Cd 吸收 累积的影响及其差异研究 -...

9
卷第 湖南生态科学学报 Vol.5 No.3 2018 Journal of Hunan Ecological Science Sep.2018 收稿日期:2018-06-11 基金项目:国家科技支撑计划项目(2015BAD05B02)ꎻ农业部财政部重大专项( 农办财函[2016]6 )ꎻ湖南省重点学科建设项目(2006180) 作者简介:李欣阳(1994 ̄)ꎬ硕士生研究方向:环境生态ꎬE ̄mail:18390851747@ 163.com 通讯作者ꎬE ̄mail:pqpeng123@ sina.com 引文格式:李欣阳.硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究[J].湖南生态科学学报ꎬ2018ꎬ5(3):1 ̄9. doi:10.3969 / j.issn.2095-7300.2018.03-001 硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收 累积的影响及其差异研究 李欣阳 王树兵 刘文辉 侯红波 彭佩钦 2∗ 廖柏寒 (1. 中南林业科技大学 环境科学与工程学院湖南 长沙 410004ꎻ2. 中南林业科技大学 稻米品质安全控制湖南省工程 实验室湖南 长沙 410004ꎻ3. 长沙县黄兴镇农业综合服务中心湖南 长沙 410100ꎻ4. 宁乡市双江口镇农业综合服务 中心湖南 长沙 410601) :为研究硅钙镁肥( GF) 对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异选取黄泥田( 板页岩母质发 育水稻土) 和麻砂泥( 花岗岩母质发育水稻土) 进行水稻盆栽试验分析各生育时期土壤 pH 值与 CEC 变化土壤溶 液中 Cd 浓度水稻各部位( 谷壳和糙米) Cd 含量及水稻全株总累积量水稻根表铁膜 CdFe 含量与总累 积量. 结果表明:稻田土壤施用 GF 显著降低了土壤溶液 Cd 浓度施用 GF 显著提升了土壤 pH CEC施用 GF 降低 了水稻根谷壳与糙米中的 Cd 含量显著降低水稻全株 Cd 累积量. 稻田土壤施用 GF 促进了水稻根表铁膜的 形成增加了各生育时期 DCB ̄Fe降低了 DCB ̄Cd 含量抑制了 Cd 由根部向上迁移稻田土壤施用 GF黄泥田与麻 砂泥水稻糙米 Cd 含量降低至 0.11 mg / kg 0.15 mg / kg均低于国家标准. 相关性分析表明土壤 pH 与土壤溶液 Cd 浓度水稻糙米 Cd 含量呈显著( <0.05) 或极显著负相关( <0.01)ꎬ水稻根表铁膜 Fe 累积量与 DCB ̄Cd根与糙米 Cd 含量呈极显著负相关( <0.01)ꎻGF 使叶对糙米 Cd 再转运贡献率降低 5.88%( 黄泥田) 12.80%( 麻砂泥) . 稻田 土壤施用 GF 可有效阻控水稻对 Cd 的吸收累积且麻砂泥效果优于黄泥田. 关键词:Cd土壤硅钙镁肥水稻根表铁膜再转运 中图分类号:S143 文献标识码:(Cd) 是植物生长非必需且对耕地土壤极具 危害的重金属元素可通过生物富集与生物放大等 途径严重威胁人类健康 [1 ̄3] . 长期以来水稻作为中 国南方主要粮食作物为人类补充了营养源然而稻 Cd 超标的问题屡有发生 [4ꎬ5] 如何有效降低稻米 Cdꎬ成为众多专家学者关注的焦点. 硅钙镁肥(GF) 因其方便经济高效等优点被广泛用于农业生产一方面在于 GF 有利于水稻作物增产 [6] 另一方面 其作为改良措施在土壤 Cd 风险调控也颇有成效 [7] . 王怡璇等 [8] 通过盆栽试验表明硅肥促进了水稻根 表铁膜的形成抑制了 Cd 在水稻体内的转运李造 煌等 [9] 通过盆栽试验发现钙镁磷肥促进了水稻对 Ca、Mg 元素的吸收并阻控 Cd 在水稻体内的富集. 已有研究表明水稻蒸腾部位如叶轴旗叶等累积 的营养元素会再转运通过韧皮部运输到稻米中此过程促进了 Cd 伴随营养元素在水稻体内富 [10ꎬ11] . 到目前为止大量研究集中于 GF Cd 生物有效性的影响研究对于 GF 是否会影响 Cd 水稻体内分布及 Cd 从叶部的再转运尚有不明确且现有阶段存在 GF 作为调控措施在不同区域土壤 Cd 控制存有不一的结果 [12] . 因此研究掌握 GF 不同成土母质土壤水稻 Cd 迁移累积的影响具有 重要意义. 本文通过水稻盆栽试验研究硅钙镁肥对 不同母质发育稻田土壤水稻 Cd 吸收累积的影响及

Transcript of Cd 吸收 累积的影响及其差异研究 -...

第 5 卷第 3 期 湖南生态科学学报 Vol5 No32 0 1 8 年 9 月 Journal of Hunan Ecological Science Sep201810512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273

收稿日期2018-06-11基金项目国家科技支撑计划项目(2015BAD05B02)ꎻ农业部财政部重大专项(农办财函[2016]6 号)ꎻ湖南省重点学科建设项目(2006180)作者简介李欣阳(1994 ̄)ꎬ男ꎬ硕士生ꎬ研究方向环境生态ꎬE ̄mail18390851747 163com

lowast通讯作者ꎬE ̄mailpqpeng123 sinacom引文格式李欣阳ꎬ龙  坚ꎬ董  霞ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究[J]湖南生态科学学报ꎬ2018ꎬ5(3)1 ̄9

doi103969 jissn2095-7300201803-001

硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

李欣阳1ꎬ2ꎬ  龙  坚1ꎬ2ꎬ  董  霞1ꎬ2ꎬ  蒋  凯1ꎬ2ꎬ  王树兵3ꎬ刘文辉4ꎬ  侯红波1ꎬ2ꎬ  彭佩钦1ꎬ2lowastꎬ  廖柏寒1ꎬ2

(1中南林业科技大学 环境科学与工程学院ꎬ湖南 长沙 410004ꎻ2中南林业科技大学 稻米品质安全控制湖南省工程

实验室ꎬ湖南 长沙 410004ꎻ3长沙县黄兴镇农业综合服务中心ꎬ湖南 长沙 410100ꎻ4宁乡市双江口镇农业综合服务

中心ꎬ湖南 长沙 410601)

摘  要为研究硅钙镁肥(GF)对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异ꎬ选取黄泥田(板页岩母质发

育水稻土)和麻砂泥(花岗岩母质发育水稻土)进行水稻盆栽试验ꎬ分析各生育时期土壤 pH 值与 CEC 变化土壤溶

液中 Cd 浓度水稻各部位(根茎叶谷壳和糙米)Cd 含量及水稻全株总累积量水稻根表铁膜 CdFe 含量与总累

积量结果表明稻田土壤施用 GF 显著降低了土壤溶液 Cd 浓度ꎻ施用 GF 显著提升了土壤 pH 和 CECꎻ施用 GF 降低

了水稻根茎叶谷壳与糙米中的 Cd 含量ꎬ显著降低水稻全株 Cd 累积量稻田土壤施用 GF 促进了水稻根表铁膜的

形成ꎬ增加了各生育时期 DCB ̄Fe降低了 DCB ̄Cd 含量ꎬ抑制了 Cd 由根部向上迁移ꎻ稻田土壤施用 GFꎬ黄泥田与麻

砂泥水稻糙米 Cd 含量降低至 011 mg kg 和 015 mg kgꎬ均低于国家标准相关性分析表明ꎬ土壤 pH 与土壤溶液 Cd浓度水稻糙米 Cd 含量呈显著(Plt005)或极显著负相关(Plt001)ꎬ水稻根表铁膜 Fe 累积量与 DCB ̄Cd根与糙米

Cd 含量呈极显著负相关(Plt001)ꎻGF 使叶对糙米 Cd 再转运贡献率降低 588(黄泥田)和 1280(麻砂泥) 稻田

土壤施用 GF 可有效阻控水稻对 Cd 的吸收累积ꎬ且麻砂泥效果优于黄泥田关键词Cdꎻ土壤ꎻ硅钙镁肥ꎻ水稻ꎻ根表铁膜ꎻ再转运

中图分类号S143      文献标识码A

    镉(Cd)是植物生长非必需且对耕地土壤极具

危害的重金属元素ꎬ可通过生物富集与生物放大等

途径ꎬ严重威胁人类健康[1 ̄3] 长期以来ꎬ水稻作为中

国南方主要粮食作物为人类补充了营养源ꎬ然而稻

米 Cd 超标的问题屡有发生[4ꎬ5]ꎬ如何有效降低稻米

Cdꎬ成为众多专家学者关注的焦点硅钙镁肥(GF)因其方便经济高效等优点被广泛用于农业生产ꎬ一方面在于 GF 有利于水稻作物增产[6]ꎬ另一方面

其作为改良措施在土壤 Cd 风险调控也颇有成效[7] 王怡璇等[8] 通过盆栽试验表明硅肥促进了水稻根

表铁膜的形成ꎬ抑制了 Cd 在水稻体内的转运ꎻ李造

煌等[9]通过盆栽试验发现钙镁磷肥促进了水稻对

CaMg 元素的吸收ꎬ并阻控 Cd 在水稻体内的富集已有研究表明ꎬ水稻蒸腾部位如叶轴旗叶等累积

的营养元素会再转运ꎬ通过韧皮部运输到稻米中ꎬ此过程促进了 Cd 伴随营养元素在水稻体内富

集[10ꎬ11] 到目前为止ꎬ大量研究集中于 GF 对 Cd 的

生物有效性的影响研究ꎬ对于 GF 是否会影响 Cd 在

水稻体内分布及 Cd 从叶部的再转运ꎬ尚有不明确ꎬ且现有阶段存在 GF 作为调控措施在不同区域土壤

Cd 控制存有不一的结果[12] 因此ꎬ研究掌握 GF 对

不同成土母质土壤mdash水稻 Cd 迁移累积的影响具有

重要意义本文通过水稻盆栽试验ꎬ研究硅钙镁肥对

不同母质发育稻田土壤水稻 Cd 吸收累积的影响及

差异所在ꎬ探讨水稻叶部 Cd 对糙米 Cd 累积的贡献

程度及对 GF 的响应对其影响ꎬ以期为农田修复 Cd污染土壤提高稻米品质提供科学依据与方法

1  材料与方法

11  供试材料

    供试土壤黄泥田为板页岩母质发育的水稻土ꎬ采自长沙县路口镇燕窝屋(地理坐标北纬 28deg26prime46Primeꎬ东经 113deg19prime13Prime)ꎻ供试土壤麻砂泥为花岗岩母

质发育的水稻土ꎬ采自长沙县金井镇脱甲村(地理

坐标北纬 28deg33prime31Primeꎬ东经 113deg20prime5Prime)两种土壤均

取自耕作层(0 cm ~ 15 cm)ꎬ土壤采回后ꎬ用木块压

碎ꎬ捡出肉眼可见的石粒根系碎屑等杂物ꎬ经风

干研磨过 10 目筛后混合均匀备用硅钙镁肥(GF)购于山东来丰农业科技有限公司ꎬ其基本理化性质

为pH122ꎬCaOK2OMgO 和 SiO2 质量分数分别

为 3089和 20ꎬ过 100 目筛后备用两种土

壤的基本理化性质如表 1 所示

表 1  供试土壤基本理化性质

Tab1  Basic physical and chemical properties of soil

土壤名称 母质类型Cd 含量 (mg kg)

DTPA 浸提 Cd (mg kg) pH 值

CEC C (mol kg)

有机质 (g kg)

粘粒 ( lt0002 mm)

黄泥田 板页岩 009 006 613 897 1403 2537麻砂泥 花岗岩 005 003 579 785 2098 1428

12  试验设计

水稻盆栽试验于 2016 年 6 月中旬开始实施称取 40 kg 风干水稻土于直径 20 cmꎬ高度 20 cm 的圆

柱形 PVC 盆中ꎬ加入 10 mg kg 浓度的 CdCl2 溶液ꎬ平衡老化 30 dꎬ按 N 015 g kgP 2O5 01 g kgK2O0 15 g kgꎬ 以 尿 素 ( CO ( NH2 ) 2 ) 磷 酸 铵

((NH4) 3PO4)和碳酸钾(K2CO3)的水溶液加入作

基肥选用湘晚籼 13 号作为水稻品种移栽到盆中ꎬ每盆种植 2 穴ꎬ每穴 2 株ꎬ水分管理与常规作物种植

方式一致ꎬ每个处理设 6 个重复待水稻生长 15 d后ꎬ于 8 月 10 日撒施 10 g kg Si ̄Ca ̄Mg 肥料

13  采样与分析

于 2016 年 9 月 10 日水稻抽穗期9 月 25 日灌

浆中期与 10 月 9 日成熟期分别采集整株水稻ꎬ用去

离子水清洗干净后分离水稻根茎叶壳和糙米ꎬ一部分新鲜根采用 DCB 浸提法[13] 提取根表铁膜ꎬ浸提液 DCB ̄Fe 经火焰原子吸收仪(AASICE ̄3500ꎬThermosꎬWalthamꎬUSA)测定ꎬDCB ̄Cd 经石墨炉原

