiplyingtheResponseCoefficientbythe

    structureseffectiveweight.Theeffectiveweightofthebuildingincludesthedeadloadandotherloads,

    suchasliveandsnowloads.

    ResponseModificationFactorWhenengineersdesignastructure,theyexpectthebuildingtosustainpermanentdamage.

    Eventhebestdesignedbuildingsaresusceptibletoinelasticdeformation.Withthisismind,thegoalof

    theengineeristodesignabuildingthatwillnotcollapse.TheResponseModificationFactor,R,accounts

    fortheabilityofthestructuretoabsorbenergywithoutcollapsingoritsenergydissipationcapacity.This

    modificationfactordependsonthetypeofstructurebeingexamined.Themoreductilethestructureis,

    thehigheritsmodificationfactor.Aductilestructuremeansithastheabilitytochangeshapeunder

    stressbeforeitbreaks.

    ImportanceFactorTheImportanceFactor,I,dependsontheuseofthebuilding.Itcanbedeterminedbyreferring

    toASCE7table11.51,whichincludesdifferentOccupancyCategoriesforbuildings.Facilitiessuchas

    hospitalsandschoolshaveahighImportanceFactor.Facilitieslikestoragebuildingsareassignedwith

    loweraImportanceFactor.

  • 7/29/2019 CE FinalReport

    17/29

    16|P a g e

    TimeHistoryAnalysis

    Itisveryimportanttounderstandhowbuildingsmovebefore,during,andafteranearthquake.

    TimeHistorygraphsallowengineerstostudythestructuresbehavioroveraspecifiedamountoftime.

    ThemaindifferencebetweenEquivalentLateralForceProcedure(ELFP)andTimeHistoryAnalysis(THA)

    isthetypeofloadusedtosimulateanearthquake.InELFP,thebaseshearisthemainload,andtheanalysisisstatic.InTHA,simulationsaredonebyincorporatingrealearthquakesrecordedinthepast.

    ThefirststepinperformingaTimeHistoryAnalysisistodecidewhataccelerogramtouse.

    Accelerogramsaregraphsthatshowgroundaccelerationoveraperiodoftime.ThePacificEarthquake

    EngineeringResearchconductstherecordingoftheseaccelerogramsandallowsthepublictodownload

    earthquakedatafromtheirwebsite.

    Theseaccelerogramsarethenuploadedontostructuralanalysisprograms,suchasSAP2000.

    Theuploadedearthquakemustbeamplifiedtomimictheeffectsofthebaseshear.Designersapplythe

    earthquakedataasaloadcombinationandrunthesimulation.Checkingthestorydriftisdifferentfrom

    thestorydriftcheckinstaticanalysis.Thehighestjointisusuallychosentobeexaminedbecausethe

    totaldeflectioncanbeseenthere.Mostprogramshavefeaturesthatletthedesigneranalyzethe

    displacementhistoryofthatjoint.Thelargestdisplacementmustnotexceedtheallowable

    displacementdeterminedbythebuildingcode.

    AnalysisImplementation

    ASCE70512.8.1EquivalentLateralForceProcedure

    TheEquivalentLateralForceProcedurewasthelaststepinourdesignprocess. Thisincludescalculatingthestoryforcesforeachindividuallevel,assigningitinSAP2000andrunningthesimulation

    togetourdeflectionbyelasticitytestresult. Oncethisresulthasbeenobtained,weareabletotestif

    ourbuildingwillpassASCE705srequirementformaxallowablestorydrift. Belowisatabulationofour

    resultsafterithasbeenrunthroughSAP2000sanalysisprogram.

    Floors

    DeflectionbyElastic

    TestU1,xe

    Deflectionof

    Levelx,x

    MaxAllowable

    Drift a

    DriftCheck,

    2 1 [units] Check

    Roof 1.940 10.669 3.3 1.576 [inch] Okay

    3rd

    1.653 9.093 3.3 2.823 [inch] Okay

    2nd 1.140 6.270 3.9 1.140 [inch] Okay

    Fromthetableabove,itisclearthatourbuildinghaspassedthedriftcheck. Atthemostextremeend,

    themaxallowabledriftforthe3rd

    flooris3.3inches. Ourbuildingmanagedareasonable2.82inchdrift.

