CE 443 - 5 Bearing Stresses and Elastic Settlement - 2.pdf

37
CE 443 Foundation Design Department of Civil and Environmental Engineering, New Jersey Institute of Technology Spring 2015 Bearing Stresses and Elastic Settlement

Transcript of CE 443 - 5 Bearing Stresses and Elastic Settlement - 2.pdf

  • CE443FoundationDesignDepartmentofCivilandEnvironmentalEngineering,

    NewJerseyInstituteofTechnologySpring2015

    BearingStressesandElasticSettlement

  • Settlement Allowablebearingcapacitymaybecontrolledby: Bearingcapacity Settlement

    Thestatisticalaccumulationofmovementsinthedirectionofinterestisdefinedassettlement(s).

    Where:=strain=q/Esq=changeinstress=f(H,load)Es=modulusH=depthofinfluence

  • SettlementinSoilsSettlementisadisplacementcausedbyachangeinstress.Insoilswedefinethreedifferenttypes:1. Elastic(immediate)settlement(Se):

    Resultsfromlateralmovementsofthesoilinresponsetochangesineffectivestress,anditoccurswithoutnetvolumechange.

    Clay Elastic Sand ElasticandPlastic

    2. PrimaryConsolidationsettlement(Sc):Mostimportant. Soilissubjectedtoanincreaseineffectivestressandtheindividualparticlesrearrangeintoatighterpacking.

    3. SecondaryConsolidationsettlement(Ss):Primarilyduetoparticlereorientation,creep,anddecompositionoforganicmaterials.Itoccursataconstanteffectivestress.

  • .

    Stresses in an elastic medium caused by a point load

    IncreaseinStressesduetoFoundationLoads

    MethodsofStressCalculation: Approximate

    2:1Method

    Boussinesq Method AccurateMethods

    Chartmethod M&Nmethod

  • ChangeinStressesduetoFooting

    The most common and the method to be used in this class (unless specified) is called 2:1 method.

    Stress below foundation spread at a 2:1 ratio. Other areas the increase is zero.

    Depending on the soil, one can use other angles.

  • Example

    A 6mX12m footing is loaded with 2kPa load. Find the stress at the corner of the footing at 6m depth.

    Hence,

    q = 2 kPaX6X12/(6+6)/(12+6)

    =0.67kPa

  • Boussinesq Method

    Boussinesq(1885)developedrelationshipstodeterminenormalandshearstressesatanypointinsideahomogeneous,elasticandisotropicmedium.

    Stressduetoconcentratedload:

    3

    2 1

    Note:

  • Example

    Equivalent point load at the center of the footing =144kN

    z=6m, r=6.7m. Hence,

    Notice that R = sqrt(3^2 + 6^2)

    .

    = 0.252 kPa

    A 6mX12m footing is loaded with 2kPa load. Find the stress at the corner of the footing at 6m depth.

  • Boussinesq Method Stressduetocircularlyloadedarea

    Stressesunderthecenter:

    11

    1 2

    Stressesatadistance(r)fromthecenter:Usetable5.1

  • Boussinesq Method

    StressbelowrectangularareaUndercornerofarectangulararea:

    3

    2

    Thus,

    For calculatem andn anduseTable5.2

    ;

  • Boussinesq MethodStressbelowcornerofrectangulararea

  • Boussinesq MethodStressbelowcornerofrectangulararea(cont.)

  • Boussinesq MethodStressbelowrectangularareaUnderanypointunderarectangulararea:1. Divideintosmallerrectangles

    eachwithonecornerabovethepointofinterest.

    2. Calculateindividuallythestressincreaseduetoeachrectangle.

    3. Addorsubtracteachoneofthe

    stressincreases.

  • ChartMethodNewmark(1942)proposedusinginfluencechartsfromwhichverticalstressescanbecomputed.Method: Dividethedimensionsofthefootings(L&B)bythedepthofinterest(H)toobtainB/HandL/Hvalues.

    Drawtoscalethefootingusingthescaleinthechart,i.e.,ifB/His1.5thewidthwouldbe1.5timeslengthshowninthechart.

    Placetheabovedrawingontopofthechartwiththepointwherestressneededtobecalculatedatthecenterofthechart.

    Countthenumberofsegments(M)ofthechartunderthebuilding.

    Stressatthepointwillbeequalto: Newmark Chart

  • ExampleA 6mX12m footing is loaded with 2kPa load. Find the stress at the corner of the footing at 6m depth.