子吸收仪(AASICE ̄3500ꎬThermosꎬWalthamꎬUSA)测定剩余根与其他部位均 105 杀青 30 min 后

70烘干至恒重ꎬ称量记录各部位干重ꎬ然后用小型

破碎机磨碎过 70 目筛备用并对盆内土壤采用破

坏性采样ꎬ环刀法采集一部分鲜土用以收集土壤溶

液ꎬ剩下部分土壤全部自然风干ꎬ磨碎ꎬ过 10 目与

100 目筛备用土壤理化性质采用常规分析方法测定[14]ꎬ土壤

总 Cd 含量采用三酸消解法[15]消解ꎬ有效态 Cd 含量

采用 DTPA 提取法[15] 提取ꎬ火焰原子吸收仪测定土壤溶液应用离心法采集(专利号 2015102553687)取300 g 新鲜土样置于聚丙烯离心瓶中ꎬ8 000 r min 冷

冻离心 15 minꎬ取上清液待测水稻各器官经干灰化

法消解[16]ꎬ过滤后保存上清液待测土壤溶液 Cd 浓

度与水稻植株 Cd 含量均采用石墨炉原子吸收仪测

定为保证数据的可靠性和稳定性ꎬ土壤与植株 Cd 含

量测定时每个样测 3 次ꎬ并以国家标准土壤样品

GBW(E) ̄070009 与植物样品 GSB ̄23(湖南大米)进行质量控制ꎬ相对标准偏差(RSD)低于 5

14  数据分析

试验中的数据应用 Excel 2016 处理ꎬSPSS 220统计分析ꎬOrigin 90 绘制图形

2  结果与分析

21  硅钙镁肥对不同生育时期土壤溶液 Cd 的影响

    各水稻生育时期土壤溶液 Cd 浓度如图 1 所示随着水稻生育时期的推进ꎬ土壤溶液中 Cd 浓度呈

逐渐降低的趋势(图 1)由图 1 还可知ꎬ麻砂泥各生

育时期土壤溶液中 Cd 浓度均低于黄泥田ꎬ这可能

与两种土壤理化性质差异有关GF 处理显著降低了

2 湖南生态科学学报 2018 年 9 月

各生育时期土壤溶液中 Cd 浓度(Plt005)与对照

相比ꎬ黄泥田土壤溶液 Cd 浓度各生育时期降低了

258~ 364ꎬ平均降低 318ꎻ麻砂泥则降低了

269~389ꎬ平均降低 330ꎬGF 对麻砂泥土壤

溶液 Cd 的降低效果优于黄泥田

图 1  不同水稻生育期土壤溶液 Cd 浓度

Fig1  Cd concentrations in soil solution at different ricegrowing periods in two types of soil

22  硅钙镁肥对不同生育时期水稻 Cd 吸收累积的

影响

    不同生育时期水稻对 Cd 的吸收累积情况如图

2 所示由图 2(a)可知ꎬGF 显著影响着水稻根茎对

Cd 的吸收累积与对照相比ꎬ黄泥田水稻根 Cd 含量

最大降低了 207(灌浆期)ꎬ平均降低 168ꎻ茎Cd 含量最大降低了 47 8 (成熟期)ꎬ平均降低

295ꎻ叶 Cd 含量最大降低了 566(灌浆期)ꎬ平均降低 433麻砂泥水稻根 Cd 含量最大降低了

212(成熟期)ꎬ平均降低 170ꎻ茎 Cd 含量最大

降低了 457(灌浆期)ꎬ平均降低 402ꎻ叶 Cd 含

量最大降低了 600(灌浆期)ꎬ平均降低 569由图 2(b)可知ꎬGF 处理下的黄泥田与麻砂泥水稻糙

米 Cd 含量分别为 011 mg kg 与 015 mg kgꎬ均低

于国家糙米 Cd 限量标准规定的 02 mg kgGF 对麻

砂泥土壤生长各部位降 Cd 率优于黄泥田

图 2  不同水稻生育时期各部位 Cd 含量

Fig2  Cd contents in different tissues of rice at different rice growing periods

23  硅钙镁肥对水稻 Cd 分布及累积总量的影响

通过测定水稻各部位(根茎叶谷壳和糙米)Cd 浓度及干重ꎬ汇总计算出水稻植株 Cd 累积总量

(表 2)由表 2 可知ꎬCd 在水稻植株累积特征表现

为根gt茎gt叶gt糙米gt谷壳GF 显著降低了水稻各部

位对 Cd 的累积总量ꎬ其中黄泥田糙米 Cd 累积总量

降低了 1885 μg potꎻGF 处理下水稻全株 Cd 累积

量在黄泥田与麻砂泥土壤中分别降低了 85 1μg pot4316 μg potꎬ黄泥田中 Cd 总累积量降低率

高于麻砂泥因此ꎬGF 有利于降低糙米中 Cd 的累积

量ꎬ并阻控水稻对 Cd 的富集ꎬ但不同土壤有所不同

3第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

由表 2 可以看出ꎬGF 降低了水稻各部位 Cd 累

积量ꎬ同时影响了 Cd 在水稻各部位的分布情况黄泥田与麻砂泥土壤中的水稻根部 Cd 百分比均较

CK 有所提升ꎬ而其他部位均有所降低ꎬ说明 GF 在

减少水稻从土壤吸收 Cd 的同时ꎬ抑制了根部 Cd 的

向上迁移过程

表 2  水稻全株 Cd 累积量(μg pot)与各部位 Cd 累积量分布比例()Tab2  Total accumulation and proportion of Cd in tissues of rice plants

土壤 处理 项目 根 茎 叶 谷壳 糙米 水稻全株 Cd 累积量

黄泥田

CK累积量 9583a 8630a 3593a 715a 1278a 23800a百分比 4026 3626 1510 300 537

GF累积量 6402b 5986b 1199b 478b 1224a 15290b百分比 4187 3915 784 313 800

麻砂泥

CK累积量 18248b 14793a 3891a 807a 2840a 40579a百分比 4497 3645 959 199 700

GF累积量 25489a 8358b 891b 571b 955b 36263a百分比 7029 2305 246 157 263

不同小写字母表示同一土壤中相同水稻部位 CK 与 GF 处理之间显著(Plt005)

24  硅钙镁肥对水稻根表铁膜的影响

表 3 显示了 CK 与 GF 处理下不同生育时期 Cd在水稻根表铁膜的富集特征CK 处理中ꎬDCB ̄Cd 与

DCB ̄Fe 含量随水稻生育时期的延长分别呈上升与

下降的趋势ꎬ添加 GF 显著降低了两种土壤水稻

DCB ̄Cd 含量(Plt005)ꎬ但黄泥田与麻砂泥土壤中

的水稻 DCB ̄Fe 含量分别随着 GF 的施加而有所降

低和提升ꎬ但不显著ꎬ这可能与两种土壤类型差异

有关由表 3 还可知ꎬ根表铁膜 Cd 累积量随着水稻

生育时期的推进而逐渐增加ꎬ并在成熟期达到最

多ꎬ如黄泥田的 14 23 μg pot 与麻砂泥的 9 18μg potꎬ而 GF 抑制了根表铁膜对 Cd 的富集ꎬ其中

抽穗期黄泥田中显著(Plt005)降低了 200 μg potꎬ并在成熟期降低最多达 301 μg potꎬ其他生育时期

均有所降低ꎬ但不显著水稻根表铁膜 Fe 累积量随

水稻生育时期的推进而逐渐降低ꎬGF 则在各生育时

期显著提高了铁膜数量(Plt005)比较 GF 对两种

土壤水稻 DCB ̄Cd 与 DCB ̄Fe 含量与累积量的影响

时发现ꎬ黄泥田中 DCB ̄Cd 含量与累积量降低率与

DCB ̄Fe 含量与累积量提升率均大于麻砂泥相关性研究表明(图 3)ꎬ根表铁膜 Fe 累积量与

根表铁膜根及糙米 Cd 含量均呈极显著负相关ꎬ表明增加根表铁膜数量可有效降低糙米 Cd 含量ꎬ施GF 可作为糙米降 Cd 的一种手段

表 3  GF 对水稻根表铁膜 Cd 与 Fe 吸收累积的影响

Tab3  Effects of GF on concentration and accumulation of Fe and Cd in iron plaque at different growing periods

土壤 生育期

含量

DCB ̄Cd (mg kg) DCB ̄Fe (mg kg)CK GF CK GF

累积量

Cd (μg pot) Fe (mg pot)CK GF CK GF

黄泥田

抽穗期 164plusmn003a 070plusmn006b 096plusmn004a 076plusmn036a 548plusmn012a 348plusmn028b 319plusmn005b 605plusmn025a灌浆期 247plusmn020a 130plusmn007b 055plusmn002a 036plusmn001b 835plusmn028a 760plusmn115a 188plusmn003b 413plusmn050a成熟期 485plusmn013a 204plusmn017b 030plusmn003a 022plusmn002a 1423plusmn001a 1122plusmn001a 089plusmn010b 237plusmn012a

麻砂泥

抽穗期 067plusmn009a 030plusmn005b 076plusmn036a 089plusmn004a 226plusmn011a 176plusmn035a 259plusmn023b 523plusmn040a灌浆期 189plusmn003a 082plusmn004b 036plusmn001a 047plusmn002a 621plusmn001a 505plusmn016a 118plusmn002b 289plusmn008a成熟期 299plusmn012a 143plusmn013b 022plusmn002b 036plusmn004a 918plusmn001a 797plusmn029a 067plusmn006b 199plusmn014a

同行 CK 与 GF 处理下根表铁膜 Cd 与 Fe 含量与累积量比较ꎬ相同小写字母表示差异不显著(Pgt005)

25  硅钙镁肥影响水稻叶对糙米 Cd 的转运

水稻灌浆期与成熟期叶对糙米 Cd 累积的贡献

率以及 GF 对其影响见表 4由表 4 可知ꎬCK 处理中

麻砂泥与黄泥田水稻灌浆期与成熟期叶对糙米 Cd累积的贡献率范围在 722 ~4993ꎬGF 显著降低

了水稻叶对糙米 Cd 累积的贡献率其中麻砂泥水稻

4 湖南生态科学学报 2018 年 9 月

图 3  根表铁膜 Fe 累积量与根 Cd 及糙米 Cd 含量相关性

Fig3  Correlations between Fe accumulation in iron plaqueand Cd contents in roots and brown rice

相比对照最多可降低 588 个百分点ꎬ麻砂泥最多可

降低 1280 个百分点ꎬGF 对叶 Cd 再转运过程的抑

制效果在麻砂泥土壤优于黄泥田

表 4  水稻叶对糙米 Cd 的贡献率()Tab4  Contribution rates of leaves to Cd uptake in brown rice

生育期

Cd黄泥田

CK GF麻砂泥

CK GF灌浆期 3603 4804 4993 4619成熟期 1843 563 722 508

贡献率通过公式(Ai-Ai-1) (B谷壳+B糙米) timesB糙米 (B谷壳 +B糙米)ꎬ其中 A 表示叶 Cd 累积量(μg pot)ꎬB谷壳和 B糙米分别表示谷壳和糙米中 Cd 累积量(μg pot)ꎬi 表示水稻生育期ꎬh 表示抽穗期

26  硅钙镁肥对土壤 pH 的影响

图 4(a)为施加 GF 对各水稻生长时期黄泥田与

麻砂泥土壤 pH 的影响 GF 显著提升了两种土壤

pHꎬ分别平均升高了 116 和 137 个单位为研究土

壤 pH 改变与土壤溶液 Cd 含量及水稻糙米 Cd 含量

变化的关系ꎬ进行了相关性分析(图 4ꎬb)ꎬ结果表

明ꎬ土壤 pH 与水稻糙米 Cd 与土壤溶液 Cd 含量呈

显著(Plt005)与极显著(Plt001)负相关

图 4  土壤 pH 与土壤溶液 Cd 及糙米 Cd 含量相关性

Fig4  Correlations between pH and Cd concentrations in soil solution and Cd contents in brown rice