  • 7/29/2019 CE FinalReport

    18/29

    17|P a g e

    Soatourmostextremeendwewereabletoallowupto85%ofallowabledrift. Thistellsmethatwe

    didnotexceedtherequirementanddidnotoverperformtherequirement. Thussavingintotalweight

    ofourbuildingmaterialandofcoursecosts.

    Abovedisplaysthestoryforcesappliedatthecenterofeachlevelforour3DmodelinSAP2000.

    TimeHistory

    Analysis:

    OurgoalistoanalyzetheperformanceoftheASCE705procedurewithversustimehistory

    analysisandmodeltheperformanceina3storystructure. Theframewillbecomposedentirelyof

    specialmomentresistingframes. Wewillfirstapplytheequivalentlateralforceprocedure,andthen

    pickourbeamsandcolumns,runananalysistest,andfinallydetermineifthebeamswechosewould

    passthestorydriftcheck;repeatasnecessaryuntilthestorydriftconditionssatisfy. Theprocedure

    remainsthetrueforthetimehistoryanalysis. ThedifferencebetweenthetwomethodsisthattheELFP

    reliesonamaximumcomputedbasesheartodistributethelateralforcesforallstories. ThatisELFPwill

    testthebuildingforthemaximumpredictedearthquakethatASCE7determinedasallowable. This

    processfordeterminingthemaximumbaseshearforourbuildingwasdevelopedthroughresearchinto

    earthquakecoderequirementspertainingtocertainearthquakeproneareas. Whilethetimehistory

    analysismethodwillpitourdesignelementinaperformancebasedtestbasedonactualearthquake

    data.

    Howthebuildingdriftsperflooristhebeamandcolumnrestrictivefactorforinourdesigns.

    Buildingspriortothesecodesdidnotdriftuniformlyandassuch,structuresofthepastwouldcrumble

  • 7/29/2019 CE FinalReport

    19/29

    18|P a g e

    duringanearthquake. Butabuildingthathassomeallowabledriftisbetterabletodissipatetheenergy

    fromanearthquakethroughouttotherestofthestructure.

    Results:

    Inourpreviousfindings,ourresultshaveindicatedthatspecialmomentresistingframesutilize

    heavierbuildingmaterials,buttheyoffersuperiorexpansiveviewsandmoreflexibleestheticdesigns.

    Stilltheyaremuchmoreaffordableandsimplertoimplementthanbaseisolateddampeningsystems.

    Inourprocedureswetestedframesystemafterframesystem,eachtimeanalyzingthedrift

    betweeneachfloorlevels,takingnoteofthechangeseachtime.Ourgeneralfindingsindicatedthatthe

    3rdfloorbeamsincurredthelargestdrifts. Furthertestingindicatedthatifweincreasedthebeamsize

    forthe3rdfloorbeams,weincurredlessdrift. The3rdfloorsystemwasthedeterminingfactorin

    controllingtheamountofdriftforourbuildingsystem. Thiswastrueforbothlateralandlongitudinal

    directionalearthquakeforces. Ifwewerenottoconsiderfortheeaseofconstruction,itwouldbe

    possibletojustbeefupthe3rd

    floorbeamsinordertolightenupthecolumnsfortherestofthebuilding.

    Asitwere,thecolumnsmorethanexceededtherequireddeadandliveloadsandsoourdesigncould

    benefitfromalighterdesign.

    OnoneoccasionwhendesigningourstructureaccordingtoASCE705wewereabletoreach

    lessthan1%oftheallowabledrift. Thisdevelopedsomeinterestingperformanceachievements.