    B/H=1

    L/H=2

    Thus, M=35.5

    Hence,

    q = 0.005*35.5*2 kPa = 0.355 kPa

  • ExampleA 6mX12m footing is loaded with 2kPa load. Find the stress at the center of the footing at 6m depth.

    B/H=1

    L/H=2

    Thus, M=96

    Hence,

    q = 0.005*96*2 kPa = 0.96 kPa

  • ExampleA 6mX12m footing is loaded with 2kPa load. Find the stress due to the footing at a location 6m away from the out side edges of the footing at 6m depth.

    B/H=1

    L/H=2

    Location / H = 1

    Thus, M=2

    Hence,

    q = 0.005*2*2 kPa = 0.02 kPa

  • Newmarks MandNMethod

    FromTable

  • Newmarks MandNMethod

    I

  • Example

    A 6mX12m footing is loaded with 2kPa load find the stress at the corner of the footing at 6m depth.

    M=B/H=1

    N=L/H=2

    Thus, I=0.200

    Hence,

    Dq = 0.200*2 kPa = 0.4 kPa

  • Newmarks MandNMethod:OtherShapes

  • Example

    A 6mX12m footing is loaded with 2kPa load. Find the stress at the center of the footing at 6m depth.

    M=3/6=0.5

    N=6/6=1

    Hence, I=0.120

    Thus,

    q = (0.12*2 kPa)*4 = 0.96 kPa

  • ExampleA 6mX12m footing is loaded with 2kPa load (solid green). Find the stress due to the footing at a location 6m away from the out side edges of the footing (black frame) as shown at 6m depth.

    Stress calculated based on principle of superposition=

    Black frame-blue -yellow+red

    O

    12m

    6m

    18m

    12m

  • Example

    For z = 6m

    M and N for black frame

    M=2, N=3 hence I=0.238

    M and N for blue

    M=1, N=3 hence I=0.203

    M and N for yellow

    M=1, N=2 hence I=0.200

    M and N for red

    M=1, N=1 hence I=0.175

    Hence q=(0.238-0.203-0.200+0.175)*2 kPa = 0.02 kPa

    12m

    18m

    6m

    6m

  • PressureBulbs

  • ElasticSettlementforSoils

  • SettlementandStressDistribution

    Flexible Footing

    Rigid Footing

  • Janbus MethodForElasticSettlementofSaturatedClays

    Janbu (1956) proposed an equation for calculating the average settlement of flexible footings on a saturated clay with s=0.5

    Se = A1A2Bqo/Es

  • A1andA2Values:

    Janbus MethodForElasticSettlementofSaturatedClays(cont.)

  • se=Bqo(1-s2)av /Es (average for a flexible footing)

    se=Bqo(1-s2)r /Es (for a rigid footing)

    ElasticSettlement

    Usingthetheoryofelasticitywecancalculateelasticsettlementinsoil.

  • ElasticSettlement: values

  • ElasticSettlement

    For Center of Footing:

    =4, N=H/(B/2) and M=L/B, B = B/2

    For Corner of Footing:

    =1, N=H/B and M=L/B, B=B

    With Shape and Depth Factors

    H1 1 2

    1

  • ElasticSettlement:IF

  • ElasticSettlement:I1 andI2

  • ElasticPropertiesofSoils

    Soil Type Poisson's RatioSoft Clay 0.15-0.25Medium Clay 0.2-0.5Silty Sand 0.2-0.4Loose Sand 0.2-0.4Medium Sand 0.25-0.4Dense Sand 0.3-0.45

    Soil Type Modulus in MN/m2 Modulus in psi Loose sand 10.5-24 1500-3500 Medium Dense sand 17-27 2500-4000 Dense Sand 34-55 5000-8000 Silty Sand 10-17 1500-2500 Sand/Gravel 69-172 10000-25000 Soft Clay 5-20 600-3000 Medium Stiff Clay 20-40 3000-6000 Stiff Clay 40-95 6000-14000

  • ExampleA 6mX6m footing located at 3m depth is loaded with 200kPa load. Find the settlement at the corner of the footing, if it is in a medium stiff soil of 18m depth. You may assume Es=10000kPa and Poissons ratio of 0.3

    M=L/B=1, N=H/B=3 D/B=0.5 Hence IF=0.775 , I1=0.363 I2=0.048

    Hence s=200*6(1-0.3*0.3)*

    [0.363+(1-2*.3)/(1-.3)*0.048]0.775/10000

    s=33 mm

    Alternate

    Alpha = 0.85

    S =(6*200/10000) *(1-0.3^2)0.85/2= 46mm

  • Thank you!