3  讨  论

31  硅钙镁肥对不同土壤类型稻田水稻 Cd 吸收累

积的影响及其差异原因

    总的来看ꎬGF 对麻砂泥土壤溶液 Cd 含量水稻各部位 Cd 含量水稻 Cd 累积量降低率显著大于

黄泥田(Plt005)ꎬ这与两种土壤发育成土母质差异

有关[17] 花岗岩母质发育而来的麻砂泥土壤黏粒矿

物主要是 1 ∶ 1 型(高岭土)ꎬ而板页岩发育而来的

黄泥田土壤黏粒矿物还含有 2 ∶ 1 型(云母伊利石

等)1 ∶ 1 型黏土矿物ꎬ无膨胀性ꎬ带电荷少ꎬ胶体特

性差ꎬCEC 低ꎻ2 ∶ 1 型黏土矿物则带电量较大ꎬCEC较 1 ∶ 1 型高ꎬGF 的加入对麻砂泥土壤电荷量的相

对提升可能多于黄泥田(图 5)ꎬ更好的改善了土壤

胶体膨胀性ꎬ促进了对 Cd2+的吸附[18ꎬ19] 因此ꎬ不同

母质土壤环境容量不同ꎬ土壤调理剂改良作用效果

与机理可能亦不同ꎬ污染修复控制措施应当根据土

壤类型进行区分

5第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

图 5  各水稻生育期土壤 CEC 变化

Fig5  Change of soil CEC contents at differentrice growing periods

32  硅钙镁肥有效降低土壤 Cd 的生物有效性

土壤溶液中的可溶性物质可反应游离态离子

浓度在生态系统中调节ꎬ这对于植物吸收利用极为

重要ꎬ而土壤 pH 则是控制土壤 Cd 形态溶解性与

迁移能力的重要环境因子[20]ꎬ进而影响着作物对

Cd 的吸收累积GF 显著提升了土壤 pH(图 4ꎬa)ꎬ土壤 pH 值升高会提升土壤溶液中 OH-浓度ꎬ从而降

低土壤 Cd2+的解吸[21ꎬ22]ꎬ也会促进 Cd2+向稳定形式

的 Cd 复合物和 Mn 氧化物的转化ꎬ增强土壤表面

Cd2+的吸附ꎬ降低土壤溶液 Cd 浓度[23ꎬ24] 另一方面ꎬGF 携带入的 Ca2+Mg2+会与根系表面 Cd2+竞争吸附

位点ꎬ减少水稻对 Cd 的吸收[25]

33  硅钙镁肥影响 Cd 在水稻根系的迁移累积

众多研究表明ꎬ淹水条件下水稻根系易形成铁

膜ꎬ阻止 Cd 向水稻根系上部转移[13ꎬ26] 本研究中ꎬ水稻根表铁膜数量在抽穗期达到最高并随生育期

延长而有所降低ꎬ这与盆栽试验抽穗期到灌浆期水

位较高ꎬ而到生育期后期控制了盆栽水位使土壤由

淹水逐渐向干旱转变有关随着淹水过程减弱ꎬ土壤

由厌氧状态向好氧状态转变ꎬ使得可溶性的 Fe2+氧

化为难溶性的 Fe3+化合物ꎬ从而抑制了根表铁膜的

形成[11ꎬ27] GF 显著提升了水稻各生育期根表铁膜

Fe 累积量(Plt005)ꎬ降低了 Cd 的累积量因此ꎬGF可通过促进根表铁膜的形成而增强水稻根系的阻

Cd 迁移能力GF 在降低水稻全株 Cd 累积的同时ꎬ抑制了 Cd

在水稻体内的迁移累积(表 2)水稻糙米 Cd 累积量

在 GF 处理降低明显ꎬ这与 GF 携带的 Mg 进入水稻

体内有关ꎬ胡坤等[24] 指出 Mg 能有效抑制 Cd 由茎

秆向糙米迁移较 CK 处理ꎬGF 处理的根 Cd 累积量

百分比有所提升ꎬ其它部位有所降低Si 进入作物根

系与 Cd 易生成共沉淀ꎬ且 Si 与作物细胞壁交互联

结ꎬ细胞壁中 Si 复合物所带负电荷会增强与 Cd2+的

结合抑制 Cd 向可食部位的转运ꎬ从而抑制 Cd 在作

物中的运输[28 ̄30]

34  硅钙镁肥影响 Cd 在水稻体内的分布

有研究表明大量富集于水稻老叶中的 Cd 伴随

着营养元素经再转运过程进入水稻生殖器官[31ꎬ32] 如韧皮部分泌的 Fe 柠檬酸盐进入成熟的新叶后ꎬ携带其中 Fe 进入水稻生殖器官ꎬ从而进入糙米ꎬ同时

由于 Cd 与 Fe 之间的协同作用ꎬ此过程促使 Cd 在

糙米中的累积ꎬ加重稻米 Cd 危害[32] 因此ꎬ叶部 Cd的再转运对水稻糙米吸收累积 Cd 的贡献不容忽视本研究表明ꎬGF 处理下ꎬ黄泥田与麻砂泥生长水稻

叶部对糙米 Cd 的贡献率分别可降低 5 88 和

1280ꎬ故施用 GF 可有效阻控糙米 Cd 累积基于本研究的结果ꎬGF 可用作水稻阻 Cd 的一

种改良措施ꎬ但对其用量还需多年多点结合田间试

验进一步研究ꎬ还应加强 SiMg 及 Fe 等营养元素在

水稻体内与 Cd 的交互关系及 Si 毒性研究ꎬ以进一

步提升稻米品质

4  结  论

1)麻砂泥土壤施加 GF 的降 Cd 效率优于黄

泥田2)土壤溶液 pH 与土壤溶液 Cd 浓度糙米 Cd

含量呈显著(Plt005)或极显著(Plt001)负相关ꎬ施加 GF 提升了麻砂泥与黄泥田土壤溶液 pHꎬ降低了

土壤溶液中 Cd 浓度ꎬ进而降低了 Cd 的生物有效性3)水稻根表铁膜 Fe 累积量与 DCB ̄Cd根糙

米 Cd 含量呈极显著负相关ꎬ施加 GF 显著提升了水

稻各生育期铁膜量ꎬ阻控 Cd 向根系上部迁移累积4)GF 有效抑制水稻叶部 Cd 向糙米转移ꎬ可使

叶对糙米 Cd 的贡献率最多降低 1280(麻砂泥)与 588(黄泥田)

6 湖南生态科学学报 2018 年 9 月

参考文献[1] Jackson B PꎬPunshon TRecent advances in the measure ̄

ment of arsenicꎬ cadmiumꎬand mercury in rice and otherfoods[ J] Current Environmental Health Reportsꎬ 2015ꎬ2(1)15 ̄24

[2] Imseng MꎬWiggenhauser MꎬKeller Aꎬet al Fate of Cd inagricultural soils A stable isotope approach toanthropogenic impactꎬsoil formation and soil ̄plant cycling[J]Environmental Science Technologyꎬ2018ꎬ52(4)1 919 ̄1 928

[3] Luo JꎬYin DꎬCheng Hꎬet alPlant induced changes to rhi ̄zosphere characteristics affecting supply of Cd to Noccaeacaerulescens and Ni to Thlaspi goesingense[J]Environmentalscience technologyꎬ2018ꎬ52(9)5 085 ̄5093

[4] Andrade G FꎬPaniz F PꎬMartins Jr A Cꎬet alAgriculturaluse of Samarcos spilled mud assessed by rice cultivationApromising residue use [ J ] Chemosphereꎬ 2018ꎬ 193892 ̄902

[5] Liang CꎬXiao HꎬHu Zꎬet alUptakeꎬtransportationꎬand ac ̄cumulation of C 60 fullerene and heavy metal ions ( CdꎬCuꎬand Pb) in rice plants grown in an agricultural soil[J]Environmental Pollutionꎬ2018ꎬ235330 ̄338

[6] 韩科峰硅钙镁磷钾肥对双季稻生长产量及土壤养分

的影响[D]杭州浙江农林大学ꎬ2015Han K FEffects of siliconꎬcalciumꎬmagnesiumꎬphosphorusand potassium fertilizer on growthꎬyield of double ̄croppingrice and soil properties[D]HangzhouZhejiang AF Uni ̄versityꎬ2015

[7] 曹  胜ꎬ周卫军ꎬ周雨舟ꎬ等硅钙镁土壤调理剂对酸性

镉污染土壤及稻米的降镉效果 [ J]河南农业科学ꎬ2017ꎬ46(12)54 ̄58Cao SꎬZhou W JꎬZhou Y Zꎬet alThe cadmium reductioneffect of silicon calcium magnesium soil conditioner on acidcadmium polluted soil and rice[J]Journal of Henan Agri ̄cultural Sciencesꎬ2017ꎬ46(12)54 ̄58

[8] 王怡璇ꎬ刘  杰ꎬ唐云舒ꎬ等硅对水稻镉转运的抑制效

应研究[J]生态环境学报ꎬ2016ꎬ25(11)1 822 ̄1 827Wang Y XꎬLiu JꎬTang Y Sꎬet alInhibitory effect of siliconon cadmium accumulation and transportation in rice [J]E ̄cology and Environmental Sciencesꎬ2016ꎬ25(11)1 822 ̄1 827

[9] 李造煌ꎬ杨文弢ꎬ邹佳玲ꎬ等钙镁磷肥对土壤 Cd 生物有

效性和糙米 Cd 含量的影响[J]环境科学学报ꎬ2017ꎬ37(6)2 322 ̄2 330Li Z HꎬYang W TꎬZou J Lꎬet alEffects of calcium magne ̄sium phosphate fertilizer on Cd bioavailability in soil and

Cd contents in rice [ J ] Acta Scientiae Circumstantiaeꎬ2017ꎬ37(6)2 322 ̄2 330

[10] Uraguchi SꎬFujiwara TRice breaks ground for cadmium ̄free cereals[J]Current opinion in plant biologyꎬ2013ꎬ16(3)328 ̄334

[11] Zhou HꎬZhu WꎬYang W Tꎬet alCadmium uptakeꎬaccu ̄mulationꎬ and remobilization in iron plaque and ricetissues at different growth stages [ J] Ecotoxicology andEnvironment Safetyꎬ2018ꎬ15291 ̄97

[12] 宗良纲ꎬ张丽娜ꎬ孙静克ꎬ等3 种改良剂对不同土壤 ̄水稻系统中 Cd 行为的影响 [ J]农业环境科学学报ꎬ2006ꎬ25(4)834 ̄840Zong L GꎬZhang L NꎬSun J Kꎬet al Effects of three a ̄mendments on behaviors of cadmium in different soil ̄ricesystem[J]Journal of Agro ̄Environment Scienceꎬ2006ꎬ25(4)834 ̄840

[13] Cao Z ZꎬQin M LꎬLin X Yꎬet al Sulfur supply reducescadmium uptake and translocation in rice grains (Oryzasativa L) by enhancing iron plaque formationꎬcadmiumchelation and vacuolar sequestration [ J ] EnvironmentalPollutionꎬ2018ꎬ23876 ̄84

[14] 中国科学院南京土壤研究所土壤理化分析[M]上海上海科学技术出版社ꎬ1978Nanjing Institute of Soil Researchꎬ Chinese Academy ofSciences Soil physicochemical analysis [ M] ShanghaiShanghai Science and Technology Pressꎬ1978

[15] 鲁如坤土壤农业化学分析方法[M]北京科学出版

社ꎬ2000Lu R K Soil agrochemical analysis method[M] BeijingScience Pressꎬ2000

[16] Wang XꎬJiang HꎬShang Xꎬet alComparison of dry ashingand wet oxidation methods for recovering articulated huskphytoliths of foxtail millet and common millet from archae ̄ological soil[ J]Journal of Archaeological Scienceꎬ2014ꎬ45234 ̄239

[17] 李欣阳ꎬ龙  坚ꎬ王树兵ꎬ等典型土壤双季稻对 Cd 吸

收累积差异[J]环境科学ꎬ2018ꎬ39(1)406 ̄414Li X YꎬLong JꎬWang S Bꎬet alDifferences in Cd accu ̄mulation in typical soils under the double rice system[J]Environmental Scienceꎬ2018ꎬ39(1)406 ̄414

[18] Wang XꎬLi XꎬMa Rꎬet alQuadratic discriminant analysismodel for assessing the risk of cadmium pollution forpaddy fields in a county in China[ J]Environmental Pol ̄lutionꎬ2018ꎬ236366 ̄372

[19] Yu H YꎬLiu CꎬZhu Jꎬet alCadmium availability in ricepaddy fields from a mining area the effects of soil

7第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

properties highlighting iron fractions and pH value[J]En ̄vironmental Pollutionꎬ2016ꎬ20938 ̄45

[20] Rafiq M TꎬAziz RꎬYang Xꎬet alCadmium phytoavailabilityto rice (Oryza sativa L) grown in representative Chinesesoils A model to improve soil environmental qualityguidelines for food safety [ J ] Ecotoxicology andEnvironmental Safetyꎬ2014ꎬ103101 ̄107

[21] Li ZꎬJia MꎬWu Lꎬet alChanges in metal availabilityꎬde ̄sorption kinetics and speciation in contaminated soilsduring repeated phytoextraction with the Zn Cd hyperac ̄cumulator Sedum plumbizincicola[ J]Environmental Pol ̄lutionꎬ2016ꎬ209123 ̄131

[22] Du Laing Gꎬ Rinklebe Jꎬ Vandecasteele Bꎬ et al Tracemetal behaviour in estuarine and riverine floodplain soilsand sedimentsa review[J]Science of the Total Environ ̄mentꎬ2009ꎬ407(13)3 972 ̄3 985

[23] Zhao Xꎬ Jiang Tꎬ Du B Effect of organic matter andcalcium carbonate on behaviors of cadmium adsorption ̄desorption on from purple paddy soils[J]Chemosphereꎬ2014ꎬ99(3)41 ̄48

[24] Wang JꎬChen B Adsorption and coadsorption of organicpollutants and a heavy metal by graphene oxide and re ̄duced graphene materials[J]Chemical Engineering Jour ̄nalꎬ2015ꎬ281379 ̄388