    Notably,ouraveragedifferenceuntilreachingthemaxlimitwas26.37%forall4performanceinduced

    earthquakes. Performancewise,thisisgoodnewsasitiswellwithinASCE7designrequirements. And

    since3outof4oftheearthquakesoccurredinCalifornia,ourdesignswouldsavelives. Howevertaking

    intoaccountthe1995KobeearthquakethatstruckJapan,causingthemostdamageintermsoflivesin

    thisproject,weobservedratherclosestorydriftsdeveloping. Theclosestbeing6.95%tothemax

    allowabledrift. Despitethisfinding,itisstillwithintheallowableranges.

    AftermuchcalculationandlearningofthecodesandhowtoutilizeitinourSAP2000student

    editionsoftware,wewereabletopresenta3Dmodelofourdesign! Thebeamsthatwehavepicked

    arerepresentedinthetablesbelow.BelowthemareresultsfromSAP2000sbeamandcolumnanalysis

    checks.

    Beam

    Selection

    TransBeam

    Selection

    LongBeam

    Selection

    Floor

    Levels TransverseBeam StatusCheck

    Longitudinal

    Beam StatusCheck

    Roof W21X68 Okay W21X55 Okay

    3rd W21X68 Okay W21X55 Okay

  • 7/29/2019 CE FinalReport

    20/29

    19|P a g e

    2nd W21X68 Okay W21X55 Okay

    Columns ColumnSelection

    FloorLevels Columns OverallStatusCheck

    Roof W18X65 Okay

    3rd W18X71 Okay

    2nd W18X97 Okay

    SAP2000sbeamandcolumnindividualmembercheckforstress/capacity.Allmemberspassed.

  • 7/29/2019 CE FinalReport

    21/29

    20|P a g e

    Ahigherresolutionvisualqualitycheckofthebuildinganddesign.

    BelowisaCompressionanalysisoneachcolumnmember. Thecolumnsontherightofthebuildingare

    experiencingmorecompressionbecausetheearthquakeforcewasdirectedfromlefttoright.And

    becauseofthatthecolumnsontheleftofthebuildingareexperiencinglesscompressiveforce. Thisis

    goodbecausethecolumnsexperiencingthemostcompressiveforcesareabletostillpasstheminimum

    designchecks.

  • 7/29/2019 CE FinalReport

    22/29

    21|P a g e

    BelowisathestorydriftsimulationinSAP2000.Weinputedeachforceoneachleveltoachievea

    uniformdriftandthusasimulatedearthquake,abietinonedirectiononlyfornow.

    Thispicturedisplayshowweappliedourdeadloads. Similarlytheliveloadsandotherloadswere

    appliedinthisfashionaswell. Weuseddistributedloadsastheybestsimulatedrealworldloads.

  • 7/29/2019 CE FinalReport

    23/29

    22|P a g e

    SeismicSystemResearch

    Choosingtheappropriateframeforabuildingiscrucialinprovidingasafeandstable

    environmentforthebuilding.Buildingsaresusceptibletocollapseifthewrongtypeofframeischosen.

    Itisveryimportanttoacknowledgeandunderstandwhatthebuildingwillbeusedfor,whowilloccupy

    thebuilding,whenthebuildingisexpectedtobecompleted,whatkindofseismicactivityispresentin

    thearea,andhowmuchfundingwilltheprojectreceive.Itisalsoimportanttounderstandwhattypes

    ofseismicframesorsystemsareavailableinthemarket.

    TwoofthemostcommonlyusedframesintheengineeringindustryareMomentResisting

    Frames(MRF)andBracedFrames.MomentResistingFramesareusuallymadeofsteelandtheycan

    resistloadsinthelateraldirectionsuchaswindsorearthquakeloads.Theyareintendedtoremain

    elasticandexhibitductilebehavior,meaningtheystretchbeforebreakingapart,duringamajor

    earthquake(propertyrisk.com).EccentricallyBracedFrames (EBF)areatypeofbracedframethathas

    highelasticstiffnessandsuperiorinelasticperformancecharacteristics(tufts.edu).Muchlikeatruss,

    EBFsworkintensionandcompression,unlikeMRFs,wherebendingmomentaffectsthemembers.