[25] 胡  坤淹水条件下不同中微量元素和有益元素对土

壤镉有效性和水稻吸收镉的影响[D]雅安四川农业

大学ꎬ2010Hu KEffects of different sources of secondaryꎬmicro ̄andbeneficial elements on availability of soil cadmium and itsuptake by rice under waterlogged condition[D]YaanSi ̄

chuan Agricultural Universityꎬ2010[26] Ye XꎬLi HꎬZhang Lꎬet alAmendment damages the func ̄

tion of continuous flooding in decreasing Cd and Pb uptakeby rice in acid paddy soil[ J]Ecotoxicology and Environ ̄mental Safetyꎬ2018ꎬ147708 ̄714

[27] Yamaguchi NꎬOhkura TꎬTakahashi Yꎬet alArsenic distri ̄bution and speciation near rice roots influenced by ironplaques and redox conditions of the soil matrix[ J]Envi ̄ronmental Science Technologyꎬ 2014ꎬ 48 ( 3) 1 549 ̄1 556

[28] Liu JꎬMa JꎬHe Cꎬet alInhibition of cadmium ion uptakein rice ( Oryza sativa) cells by a wall ̄bound form ofsilicon[J]New Phytologistꎬ2013ꎬ200(3)691 ̄699

[29] Meharg CꎬMeharg A ASiliconꎬthe silver bullet for mitiga ̄ting biotic and abiotic stressꎬand improving grain qualityꎬin rice [ J] Environmental and Experimental Botanyꎬ2015ꎬ1208 ̄17

[30] Ma JꎬCai HꎬHe Cꎬet al A hemicellulose ̄bound form ofsilicon inhibits cadmium ion uptake in rice (Oryza sativa)cells[J]New Phytologistꎬ2015ꎬ206(3)1 063 ̄1 074

[31] Yan Y FꎬChoi D HꎬKim D Sꎬet alAbsorptionꎬtransloca ̄tionꎬand remobilization of cadmium supplied at differentgrowth stages of rice[J]Journal of Crop Science and Bio ̄technologyꎬ2010ꎬ13(2)113 ̄119

[32] Yoneyama TꎬIshikawa SꎬFujimaki SRoute and regulationof zincꎬcadmiumꎬand iron transport in rice plants (Oryzasativa L) during vegetative growth and grain fillingmetaltransportersꎬmetal speciationꎬgrain Cd reduction and Znand Fe biofortification [ J ] International Journal ofMolecular Sciencesꎬ2015ꎬ16(8)19 111 ̄19 129

Study on the Differences of the Effects of Si ̄Ca ̄Mg Fertilizer on Uptake andAccumulation of Cadmium in Rice Plants on Different Soil Types

LI Xin ̄yang1ꎬ2ꎬ  LONG Jian1ꎬ2ꎬ  DONG Xia1ꎬ2ꎬ  JIANG Kai1ꎬ2ꎬ  WANG Shu ̄bing3ꎬLIU Wen ̄hui4ꎬ  HOU Hong ̄bo1ꎬ2ꎬ  PENG Pei ̄qin1ꎬ2lowastꎬ  LIAO Bo ̄han1ꎬ2

(1College of Environmental Science and EngineeringꎬCentral South University of Forestry and TechnologyꎬChangsha 410004ꎬChinaꎻ2Hunan Engineering Laboratory for Control of Rice Quality and SafetyꎬCentral South University of Forestry and TechnologyꎬChangsha410004ꎬChinaꎻ3Agricultural Integrated Service Center of Changsha CountyꎬHuang Xing TownꎬChangsha 410100ꎬChinaꎻ4AgriculturalIntegrated Service Center of Ningxiang CityꎬShuang Jiangkou TownꎬChangsha 410601ꎬChina)

AbstractIn order to study the effect of Si ̄Ca ̄Mg fertilizer (GF) on uptake and accumulation of Cd

8 湖南生态科学学报 2018 年 9 月

in rice plants on two typical paddy soilsꎬthe rice pot experiment was conducted in the yellow clayey soil(YCS) developed from plate shale parent materials and the granitic sandy soil (GSS) developed fromgranite parent materialsChanges of soil pH and CEC in different growing periodsꎬCd concentrations insoil solutionꎬCd contents in rice tissues ( rootsꎬstemsꎬleavesꎬhusks and brown rice) and total Cd accu ̄mulation in rice plantsꎬContent and total accumulation of Cd and Fe in iron plaque were analyzedThe re ̄sults showed that application of GF in rice soil decreased significantly the concentration of Cd in soil solu ̄tionꎬincreased significantly soil pH and CECꎬreduced Cd contents in rice rootsꎬstemsꎬleavesꎬhusks andbrown riceꎬand decreased significantly the total Cd accumulation in rice plantsApplication of GF in ricesoil promoted the formation of the iron plaqueꎬincreased the content of DCB ̄Fe in different growing peri ̄odsꎬreduced the content of DCB ̄Cd and inhibited the upward migration of Cd from rootWhen GF was ap ̄plied in the rice soilꎬthe Cd content of brown rice in YCS and GSS decreased to 011 and 015 mg kgꎬboth lower than the national standard for brown rice Cd 02 mg kgCorrelation analysis presented signifi ̄cant (Plt005) and extremely significant (Plt001) negative relationship between pH in soil solution andCd concentration in soil solution and Cd content in brown riceꎬand the extremely significant negative rela ̄tionship between Fe accumulation in iron plaque and DCB ̄Cd and Cd contents in root and brown riceThecontribution rate of leaves to Cd remobilization of brown rice by GF was reduced by 588 (in YCS) and1280 (in GSS)Application of GF in rice soil can effectively prevent and control the absorption andaccumulation of Cd in riceꎬand the effect of GSS was better than that of YCS

KeywordsCdꎻsoilꎻSi ̄Ca ̄Mg fertilizerꎻriceꎻiron plaqueꎻremobilization

9第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

差异所在ꎬ探讨水稻叶部 Cd 对糙米 Cd 累积的贡献

程度及对 GF 的响应对其影响ꎬ以期为农田修复 Cd污染土壤提高稻米品质提供科学依据与方法

1  材料与方法

11  供试材料

    供试土壤黄泥田为板页岩母质发育的水稻土ꎬ采自长沙县路口镇燕窝屋(地理坐标北纬 28deg26prime46Primeꎬ东经 113deg19prime13Prime)ꎻ供试土壤麻砂泥为花岗岩母

质发育的水稻土ꎬ采自长沙县金井镇脱甲村(地理

坐标北纬 28deg33prime31Primeꎬ东经 113deg20prime5Prime)两种土壤均

取自耕作层(0 cm ~ 15 cm)ꎬ土壤采回后ꎬ用木块压

碎ꎬ捡出肉眼可见的石粒根系碎屑等杂物ꎬ经风

干研磨过 10 目筛后混合均匀备用硅钙镁肥(GF)购于山东来丰农业科技有限公司ꎬ其基本理化性质

为pH122ꎬCaOK2OMgO 和 SiO2 质量分数分别

为 3089和 20ꎬ过 100 目筛后备用两种土

壤的基本理化性质如表 1 所示

表 1  供试土壤基本理化性质

Tab1  Basic physical and chemical properties of soil

土壤名称 母质类型Cd 含量 (mg kg)

DTPA 浸提 Cd (mg kg) pH 值

CEC C (mol kg)

有机质 (g kg)

粘粒 ( lt0002 mm)

黄泥田 板页岩 009 006 613 897 1403 2537麻砂泥 花岗岩 005 003 579 785 2098 1428

12  试验设计

水稻盆栽试验于 2016 年 6 月中旬开始实施称取 40 kg 风干水稻土于直径 20 cmꎬ高度 20 cm 的圆

柱形 PVC 盆中ꎬ加入 10 mg kg 浓度的 CdCl2 溶液ꎬ平衡老化 30 dꎬ按 N 015 g kgP 2O5 01 g kgK2O0 15 g kgꎬ 以 尿 素 ( CO ( NH2 ) 2 ) 磷 酸 铵

((NH4) 3PO4)和碳酸钾(K2CO3)的水溶液加入作

基肥选用湘晚籼 13 号作为水稻品种移栽到盆中ꎬ每盆种植 2 穴ꎬ每穴 2 株ꎬ水分管理与常规作物种植

方式一致ꎬ每个处理设 6 个重复待水稻生长 15 d后ꎬ于 8 月 10 日撒施 10 g kg Si ̄Ca ̄Mg 肥料

13  采样与分析

于 2016 年 9 月 10 日水稻抽穗期9 月 25 日灌

浆中期与 10 月 9 日成熟期分别采集整株水稻ꎬ用去

离子水清洗干净后分离水稻根茎叶壳和糙米ꎬ一部分新鲜根采用 DCB 浸提法[13] 提取根表铁膜ꎬ浸提液 DCB ̄Fe 经火焰原子吸收仪(AASICE ̄3500ꎬThermosꎬWalthamꎬUSA)测定ꎬDCB ̄Cd 经石墨炉原

子吸收仪(AASICE ̄3500ꎬThermosꎬWalthamꎬUSA)测定剩余根与其他部位均 105 杀青 30 min 后

70烘干至恒重ꎬ称量记录各部位干重ꎬ然后用小型

破碎机磨碎过 70 目筛备用并对盆内土壤采用破

坏性采样ꎬ环刀法采集一部分鲜土用以收集土壤溶

液ꎬ剩下部分土壤全部自然风干ꎬ磨碎ꎬ过 10 目与

100 目筛备用土壤理化性质采用常规分析方法测定[14]ꎬ土壤

总 Cd 含量采用三酸消解法[15]消解ꎬ有效态 Cd 含量

采用 DTPA 提取法[15] 提取ꎬ火焰原子吸收仪测定土壤溶液应用离心法采集(专利号 2015102553687)取300 g 新鲜土样置于聚丙烯离心瓶中ꎬ8 000 r min 冷

冻离心 15 minꎬ取上清液待测水稻各器官经干灰化

法消解[16]ꎬ过滤后保存上清液待测土壤溶液 Cd 浓

度与水稻植株 Cd 含量均采用石墨炉原子吸收仪测

定为保证数据的可靠性和稳定性ꎬ土壤与植株 Cd 含

量测定时每个样测 3 次ꎬ并以国家标准土壤样品

GBW(E) ̄070009 与植物样品 GSB ̄23(湖南大米)进行质量控制ꎬ相对标准偏差(RSD)低于 5

14  数据分析

试验中的数据应用 Excel 2016 处理ꎬSPSS 220统计分析ꎬOrigin 90 绘制图形

2  结果与分析

21  硅钙镁肥对不同生育时期土壤溶液 Cd 的影响

    各水稻生育时期土壤溶液 Cd 浓度如图 1 所示随着水稻生育时期的推进ꎬ土壤溶液中 Cd 浓度呈

逐渐降低的趋势(图 1)由图 1 还可知ꎬ麻砂泥各生

育时期土壤溶液中 Cd 浓度均低于黄泥田ꎬ这可能

与两种土壤理化性质差异有关GF 处理显著降低了

2 湖南生态科学学报 2018 年 9 月

各生育时期土壤溶液中 Cd 浓度(Plt005)与对照

相比ꎬ黄泥田土壤溶液 Cd 浓度各生育时期降低了

258~ 364ꎬ平均降低 318ꎻ麻砂泥则降低了

269~389ꎬ平均降低 330ꎬGF 对麻砂泥土壤

溶液 Cd 的降低效果优于黄泥田

图 1  不同水稻生育期土壤溶液 Cd 浓度

Fig1  Cd concentrations in soil solution at different ricegrowing periods in two types of soil

22  硅钙镁肥对不同生育时期水稻 Cd 吸收累积的

影响

    不同生育时期水稻对 Cd 的吸收累积情况如图

2 所示由图 2(a)可知ꎬGF 显著影响着水稻根茎对

Cd 的吸收累积与对照相比ꎬ黄泥田水稻根 Cd 含量

最大降低了 207(灌浆期)ꎬ平均降低 168ꎻ茎Cd 含量最大降低了 47 8 (成熟期)ꎬ平均降低

295ꎻ叶 Cd 含量最大降低了 566(灌浆期)ꎬ平均降低 433麻砂泥水稻根 Cd 含量最大降低了

212(成熟期)ꎬ平均降低 170ꎻ茎 Cd 含量最大

降低了 457(灌浆期)ꎬ平均降低 402ꎻ叶 Cd 含

量最大降低了 600(灌浆期)ꎬ平均降低 569由图 2(b)可知ꎬGF 处理下的黄泥田与麻砂泥水稻糙

米 Cd 含量分别为 011 mg kg 与 015 mg kgꎬ均低

于国家糙米 Cd 限量标准规定的 02 mg kgGF 对麻

砂泥土壤生长各部位降 Cd 率优于黄泥田

图 2  不同水稻生育时期各部位 Cd 含量

Fig2  Cd contents in different tissues of rice at different rice growing periods

23  硅钙镁肥对水稻 Cd 分布及累积总量的影响

通过测定水稻各部位(根茎叶谷壳和糙米)Cd 浓度及干重ꎬ汇总计算出水稻植株 Cd 累积总量

(表 2)由表 2 可知ꎬCd 在水稻植株累积特征表现

为根gt茎gt叶gt糙米gt谷壳GF 显著降低了水稻各部

位对 Cd 的累积总量ꎬ其中黄泥田糙米 Cd 累积总量

降低了 1885 μg potꎻGF 处理下水稻全株 Cd 累积

量在黄泥田与麻砂泥土壤中分别降低了 85 1μg pot4316 μg potꎬ黄泥田中 Cd 总累积量降低率

高于麻砂泥因此ꎬGF 有利于降低糙米中 Cd 的累积

量ꎬ并阻控水稻对 Cd 的富集ꎬ但不同土壤有所不同

3第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

由表 2 可以看出ꎬGF 降低了水稻各部位 Cd 累

积量ꎬ同时影响了 Cd 在水稻各部位的分布情况黄泥田与麻砂泥土壤中的水稻根部 Cd 百分比均较

CK 有所提升ꎬ而其他部位均有所降低ꎬ说明 GF 在

减少水稻从土壤吸收 Cd 的同时ꎬ抑制了根部 Cd 的

向上迁移过程

表 2  水稻全株 Cd 累积量(μg pot)与各部位 Cd 累积量分布比例()Tab2  Total accumulation and proportion of Cd in tissues of rice plants

土壤 处理 项目 根 茎 叶 谷壳 糙米 水稻全株 Cd 累积量

黄泥田

CK累积量 9583a 8630a 3593a 715a 1278a 23800a百分比 4026 3626 1510 300 537

GF累积量 6402b 5986b 1199b 478b 1224a 15290b百分比 4187 3915 784 313 800

麻砂泥

CK累积量 18248b 14793a 3891a 807a 2840a 40579a百分比 4497 3645 959 199 700

GF累积量 25489a 8358b 891b 571b 955b 36263a百分比 7029 2305 246 157 263

不同小写字母表示同一土壤中相同水稻部位 CK 与 GF 处理之间显著(Plt005)

24  硅钙镁肥对水稻根表铁膜的影响

表 3 显示了 CK 与 GF 处理下不同生育时期 Cd在水稻根表铁膜的富集特征CK 处理中ꎬDCB ̄Cd 与

DCB ̄Fe 含量随水稻生育时期的延长分别呈上升与

下降的趋势ꎬ添加 GF 显著降低了两种土壤水稻

DCB ̄Cd 含量(Plt005)ꎬ但黄泥田与麻砂泥土壤中

的水稻 DCB ̄Fe 含量分别随着 GF 的施加而有所降

低和提升ꎬ但不显著ꎬ这可能与两种土壤类型差异

有关由表 3 还可知ꎬ根表铁膜 Cd 累积量随着水稻

生育时期的推进而逐渐增加ꎬ并在成熟期达到最

多ꎬ如黄泥田的 14 23 μg pot 与麻砂泥的 9 18μg potꎬ而 GF 抑制了根表铁膜对 Cd 的富集ꎬ其中

抽穗期黄泥田中显著(Plt005)降低了 200 μg potꎬ并在成熟期降低最多达 301 μg potꎬ其他生育时期

均有所降低ꎬ但不显著水稻根表铁膜 Fe 累积量随

水稻生育时期的推进而逐渐降低ꎬGF 则在各生育时

期显著提高了铁膜数量(Plt005)比较 GF 对两种

土壤水稻 DCB ̄Cd 与 DCB ̄Fe 含量与累积量的影响

时发现ꎬ黄泥田中 DCB ̄Cd 含量与累积量降低率与

DCB ̄Fe 含量与累积量提升率均大于麻砂泥相关性研究表明(图 3)ꎬ根表铁膜 Fe 累积量与

根表铁膜根及糙米 Cd 含量均呈极显著负相关ꎬ表明增加根表铁膜数量可有效降低糙米 Cd 含量ꎬ施GF 可作为糙米降 Cd 的一种手段

表 3  GF 对水稻根表铁膜 Cd 与 Fe 吸收累积的影响

Tab3  Effects of GF on concentration and accumulation of Fe and Cd in iron plaque at different growing periods

土壤 生育期

含量

DCB ̄Cd (mg kg) DCB ̄Fe (mg kg)CK GF CK GF

累积量

Cd (μg pot) Fe (mg pot)CK GF CK GF

黄泥田

抽穗期 164plusmn003a 070plusmn006b 096plusmn004a 076plusmn036a 548plusmn012a 348plusmn028b 319plusmn005b 605plusmn025a灌浆期 247plusmn020a 130plusmn007b 055plusmn002a 036plusmn001b 835plusmn028a 760plusmn115a 188plusmn003b 413plusmn050a成熟期 485plusmn013a 204plusmn017b 030plusmn003a 022plusmn002a 1423plusmn001a 1122plusmn001a 089plusmn010b 237plusmn012a

麻砂泥

抽穗期 067plusmn009a 030plusmn005b 076plusmn036a 089plusmn004a 226plusmn011a 176plusmn035a 259plusmn023b 523plusmn040a灌浆期 189plusmn003a 082plusmn004b 036plusmn001a 047plusmn002a 621plusmn001a 505plusmn016a 118plusmn002b 289plusmn008a成熟期 299plusmn012a 143plusmn013b 022plusmn002b 036plusmn004a 918plusmn001a 797plusmn029a 067plusmn006b 199plusmn014a

同行 CK 与 GF 处理下根表铁膜 Cd 与 Fe 含量与累积量比较ꎬ相同小写字母表示差异不显著(Pgt005)

25  硅钙镁肥影响水稻叶对糙米 Cd 的转运

水稻灌浆期与成熟期叶对糙米 Cd 累积的贡献

率以及 GF 对其影响见表 4由表 4 可知ꎬCK 处理中

麻砂泥与黄泥田水稻灌浆期与成熟期叶对糙米 Cd累积的贡献率范围在 722 ~4993ꎬGF 显著降低

了水稻叶对糙米 Cd 累积的贡献率其中麻砂泥水稻

4 湖南生态科学学报 2018 年 9 月

图 3  根表铁膜 Fe 累积量与根 Cd 及糙米 Cd 含量相关性

Fig3  Correlations between Fe accumulation in iron plaqueand Cd contents in roots and brown rice

相比对照最多可降低 588 个百分点ꎬ麻砂泥最多可

降低 1280 个百分点ꎬGF 对叶 Cd 再转运过程的抑

制效果在麻砂泥土壤优于黄泥田

表 4  水稻叶对糙米 Cd 的贡献率()Tab4  Contribution rates of leaves to Cd uptake in brown rice

生育期

Cd黄泥田

CK GF麻砂泥

CK GF灌浆期 3603 4804 4993 4619成熟期 1843 563 722 508

贡献率通过公式(Ai-Ai-1) (B谷壳+B糙米) timesB糙米 (B谷壳 +B糙米)ꎬ其中 A 表示叶 Cd 累积量(μg pot)ꎬB谷壳和 B糙米分别表示谷壳和糙米中 Cd 累积量(μg pot)ꎬi 表示水稻生育期ꎬh 表示抽穗期

26  硅钙镁肥对土壤 pH 的影响

图 4(a)为施加 GF 对各水稻生长时期黄泥田与

麻砂泥土壤 pH 的影响 GF 显著提升了两种土壤

pHꎬ分别平均升高了 116 和 137 个单位为研究土

壤 pH 改变与土壤溶液 Cd 含量及水稻糙米 Cd 含量

变化的关系ꎬ进行了相关性分析(图 4ꎬb)ꎬ结果表

明ꎬ土壤 pH 与水稻糙米 Cd 与土壤溶液 Cd 含量呈

显著(Plt005)与极显著(Plt001)负相关

图 4  土壤 pH 与土壤溶液 Cd 及糙米 Cd 含量相关性

Fig4  Correlations between pH and Cd concentrations in soil solution and Cd contents in brown rice

3  讨  论

31  硅钙镁肥对不同土壤类型稻田水稻 Cd 吸收累

积的影响及其差异原因

    总的来看ꎬGF 对麻砂泥土壤溶液 Cd 含量水稻各部位 Cd 含量水稻 Cd 累积量降低率显著大于

黄泥田(Plt005)ꎬ这与两种土壤发育成土母质差异

有关[17] 花岗岩母质发育而来的麻砂泥土壤黏粒矿

物主要是 1 ∶ 1 型(高岭土)ꎬ而板页岩发育而来的

黄泥田土壤黏粒矿物还含有 2 ∶ 1 型(云母伊利石

等)1 ∶ 1 型黏土矿物ꎬ无膨胀性ꎬ带电荷少ꎬ胶体特

性差ꎬCEC 低ꎻ2 ∶ 1 型黏土矿物则带电量较大ꎬCEC较 1 ∶ 1 型高ꎬGF 的加入对麻砂泥土壤电荷量的相

对提升可能多于黄泥田(图 5)ꎬ更好的改善了土壤

胶体膨胀性ꎬ促进了对 Cd2+的吸附[18ꎬ19] 因此ꎬ不同

母质土壤环境容量不同ꎬ土壤调理剂改良作用效果

与机理可能亦不同ꎬ污染修复控制措施应当根据土

壤类型进行区分

5第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

图 5  各水稻生育期土壤 CEC 变化

Fig5  Change of soil CEC contents at differentrice growing periods

32  硅钙镁肥有效降低土壤 Cd 的生物有效性

土壤溶液中的可溶性物质可反应游离态离子

浓度在生态系统中调节ꎬ这对于植物吸收利用极为

重要ꎬ而土壤 pH 则是控制土壤 Cd 形态溶解性与

迁移能力的重要环境因子[20]ꎬ进而影响着作物对

Cd 的吸收累积GF 显著提升了土壤 pH(图 4ꎬa)ꎬ土壤 pH 值升高会提升土壤溶液中 OH-浓度ꎬ从而降

低土壤 Cd2+的解吸[21ꎬ22]ꎬ也会促进 Cd2+向稳定形式

的 Cd 复合物和 Mn 氧化物的转化ꎬ增强土壤表面

Cd2+的吸附ꎬ降低土壤溶液 Cd 浓度[23ꎬ24] 另一方面ꎬGF 携带入的 Ca2+Mg2+会与根系表面 Cd2+竞争吸附

位点ꎬ减少水稻对 Cd 的吸收[25]

33  硅钙镁肥影响 Cd 在水稻根系的迁移累积

众多研究表明ꎬ淹水条件下水稻根系易形成铁

膜ꎬ阻止 Cd 向水稻根系上部转移[13ꎬ26] 本研究中ꎬ水稻根表铁膜数量在抽穗期达到最高并随生育期

延长而有所降低ꎬ这与盆栽试验抽穗期到灌浆期水

位较高ꎬ而到生育期后期控制了盆栽水位使土壤由

淹水逐渐向干旱转变有关随着淹水过程减弱ꎬ土壤

由厌氧状态向好氧状态转变ꎬ使得可溶性的 Fe2+氧

化为难溶性的 Fe3+化合物ꎬ从而抑制了根表铁膜的

形成[11ꎬ27] GF 显著提升了水稻各生育期根表铁膜

Fe 累积量(Plt005)ꎬ降低了 Cd 的累积量因此ꎬGF可通过促进根表铁膜的形成而增强水稻根系的阻

Cd 迁移能力GF 在降低水稻全株 Cd 累积的同时ꎬ抑制了 Cd

在水稻体内的迁移累积(表 2)水稻糙米 Cd 累积量

在 GF 处理降低明显ꎬ这与 GF 携带的 Mg 进入水稻

体内有关ꎬ胡坤等[24] 指出 Mg 能有效抑制 Cd 由茎

秆向糙米迁移较 CK 处理ꎬGF 处理的根 Cd 累积量

百分比有所提升ꎬ其它部位有所降低Si 进入作物根

系与 Cd 易生成共沉淀ꎬ且 Si 与作物细胞壁交互联

结ꎬ细胞壁中 Si 复合物所带负电荷会增强与 Cd2+的

结合抑制 Cd 向可食部位的转运ꎬ从而抑制 Cd 在作

物中的运输[28 ̄30]

34  硅钙镁肥影响 Cd 在水稻体内的分布

有研究表明大量富集于水稻老叶中的 Cd 伴随

着营养元素经再转运过程进入水稻生殖器官[31ꎬ32] 如韧皮部分泌的 Fe 柠檬酸盐进入成熟的新叶后ꎬ携带其中 Fe 进入水稻生殖器官ꎬ从而进入糙米ꎬ同时

由于 Cd 与 Fe 之间的协同作用ꎬ此过程促使 Cd 在

糙米中的累积ꎬ加重稻米 Cd 危害[32] 因此ꎬ叶部 Cd的再转运对水稻糙米吸收累积 Cd 的贡献不容忽视本研究表明ꎬGF 处理下ꎬ黄泥田与麻砂泥生长水稻

叶部对糙米 Cd 的贡献率分别可降低 5 88 和

1280ꎬ故施用 GF 可有效阻控糙米 Cd 累积基于本研究的结果ꎬGF 可用作水稻阻 Cd 的一

种改良措施ꎬ但对其用量还需多年多点结合田间试

验进一步研究ꎬ还应加强 SiMg 及 Fe 等营养元素在

水稻体内与 Cd 的交互关系及 Si 毒性研究ꎬ以进一

步提升稻米品质

4  结  论

1)麻砂泥土壤施加 GF 的降 Cd 效率优于黄

泥田2)土壤溶液 pH 与土壤溶液 Cd 浓度糙米 Cd

含量呈显著(Plt005)或极显著(Plt001)负相关ꎬ施加 GF 提升了麻砂泥与黄泥田土壤溶液 pHꎬ降低了

土壤溶液中 Cd 浓度ꎬ进而降低了 Cd 的生物有效性3)水稻根表铁膜 Fe 累积量与 DCB ̄Cd根糙

米 Cd 含量呈极显著负相关ꎬ施加 GF 显著提升了水

稻各生育期铁膜量ꎬ阻控 Cd 向根系上部迁移累积4)GF 有效抑制水稻叶部 Cd 向糙米转移ꎬ可使

叶对糙米 Cd 的贡献率最多降低 1280(麻砂泥)与 588(黄泥田)