    Toimprovetheperformanceoftheseismicframe,engineersutilizevariousseismicorenergy

    dissipationsystems.OnesuchsystemistheDampingsystem.Asitsnamesuggests,thissystem

    dampenstheseismicenergyabsorbedbytheframes.Thissystemhasachambercontaining

    incompressiblefluidthattransfersbetweenthechamber,thusconvertingkineticenergyintoheat

    energy.Thisheatenergyissafelydissipatedintotheenvironment(akirawada.com).Anotherseismic

    systemthatreducesthedamagedonebyearthquakesisbaseisolation.Baseisolatedstructuresabsorb

    lessshearforcesacrosstheirisolationsurfacethanstructuresthatarenotisolatedfromthebase.

    Althoughthemainstructureisisolatedfromthebase,itdoesnotmeanthatthebuildingisearthquake

    proof(Berkeley.edu).

    TodeterminewhichSeismicFrameperformsbetterundervarioustypesofloads,wehave

    createdmodelsonSAP2000toexamineandcomparethebehaviorofMRFsandEBFs.

  • 7/29/2019 CE FinalReport

    24/29

    23|P a g e

    MomentFrameVsEccentricallyBracedFrame

    We havecreated2DmodelsofmomentandbracedframesonSAP2000.Theyareof

    equallengthandheight.Theyalsousethesametypeofcrosssectionbeams.Wethenapplied

    deadandearthquakeloadsontotheframesandranasimulationonSAP.

    Afterthesimulation,wediscoveredthattheMomentResistingFrame(MRF)hada

    largerdeflectionthantheEccentricallyBracedFrame(EBF).Also,therearelessshear,axial

    force,andbendingmomentactingontheEBFthantheMRF.

  • 7/29/2019 CE FinalReport

    25/29

    24|P a g e

    ConclusionsonTypesofFrames

    EccentricallyBracedFramesworkbetterthanMomentResistingFrames,buttheyare

    hardertobuildandcostmore.TheDampingSystemcanbeincorporatedintoeitherframeto

    improvetheframesperformance.Anotherwayofimprovingtheperformanceofaframeisto

    incorporatebaseisolation.Iftheownerofthebuildingwantstouseaneconomicandreliable

    frame,anMRFwithisolatedbaseishischoice.Butifbudgetisnotanissueandhewantsavery

    strongframe,anEBFwithdampingsystemsishischoice.

    Conclusions

    TheconclusionwemadefromtheseresultstellusthatformostUSbasedstructuresandseismic

    activity,theASCE705EquivalentLateralForceProcedureperformswithintheacceptablelimits. Our

    buildingdesignscouldhavebeenloweredtosaveweightinmaterialcosts.

    Inthetenweeksleadinguptothefinalizationofourproject,wewouldliketothankallofthe

    SanFranciscoStatestructuralengineeringgraduatesstudentsforlendingustheirknowledgeand

    allowingustopartakeintheirstudyspace. Ofnote,weareespeciallygreatfullandindebtedtoour

    graduatestudentQiMingZeng. WithoutQiMingZengstirelesscommitmentsandoffhourshelp,we

    wouldhavehadagreatdisconnectinregardstoretainpassionandknowledgeinthefieldofcivil

    engineering. AndofcoursewithoutthehelpofourfacultyadvisorsDr.ChengChenandDr.Amelito

    Enriqueztherewouldbenothing! Thankyou.