6 湖南生态科学学报 2018 年 9 月

参考文献[1] Jackson B PꎬPunshon TRecent advances in the measure ̄

ment of arsenicꎬ cadmiumꎬand mercury in rice and otherfoods[ J] Current Environmental Health Reportsꎬ 2015ꎬ2(1)15 ̄24

[2] Imseng MꎬWiggenhauser MꎬKeller Aꎬet al Fate of Cd inagricultural soils A stable isotope approach toanthropogenic impactꎬsoil formation and soil ̄plant cycling[J]Environmental Science Technologyꎬ2018ꎬ52(4)1 919 ̄1 928

[3] Luo JꎬYin DꎬCheng Hꎬet alPlant induced changes to rhi ̄zosphere characteristics affecting supply of Cd to Noccaeacaerulescens and Ni to Thlaspi goesingense[J]Environmentalscience technologyꎬ2018ꎬ52(9)5 085 ̄5093

[4] Andrade G FꎬPaniz F PꎬMartins Jr A Cꎬet alAgriculturaluse of Samarcos spilled mud assessed by rice cultivationApromising residue use [ J ] Chemosphereꎬ 2018ꎬ 193892 ̄902

[5] Liang CꎬXiao HꎬHu Zꎬet alUptakeꎬtransportationꎬand ac ̄cumulation of C 60 fullerene and heavy metal ions ( CdꎬCuꎬand Pb) in rice plants grown in an agricultural soil[J]Environmental Pollutionꎬ2018ꎬ235330 ̄338

[6] 韩科峰硅钙镁磷钾肥对双季稻生长产量及土壤养分

的影响[D]杭州浙江农林大学ꎬ2015Han K FEffects of siliconꎬcalciumꎬmagnesiumꎬphosphorusand potassium fertilizer on growthꎬyield of double ̄croppingrice and soil properties[D]HangzhouZhejiang AF Uni ̄versityꎬ2015

[7] 曹  胜ꎬ周卫军ꎬ周雨舟ꎬ等硅钙镁土壤调理剂对酸性

镉污染土壤及稻米的降镉效果 [ J]河南农业科学ꎬ2017ꎬ46(12)54 ̄58Cao SꎬZhou W JꎬZhou Y Zꎬet alThe cadmium reductioneffect of silicon calcium magnesium soil conditioner on acidcadmium polluted soil and rice[J]Journal of Henan Agri ̄cultural Sciencesꎬ2017ꎬ46(12)54 ̄58

[8] 王怡璇ꎬ刘  杰ꎬ唐云舒ꎬ等硅对水稻镉转运的抑制效

应研究[J]生态环境学报ꎬ2016ꎬ25(11)1 822 ̄1 827Wang Y XꎬLiu JꎬTang Y Sꎬet alInhibitory effect of siliconon cadmium accumulation and transportation in rice [J]E ̄cology and Environmental Sciencesꎬ2016ꎬ25(11)1 822 ̄1 827

[9] 李造煌ꎬ杨文弢ꎬ邹佳玲ꎬ等钙镁磷肥对土壤 Cd 生物有

效性和糙米 Cd 含量的影响[J]环境科学学报ꎬ2017ꎬ37(6)2 322 ̄2 330Li Z HꎬYang W TꎬZou J Lꎬet alEffects of calcium magne ̄sium phosphate fertilizer on Cd bioavailability in soil and

Cd contents in rice [ J ] Acta Scientiae Circumstantiaeꎬ2017ꎬ37(6)2 322 ̄2 330

[10] Uraguchi SꎬFujiwara TRice breaks ground for cadmium ̄free cereals[J]Current opinion in plant biologyꎬ2013ꎬ16(3)328 ̄334

[11] Zhou HꎬZhu WꎬYang W Tꎬet alCadmium uptakeꎬaccu ̄mulationꎬ and remobilization in iron plaque and ricetissues at different growth stages [ J] Ecotoxicology andEnvironment Safetyꎬ2018ꎬ15291 ̄97

[12] 宗良纲ꎬ张丽娜ꎬ孙静克ꎬ等3 种改良剂对不同土壤 ̄水稻系统中 Cd 行为的影响 [ J]农业环境科学学报ꎬ2006ꎬ25(4)834 ̄840Zong L GꎬZhang L NꎬSun J Kꎬet al Effects of three a ̄mendments on behaviors of cadmium in different soil ̄ricesystem[J]Journal of Agro ̄Environment Scienceꎬ2006ꎬ25(4)834 ̄840

[13] Cao Z ZꎬQin M LꎬLin X Yꎬet al Sulfur supply reducescadmium uptake and translocation in rice grains (Oryzasativa L) by enhancing iron plaque formationꎬcadmiumchelation and vacuolar sequestration [ J ] EnvironmentalPollutionꎬ2018ꎬ23876 ̄84

[14] 中国科学院南京土壤研究所土壤理化分析[M]上海上海科学技术出版社ꎬ1978Nanjing Institute of Soil Researchꎬ Chinese Academy ofSciences Soil physicochemical analysis [ M] ShanghaiShanghai Science and Technology Pressꎬ1978

[15] 鲁如坤土壤农业化学分析方法[M]北京科学出版

社ꎬ2000Lu R K Soil agrochemical analysis method[M] BeijingScience Pressꎬ2000

[16] Wang XꎬJiang HꎬShang Xꎬet alComparison of dry ashingand wet oxidation methods for recovering articulated huskphytoliths of foxtail millet and common millet from archae ̄ological soil[ J]Journal of Archaeological Scienceꎬ2014ꎬ45234 ̄239

[17] 李欣阳ꎬ龙  坚ꎬ王树兵ꎬ等典型土壤双季稻对 Cd 吸

收累积差异[J]环境科学ꎬ2018ꎬ39(1)406 ̄414Li X YꎬLong JꎬWang S Bꎬet alDifferences in Cd accu ̄mulation in typical soils under the double rice system[J]Environmental Scienceꎬ2018ꎬ39(1)406 ̄414

[18] Wang XꎬLi XꎬMa Rꎬet alQuadratic discriminant analysismodel for assessing the risk of cadmium pollution forpaddy fields in a county in China[ J]Environmental Pol ̄lutionꎬ2018ꎬ236366 ̄372

[19] Yu H YꎬLiu CꎬZhu Jꎬet alCadmium availability in ricepaddy fields from a mining area the effects of soil

7第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

properties highlighting iron fractions and pH value[J]En ̄vironmental Pollutionꎬ2016ꎬ20938 ̄45

[20] Rafiq M TꎬAziz RꎬYang Xꎬet alCadmium phytoavailabilityto rice (Oryza sativa L) grown in representative Chinesesoils A model to improve soil environmental qualityguidelines for food safety [ J ] Ecotoxicology andEnvironmental Safetyꎬ2014ꎬ103101 ̄107

[21] Li ZꎬJia MꎬWu Lꎬet alChanges in metal availabilityꎬde ̄sorption kinetics and speciation in contaminated soilsduring repeated phytoextraction with the Zn Cd hyperac ̄cumulator Sedum plumbizincicola[ J]Environmental Pol ̄lutionꎬ2016ꎬ209123 ̄131

[22] Du Laing Gꎬ Rinklebe Jꎬ Vandecasteele Bꎬ et al Tracemetal behaviour in estuarine and riverine floodplain soilsand sedimentsa review[J]Science of the Total Environ ̄mentꎬ2009ꎬ407(13)3 972 ̄3 985

[23] Zhao Xꎬ Jiang Tꎬ Du B Effect of organic matter andcalcium carbonate on behaviors of cadmium adsorption ̄desorption on from purple paddy soils[J]Chemosphereꎬ2014ꎬ99(3)41 ̄48

[24] Wang JꎬChen B Adsorption and coadsorption of organicpollutants and a heavy metal by graphene oxide and re ̄duced graphene materials[J]Chemical Engineering Jour ̄nalꎬ2015ꎬ281379 ̄388

[25] 胡  坤淹水条件下不同中微量元素和有益元素对土

壤镉有效性和水稻吸收镉的影响[D]雅安四川农业

大学ꎬ2010Hu KEffects of different sources of secondaryꎬmicro ̄andbeneficial elements on availability of soil cadmium and itsuptake by rice under waterlogged condition[D]YaanSi ̄

chuan Agricultural Universityꎬ2010[26] Ye XꎬLi HꎬZhang Lꎬet alAmendment damages the func ̄

tion of continuous flooding in decreasing Cd and Pb uptakeby rice in acid paddy soil[ J]Ecotoxicology and Environ ̄mental Safetyꎬ2018ꎬ147708 ̄714

[27] Yamaguchi NꎬOhkura TꎬTakahashi Yꎬet alArsenic distri ̄bution and speciation near rice roots influenced by ironplaques and redox conditions of the soil matrix[ J]Envi ̄ronmental Science Technologyꎬ 2014ꎬ 48 ( 3) 1 549 ̄1 556

[28] Liu JꎬMa JꎬHe Cꎬet alInhibition of cadmium ion uptakein rice ( Oryza sativa) cells by a wall ̄bound form ofsilicon[J]New Phytologistꎬ2013ꎬ200(3)691 ̄699

[29] Meharg CꎬMeharg A ASiliconꎬthe silver bullet for mitiga ̄ting biotic and abiotic stressꎬand improving grain qualityꎬin rice [ J] Environmental and Experimental Botanyꎬ2015ꎬ1208 ̄17

[30] Ma JꎬCai HꎬHe Cꎬet al A hemicellulose ̄bound form ofsilicon inhibits cadmium ion uptake in rice (Oryza sativa)cells[J]New Phytologistꎬ2015ꎬ206(3)1 063 ̄1 074

[31] Yan Y FꎬChoi D HꎬKim D Sꎬet alAbsorptionꎬtransloca ̄tionꎬand remobilization of cadmium supplied at differentgrowth stages of rice[J]Journal of Crop Science and Bio ̄technologyꎬ2010ꎬ13(2)113 ̄119

[32] Yoneyama TꎬIshikawa SꎬFujimaki SRoute and regulationof zincꎬcadmiumꎬand iron transport in rice plants (Oryzasativa L) during vegetative growth and grain fillingmetaltransportersꎬmetal speciationꎬgrain Cd reduction and Znand Fe biofortification [ J ] International Journal ofMolecular Sciencesꎬ2015ꎬ16(8)19 111 ̄19 129

Study on the Differences of the Effects of Si ̄Ca ̄Mg Fertilizer on Uptake andAccumulation of Cadmium in Rice Plants on Different Soil Types

LI Xin ̄yang1ꎬ2ꎬ  LONG Jian1ꎬ2ꎬ  DONG Xia1ꎬ2ꎬ  JIANG Kai1ꎬ2ꎬ  WANG Shu ̄bing3ꎬLIU Wen ̄hui4ꎬ  HOU Hong ̄bo1ꎬ2ꎬ  PENG Pei ̄qin1ꎬ2lowastꎬ  LIAO Bo ̄han1ꎬ2

(1College of Environmental Science and EngineeringꎬCentral South University of Forestry and TechnologyꎬChangsha 410004ꎬChinaꎻ2Hunan Engineering Laboratory for Control of Rice Quality and SafetyꎬCentral South University of Forestry and TechnologyꎬChangsha410004ꎬChinaꎻ3Agricultural Integrated Service Center of Changsha CountyꎬHuang Xing TownꎬChangsha 410100ꎬChinaꎻ4AgriculturalIntegrated Service Center of Ningxiang CityꎬShuang Jiangkou TownꎬChangsha 410601ꎬChina)

AbstractIn order to study the effect of Si ̄Ca ̄Mg fertilizer (GF) on uptake and accumulation of Cd

8 湖南生态科学学报 2018 年 9 月

in rice plants on two typical paddy soilsꎬthe rice pot experiment was conducted in the yellow clayey soil(YCS) developed from plate shale parent materials and the granitic sandy soil (GSS) developed fromgranite parent materialsChanges of soil pH and CEC in different growing periodsꎬCd concentrations insoil solutionꎬCd contents in rice tissues ( rootsꎬstemsꎬleavesꎬhusks and brown rice) and total Cd accu ̄mulation in rice plantsꎬContent and total accumulation of Cd and Fe in iron plaque were analyzedThe re ̄sults showed that application of GF in rice soil decreased significantly the concentration of Cd in soil solu ̄tionꎬincreased significantly soil pH and CECꎬreduced Cd contents in rice rootsꎬstemsꎬleavesꎬhusks andbrown riceꎬand decreased significantly the total Cd accumulation in rice plantsApplication of GF in ricesoil promoted the formation of the iron plaqueꎬincreased the content of DCB ̄Fe in different growing peri ̄odsꎬreduced the content of DCB ̄Cd and inhibited the upward migration of Cd from rootWhen GF was ap ̄plied in the rice soilꎬthe Cd content of brown rice in YCS and GSS decreased to 011 and 015 mg kgꎬboth lower than the national standard for brown rice Cd 02 mg kgCorrelation analysis presented signifi ̄cant (Plt005) and extremely significant (Plt001) negative relationship between pH in soil solution andCd concentration in soil solution and Cd content in brown riceꎬand the extremely significant negative rela ̄tionship between Fe accumulation in iron plaque and DCB ̄Cd and Cd contents in root and brown riceThecontribution rate of leaves to Cd remobilization of brown rice by GF was reduced by 588 (in YCS) and1280 (in GSS)Application of GF in rice soil can effectively prevent and control the absorption andaccumulation of Cd in riceꎬand the effect of GSS was better than that of YCS

KeywordsCdꎻsoilꎻSi ̄Ca ̄Mg fertilizerꎻriceꎻiron plaqueꎻremobilization

9第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

各生育时期土壤溶液中 Cd 浓度(Plt005)与对照

相比ꎬ黄泥田土壤溶液 Cd 浓度各生育时期降低了

258~ 364ꎬ平均降低 318ꎻ麻砂泥则降低了

269~389ꎬ平均降低 330ꎬGF 对麻砂泥土壤

溶液 Cd 的降低效果优于黄泥田

图 1  不同水稻生育期土壤溶液 Cd 浓度

Fig1  Cd concentrations in soil solution at different ricegrowing periods in two types of soil

22  硅钙镁肥对不同生育时期水稻 Cd 吸收累积的

影响

    不同生育时期水稻对 Cd 的吸收累积情况如图

2 所示由图 2(a)可知ꎬGF 显著影响着水稻根茎对

Cd 的吸收累积与对照相比ꎬ黄泥田水稻根 Cd 含量

最大降低了 207(灌浆期)ꎬ平均降低 168ꎻ茎Cd 含量最大降低了 47 8 (成熟期)ꎬ平均降低

295ꎻ叶 Cd 含量最大降低了 566(灌浆期)ꎬ平均降低 433麻砂泥水稻根 Cd 含量最大降低了

212(成熟期)ꎬ平均降低 170ꎻ茎 Cd 含量最大

降低了 457(灌浆期)ꎬ平均降低 402ꎻ叶 Cd 含

量最大降低了 600(灌浆期)ꎬ平均降低 569由图 2(b)可知ꎬGF 处理下的黄泥田与麻砂泥水稻糙

米 Cd 含量分别为 011 mg kg 与 015 mg kgꎬ均低

于国家糙米 Cd 限量标准规定的 02 mg kgGF 对麻

砂泥土壤生长各部位降 Cd 率优于黄泥田

图 2  不同水稻生育时期各部位 Cd 含量

Fig2  Cd contents in different tissues of rice at different rice growing periods

23  硅钙镁肥对水稻 Cd 分布及累积总量的影响

通过测定水稻各部位(根茎叶谷壳和糙米)Cd 浓度及干重ꎬ汇总计算出水稻植株 Cd 累积总量

(表 2)由表 2 可知ꎬCd 在水稻植株累积特征表现

为根gt茎gt叶gt糙米gt谷壳GF 显著降低了水稻各部

位对 Cd 的累积总量ꎬ其中黄泥田糙米 Cd 累积总量

降低了 1885 μg potꎻGF 处理下水稻全株 Cd 累积

量在黄泥田与麻砂泥土壤中分别降低了 85 1μg pot4316 μg potꎬ黄泥田中 Cd 总累积量降低率

高于麻砂泥因此ꎬGF 有利于降低糙米中 Cd 的累积

量ꎬ并阻控水稻对 Cd 的富集ꎬ但不同土壤有所不同

3第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

由表 2 可以看出ꎬGF 降低了水稻各部位 Cd 累

积量ꎬ同时影响了 Cd 在水稻各部位的分布情况黄泥田与麻砂泥土壤中的水稻根部 Cd 百分比均较

CK 有所提升ꎬ而其他部位均有所降低ꎬ说明 GF 在

减少水稻从土壤吸收 Cd 的同时ꎬ抑制了根部 Cd 的

向上迁移过程

表 2  水稻全株 Cd 累积量(μg pot)与各部位 Cd 累积量分布比例()Tab2  Total accumulation and proportion of Cd in tissues of rice plants

土壤 处理 项目 根 茎 叶 谷壳 糙米 水稻全株 Cd 累积量

黄泥田

CK累积量 9583a 8630a 3593a 715a 1278a 23800a百分比 4026 3626 1510 300 537

GF累积量 6402b 5986b 1199b 478b 1224a 15290b百分比 4187 3915 784 313 800

麻砂泥

CK累积量 18248b 14793a 3891a 807a 2840a 40579a百分比 4497 3645 959 199 700

GF累积量 25489a 8358b 891b 571b 955b 36263a百分比 7029 2305 246 157 263

不同小写字母表示同一土壤中相同水稻部位 CK 与 GF 处理之间显著(Plt005)

24  硅钙镁肥对水稻根表铁膜的影响

表 3 显示了 CK 与 GF 处理下不同生育时期 Cd在水稻根表铁膜的富集特征CK 处理中ꎬDCB ̄Cd 与

DCB ̄Fe 含量随水稻生育时期的延长分别呈上升与

下降的趋势ꎬ添加 GF 显著降低了两种土壤水稻

DCB ̄Cd 含量(Plt005)ꎬ但黄泥田与麻砂泥土壤中

的水稻 DCB ̄Fe 含量分别随着 GF 的施加而有所降

低和提升ꎬ但不显著ꎬ这可能与两种土壤类型差异

有关由表 3 还可知ꎬ根表铁膜 Cd 累积量随着水稻

生育时期的推进而逐渐增加ꎬ并在成熟期达到最

多ꎬ如黄泥田的 14 23 μg pot 与麻砂泥的 9 18μg potꎬ而 GF 抑制了根表铁膜对 Cd 的富集ꎬ其中

抽穗期黄泥田中显著(Plt005)降低了 200 μg potꎬ并在成熟期降低最多达 301 μg potꎬ其他生育时期

均有所降低ꎬ但不显著水稻根表铁膜 Fe 累积量随

水稻生育时期的推进而逐渐降低ꎬGF 则在各生育时

期显著提高了铁膜数量(Plt005)比较 GF 对两种

土壤水稻 DCB ̄Cd 与 DCB ̄Fe 含量与累积量的影响

时发现ꎬ黄泥田中 DCB ̄Cd 含量与累积量降低率与

DCB ̄Fe 含量与累积量提升率均大于麻砂泥相关性研究表明(图 3)ꎬ根表铁膜 Fe 累积量与

根表铁膜根及糙米 Cd 含量均呈极显著负相关ꎬ表明增加根表铁膜数量可有效降低糙米 Cd 含量ꎬ施GF 可作为糙米降 Cd 的一种手段

表 3  GF 对水稻根表铁膜 Cd 与 Fe 吸收累积的影响

Tab3  Effects of GF on concentration and accumulation of Fe and Cd in iron plaque at different growing periods

土壤 生育期

含量

DCB ̄Cd (mg kg) DCB ̄Fe (mg kg)CK GF CK GF

累积量

Cd (μg pot) Fe (mg pot)CK GF CK GF

黄泥田

抽穗期 164plusmn003a 070plusmn006b 096plusmn004a 076plusmn036a 548plusmn012a 348plusmn028b 319plusmn005b 605plusmn025a灌浆期 247plusmn020a 130plusmn007b 055plusmn002a 036plusmn001b 835plusmn028a 760plusmn115a 188plusmn003b 413plusmn050a成熟期 485plusmn013a 204plusmn017b 030plusmn003a 022plusmn002a 1423plusmn001a 1122plusmn001a 089plusmn010b 237plusmn012a

麻砂泥

抽穗期 067plusmn009a 030plusmn005b 076plusmn036a 089plusmn004a 226plusmn011a 176plusmn035a 259plusmn023b 523plusmn040a灌浆期 189plusmn003a 082plusmn004b 036plusmn001a 047plusmn002a 621plusmn001a 505plusmn016a 118plusmn002b 289plusmn008a成熟期 299plusmn012a 143plusmn013b 022plusmn002b 036plusmn004a 918plusmn001a 797plusmn029a 067plusmn006b 199plusmn014a

同行 CK 与 GF 处理下根表铁膜 Cd 与 Fe 含量与累积量比较ꎬ相同小写字母表示差异不显著(Pgt005)

25  硅钙镁肥影响水稻叶对糙米 Cd 的转运

水稻灌浆期与成熟期叶对糙米 Cd 累积的贡献

率以及 GF 对其影响见表 4由表 4 可知ꎬCK 处理中

麻砂泥与黄泥田水稻灌浆期与成熟期叶对糙米 Cd累积的贡献率范围在 722 ~4993ꎬGF 显著降低

了水稻叶对糙米 Cd 累积的贡献率其中麻砂泥水稻

4 湖南生态科学学报 2018 年 9 月

图 3  根表铁膜 Fe 累积量与根 Cd 及糙米 Cd 含量相关性

Fig3  Correlations between Fe accumulation in iron plaqueand Cd contents in roots and brown rice

相比对照最多可降低 588 个百分点ꎬ麻砂泥最多可

降低 1280 个百分点ꎬGF 对叶 Cd 再转运过程的抑

制效果在麻砂泥土壤优于黄泥田

表 4  水稻叶对糙米 Cd 的贡献率()Tab4  Contribution rates of leaves to Cd uptake in brown rice

生育期

Cd黄泥田

CK GF麻砂泥

CK GF灌浆期 3603 4804 4993 4619成熟期 1843 563 722 508

贡献率通过公式(Ai-Ai-1) (B谷壳+B糙米) timesB糙米 (B谷壳 +B糙米)ꎬ其中 A 表示叶 Cd 累积量(μg pot)ꎬB谷壳和 B糙米分别表示谷壳和糙米中 Cd 累积量(μg pot)ꎬi 表示水稻生育期ꎬh 表示抽穗期

26  硅钙镁肥对土壤 pH 的影响

图 4(a)为施加 GF 对各水稻生长时期黄泥田与

麻砂泥土壤 pH 的影响 GF 显著提升了两种土壤

pHꎬ分别平均升高了 116 和 137 个单位为研究土

壤 pH 改变与土壤溶液 Cd 含量及水稻糙米 Cd 含量

变化的关系ꎬ进行了相关性分析(图 4ꎬb)ꎬ结果表

明ꎬ土壤 pH 与水稻糙米 Cd 与土壤溶液 Cd 含量呈

显著(Plt005)与极显著(Plt001)负相关

图 4  土壤 pH 与土壤溶液 Cd 及糙米 Cd 含量相关性

Fig4  Correlations between pH and Cd concentrations in soil solution and Cd contents in brown rice

3  讨  论

31  硅钙镁肥对不同土壤类型稻田水稻 Cd 吸收累

积的影响及其差异原因

    总的来看ꎬGF 对麻砂泥土壤溶液 Cd 含量水稻各部位 Cd 含量水稻 Cd 累积量降低率显著大于

黄泥田(Plt005)ꎬ这与两种土壤发育成土母质差异

有关[17] 花岗岩母质发育而来的麻砂泥土壤黏粒矿

物主要是 1 ∶ 1 型(高岭土)ꎬ而板页岩发育而来的

黄泥田土壤黏粒矿物还含有 2 ∶ 1 型(云母伊利石

等)1 ∶ 1 型黏土矿物ꎬ无膨胀性ꎬ带电荷少ꎬ胶体特

性差ꎬCEC 低ꎻ2 ∶ 1 型黏土矿物则带电量较大ꎬCEC较 1 ∶ 1 型高ꎬGF 的加入对麻砂泥土壤电荷量的相

对提升可能多于黄泥田(图 5)ꎬ更好的改善了土壤

胶体膨胀性ꎬ促进了对 Cd2+的吸附[18ꎬ19] 因此ꎬ不同

母质土壤环境容量不同ꎬ土壤调理剂改良作用效果

与机理可能亦不同ꎬ污染修复控制措施应当根据土

壤类型进行区分

5第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

图 5  各水稻生育期土壤 CEC 变化

Fig5  Change of soil CEC contents at differentrice growing periods

32  硅钙镁肥有效降低土壤 Cd 的生物有效性

土壤溶液中的可溶性物质可反应游离态离子

浓度在生态系统中调节ꎬ这对于植物吸收利用极为

重要ꎬ而土壤 pH 则是控制土壤 Cd 形态溶解性与

迁移能力的重要环境因子[20]ꎬ进而影响着作物对

Cd 的吸收累积GF 显著提升了土壤 pH(图 4ꎬa)ꎬ土壤 pH 值升高会提升土壤溶液中 OH-浓度ꎬ从而降

低土壤 Cd2+的解吸[21ꎬ22]ꎬ也会促进 Cd2+向稳定形式

的 Cd 复合物和 Mn 氧化物的转化ꎬ增强土壤表面

Cd2+的吸附ꎬ降低土壤溶液 Cd 浓度[23ꎬ24] 另一方面ꎬGF 携带入的 Ca2+Mg2+会与根系表面 Cd2+竞争吸附

位点ꎬ减少水稻对 Cd 的吸收[25]