  • 7/29/2019 CE FinalReport

    26/29

    25|P a g e

    References

    AISCSteelConstructionManual,13theditioncopyright2005

    ISBN156424055X

    ASCE/SEI705MinimumDesignLoadsforBuildingsandOtherStructurescopyright2006

    ISBN0784408319

    SteelDesign4thEdition,Segui,T.Williamcopyright2007

    ISBN10:0495244716

    http://www.akirawada.com/paper/conference/state.pdf

    http://engineering.tufts.edu/cee/people/hines/HinesJacobOrlando2010.pdf

    http://www.propertyrisk.com/refcentr/steelside.htm

    http://nisee.berkeley.edu/lessons/kelly.html

    http://home.iitk.ac.in/~vinaykg/Iset443.pdf

    http://www.inrisk.ubc.ca/process.php?file=TIMBER_STRUCTURES/Seismic_Design.pdf

    http://www.spsu.edu/architecture/classes/3212Kaufman/Lateral%20Force1.pdf

    ABeginnersGuideToASCE705,www.bgstructuralengineering.com

  • 7/29/2019 CE FinalReport

    27/29

    26|P a g e

    Appendix

    LocalBucklingConstants

    GlobalFlange

    MemberProperties

    CheckAgainst[Lower

    Limit] CheckAgainst[UpperLimit]

    Formula p=0.38*(E/Fy)^(1/2) r=1.0*(E/Fy)^(1/2)

    MemberProperties 9.15 24.08

    GlobalWebMember

    Properties

    CheckAgainst[Lower

    Limit] CheckAgainst[UpperLimit]

    Formula p=3.76*(E/Fy)^(1/2) r=5.70*(E/Fy)^(1/2)

    MemberProperties 90.55 137.27

    BeamConstants

    TRANS

    MEMBER

    PROPERTIES

    ReferenceBoxA:Wu

    ReferenceCalculations,

    forTransMember

    liveloadper

    transverse30ft,L

    deadloadper

    transverse30ft,D

    FloorLevels #numberftperfloor #totalrate[kips/ft]

    #numberftper

    floor #totalrate[kips/ft]

    Roof 14.8 0.493 28.1 0.938

    3rd 14.8 0.493 26.6 0.888

    2nd 14.8 0.493 27.2 0.908

    TRANS

    MEMBER

    PROPERTIES

    Step1&2,Design

    Strength

    FactoredUniform

    Load,Wu

    Transverse

    [12.4.2.3]

    Mumax=

    Transverse[kips

    ft]

    MumaxTransverse

    [kipsinch]

    FloorAISCSteelDesign

    Wu=(1.2+

    0.2*SDS)*D+ *QE+ Mumax= Mumax=

  • 7/29/2019 CE FinalReport

    28/29

    27|P a g e

    Requirements 1*L+0.2*S (1/12)*Wu*L2 (1/12)*Wu*L

    2

    Roof W21X68 2.327 174.562 2094.741

    3rd W21X68 2.258 169.379 2032.553

    2nd W21X68 2.286 171.452 2057.428

    TRANS

    MEMBERPROPERTIES Step3,ShearStrength

    FactoredUniformLoad,WuTransverse[12.4.2.3]

    MaximumNominalShear

    Floor

    AISCSteelDesign

    Requirements

    Wu=(1.2+0.2*SDS)*D+ *QE

    +1*L+0.2*S

    Vnmax=0.6*Fy*Aw,

    [kips]

    Roof W21X68 2.327 272.19

    3rd W21X68 2.258 272.19

    2nd W21X68 2.286 272.19

    ColumnCalculations

    Columns

    AISC13thEd.

    LRFDFormula

    Sumof

    Factored

    Loads ElasticCriticalBucklingStress[ksi]

    Slenderness

    Parameter, c

    Floors AISCConstants

    Purequired=

    1.2*D+1.6*L Fe=(2*E)/(K*L/ry)

    2

    c=

    (K*L/r*)*(Fy/E)1/2

    Roof W18X65 95.04 46.92 1.03

    3rd W18X71 188.12 47.47 1.03

    2nd W18X97 282.40 82.59 0.78

  • 7/29/2019 CE FinalReport

    29/29

    EquivalentLateralForceProcedureWorkReferenceBox3

    VerticalDistribution

    Factor

    Level [kips] [ft] [kft]

    [kips] SumV[kips]

    Roof 1068.75 35 90338.54 0.534 259.27 0.00

    3rd 1012.50 24 53443.96 0.316 153.38 259.27

    2nd

    1035.00

    13 25418.02 0.150 72.95

    412.65

    Total 3116.25 169200.52 1.000 485.60 485.60