33  硅钙镁肥影响 Cd 在水稻根系的迁移累积

众多研究表明ꎬ淹水条件下水稻根系易形成铁

膜ꎬ阻止 Cd 向水稻根系上部转移[13ꎬ26] 本研究中ꎬ水稻根表铁膜数量在抽穗期达到最高并随生育期

延长而有所降低ꎬ这与盆栽试验抽穗期到灌浆期水

位较高ꎬ而到生育期后期控制了盆栽水位使土壤由

淹水逐渐向干旱转变有关随着淹水过程减弱ꎬ土壤

由厌氧状态向好氧状态转变ꎬ使得可溶性的 Fe2+氧

化为难溶性的 Fe3+化合物ꎬ从而抑制了根表铁膜的

形成[11ꎬ27] GF 显著提升了水稻各生育期根表铁膜

Fe 累积量(Plt005)ꎬ降低了 Cd 的累积量因此ꎬGF可通过促进根表铁膜的形成而增强水稻根系的阻

Cd 迁移能力GF 在降低水稻全株 Cd 累积的同时ꎬ抑制了 Cd

在水稻体内的迁移累积(表 2)水稻糙米 Cd 累积量

在 GF 处理降低明显ꎬ这与 GF 携带的 Mg 进入水稻

体内有关ꎬ胡坤等[24] 指出 Mg 能有效抑制 Cd 由茎

秆向糙米迁移较 CK 处理ꎬGF 处理的根 Cd 累积量

百分比有所提升ꎬ其它部位有所降低Si 进入作物根

系与 Cd 易生成共沉淀ꎬ且 Si 与作物细胞壁交互联

结ꎬ细胞壁中 Si 复合物所带负电荷会增强与 Cd2+的

结合抑制 Cd 向可食部位的转运ꎬ从而抑制 Cd 在作

物中的运输[28 ̄30]

34  硅钙镁肥影响 Cd 在水稻体内的分布

有研究表明大量富集于水稻老叶中的 Cd 伴随

着营养元素经再转运过程进入水稻生殖器官[31ꎬ32] 如韧皮部分泌的 Fe 柠檬酸盐进入成熟的新叶后ꎬ携带其中 Fe 进入水稻生殖器官ꎬ从而进入糙米ꎬ同时

由于 Cd 与 Fe 之间的协同作用ꎬ此过程促使 Cd 在

糙米中的累积ꎬ加重稻米 Cd 危害[32] 因此ꎬ叶部 Cd的再转运对水稻糙米吸收累积 Cd 的贡献不容忽视本研究表明ꎬGF 处理下ꎬ黄泥田与麻砂泥生长水稻

叶部对糙米 Cd 的贡献率分别可降低 5 88 和

1280ꎬ故施用 GF 可有效阻控糙米 Cd 累积基于本研究的结果ꎬGF 可用作水稻阻 Cd 的一

种改良措施ꎬ但对其用量还需多年多点结合田间试

验进一步研究ꎬ还应加强 SiMg 及 Fe 等营养元素在

水稻体内与 Cd 的交互关系及 Si 毒性研究ꎬ以进一

步提升稻米品质

4  结  论

1)麻砂泥土壤施加 GF 的降 Cd 效率优于黄

泥田2)土壤溶液 pH 与土壤溶液 Cd 浓度糙米 Cd

含量呈显著(Plt005)或极显著(Plt001)负相关ꎬ施加 GF 提升了麻砂泥与黄泥田土壤溶液 pHꎬ降低了

土壤溶液中 Cd 浓度ꎬ进而降低了 Cd 的生物有效性3)水稻根表铁膜 Fe 累积量与 DCB ̄Cd根糙

米 Cd 含量呈极显著负相关ꎬ施加 GF 显著提升了水

稻各生育期铁膜量ꎬ阻控 Cd 向根系上部迁移累积4)GF 有效抑制水稻叶部 Cd 向糙米转移ꎬ可使

叶对糙米 Cd 的贡献率最多降低 1280(麻砂泥)与 588(黄泥田)

6 湖南生态科学学报 2018 年 9 月

参考文献[1] Jackson B PꎬPunshon TRecent advances in the measure ̄

ment of arsenicꎬ cadmiumꎬand mercury in rice and otherfoods[ J] Current Environmental Health Reportsꎬ 2015ꎬ2(1)15 ̄24

[2] Imseng MꎬWiggenhauser MꎬKeller Aꎬet al Fate of Cd inagricultural soils A stable isotope approach toanthropogenic impactꎬsoil formation and soil ̄plant cycling[J]Environmental Science Technologyꎬ2018ꎬ52(4)1 919 ̄1 928

[3] Luo JꎬYin DꎬCheng Hꎬet alPlant induced changes to rhi ̄zosphere characteristics affecting supply of Cd to Noccaeacaerulescens and Ni to Thlaspi goesingense[J]Environmentalscience technologyꎬ2018ꎬ52(9)5 085 ̄5093

[4] Andrade G FꎬPaniz F PꎬMartins Jr A Cꎬet alAgriculturaluse of Samarcos spilled mud assessed by rice cultivationApromising residue use [ J ] Chemosphereꎬ 2018ꎬ 193892 ̄902

[5] Liang CꎬXiao HꎬHu Zꎬet alUptakeꎬtransportationꎬand ac ̄cumulation of C 60 fullerene and heavy metal ions ( CdꎬCuꎬand Pb) in rice plants grown in an agricultural soil[J]Environmental Pollutionꎬ2018ꎬ235330 ̄338

[6] 韩科峰硅钙镁磷钾肥对双季稻生长产量及土壤养分

的影响[D]杭州浙江农林大学ꎬ2015Han K FEffects of siliconꎬcalciumꎬmagnesiumꎬphosphorusand potassium fertilizer on growthꎬyield of double ̄croppingrice and soil properties[D]HangzhouZhejiang AF Uni ̄versityꎬ2015

[7] 曹  胜ꎬ周卫军ꎬ周雨舟ꎬ等硅钙镁土壤调理剂对酸性

镉污染土壤及稻米的降镉效果 [ J]河南农业科学ꎬ2017ꎬ46(12)54 ̄58Cao SꎬZhou W JꎬZhou Y Zꎬet alThe cadmium reductioneffect of silicon calcium magnesium soil conditioner on acidcadmium polluted soil and rice[J]Journal of Henan Agri ̄cultural Sciencesꎬ2017ꎬ46(12)54 ̄58

[8] 王怡璇ꎬ刘  杰ꎬ唐云舒ꎬ等硅对水稻镉转运的抑制效

应研究[J]生态环境学报ꎬ2016ꎬ25(11)1 822 ̄1 827Wang Y XꎬLiu JꎬTang Y Sꎬet alInhibitory effect of siliconon cadmium accumulation and transportation in rice [J]E ̄cology and Environmental Sciencesꎬ2016ꎬ25(11)1 822 ̄1 827

[9] 李造煌ꎬ杨文弢ꎬ邹佳玲ꎬ等钙镁磷肥对土壤 Cd 生物有

效性和糙米 Cd 含量的影响[J]环境科学学报ꎬ2017ꎬ37(6)2 322 ̄2 330Li Z HꎬYang W TꎬZou J Lꎬet alEffects of calcium magne ̄sium phosphate fertilizer on Cd bioavailability in soil and

Cd contents in rice [ J ] Acta Scientiae Circumstantiaeꎬ2017ꎬ37(6)2 322 ̄2 330

[10] Uraguchi SꎬFujiwara TRice breaks ground for cadmium ̄free cereals[J]Current opinion in plant biologyꎬ2013ꎬ16(3)328 ̄334

[11] Zhou HꎬZhu WꎬYang W Tꎬet alCadmium uptakeꎬaccu ̄mulationꎬ and remobilization in iron plaque and ricetissues at different growth stages [ J] Ecotoxicology andEnvironment Safetyꎬ2018ꎬ15291 ̄97

[12] 宗良纲ꎬ张丽娜ꎬ孙静克ꎬ等3 种改良剂对不同土壤 ̄水稻系统中 Cd 行为的影响 [ J]农业环境科学学报ꎬ2006ꎬ25(4)834 ̄840Zong L GꎬZhang L NꎬSun J Kꎬet al Effects of three a ̄mendments on behaviors of cadmium in different soil ̄ricesystem[J]Journal of Agro ̄Environment Scienceꎬ2006ꎬ25(4)834 ̄840

[13] Cao Z ZꎬQin M LꎬLin X Yꎬet al Sulfur supply reducescadmium uptake and translocation in rice grains (Oryzasativa L) by enhancing iron plaque formationꎬcadmiumchelation and vacuolar sequestration [ J ] EnvironmentalPollutionꎬ2018ꎬ23876 ̄84

[14] 中国科学院南京土壤研究所土壤理化分析[M]上海上海科学技术出版社ꎬ1978Nanjing Institute of Soil Researchꎬ Chinese Academy ofSciences Soil physicochemical analysis [ M] ShanghaiShanghai Science and Technology Pressꎬ1978

[15] 鲁如坤土壤农业化学分析方法[M]北京科学出版

社ꎬ2000Lu R K Soil agrochemical analysis method[M] BeijingScience Pressꎬ2000

[16] Wang XꎬJiang HꎬShang Xꎬet alComparison of dry ashingand wet oxidation methods for recovering articulated huskphytoliths of foxtail millet and common millet from archae ̄ological soil[ J]Journal of Archaeological Scienceꎬ2014ꎬ45234 ̄239

[17] 李欣阳ꎬ龙  坚ꎬ王树兵ꎬ等典型土壤双季稻对 Cd 吸

收累积差异[J]环境科学ꎬ2018ꎬ39(1)406 ̄414Li X YꎬLong JꎬWang S Bꎬet alDifferences in Cd accu ̄mulation in typical soils under the double rice system[J]Environmental Scienceꎬ2018ꎬ39(1)406 ̄414

[18] Wang XꎬLi XꎬMa Rꎬet alQuadratic discriminant analysismodel for assessing the risk of cadmium pollution forpaddy fields in a county in China[ J]Environmental Pol ̄lutionꎬ2018ꎬ236366 ̄372

[19] Yu H YꎬLiu CꎬZhu Jꎬet alCadmium availability in ricepaddy fields from a mining area the effects of soil

7第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

properties highlighting iron fractions and pH value[J]En ̄vironmental Pollutionꎬ2016ꎬ20938 ̄45

[20] Rafiq M TꎬAziz RꎬYang Xꎬet alCadmium phytoavailabilityto rice (Oryza sativa L) grown in representative Chinesesoils A model to improve soil environmental qualityguidelines for food safety [ J ] Ecotoxicology andEnvironmental Safetyꎬ2014ꎬ103101 ̄107

[21] Li ZꎬJia MꎬWu Lꎬet alChanges in metal availabilityꎬde ̄sorption kinetics and speciation in contaminated soilsduring repeated phytoextraction with the Zn Cd hyperac ̄cumulator Sedum plumbizincicola[ J]Environmental Pol ̄lutionꎬ2016ꎬ209123 ̄131

[22] Du Laing Gꎬ Rinklebe Jꎬ Vandecasteele Bꎬ et al Tracemetal behaviour in estuarine and riverine floodplain soilsand sedimentsa review[J]Science of the Total Environ ̄mentꎬ2009ꎬ407(13)3 972 ̄3 985

[23] Zhao Xꎬ Jiang Tꎬ Du B Effect of organic matter andcalcium carbonate on behaviors of cadmium adsorption ̄desorption on from purple paddy soils[J]Chemosphereꎬ2014ꎬ99(3)41 ̄48

[24] Wang JꎬChen B Adsorption and coadsorption of organicpollutants and a heavy metal by graphene oxide and re ̄duced graphene materials[J]Chemical Engineering Jour ̄nalꎬ2015ꎬ281379 ̄388

[25] 胡  坤淹水条件下不同中微量元素和有益元素对土

壤镉有效性和水稻吸收镉的影响[D]雅安四川农业

大学ꎬ2010Hu KEffects of different sources of secondaryꎬmicro ̄andbeneficial elements on availability of soil cadmium and itsuptake by rice under waterlogged condition[D]YaanSi ̄

chuan Agricultural Universityꎬ2010[26] Ye XꎬLi HꎬZhang Lꎬet alAmendment damages the func ̄

tion of continuous flooding in decreasing Cd and Pb uptakeby rice in acid paddy soil[ J]Ecotoxicology and Environ ̄mental Safetyꎬ2018ꎬ147708 ̄714

[27] Yamaguchi NꎬOhkura TꎬTakahashi Yꎬet alArsenic distri ̄bution and speciation near rice roots influenced by ironplaques and redox conditions of the soil matrix[ J]Envi ̄ronmental Science Technologyꎬ 2014ꎬ 48 ( 3) 1 549 ̄1 556

[28] Liu JꎬMa JꎬHe Cꎬet alInhibition of cadmium ion uptakein rice ( Oryza sativa) cells by a wall ̄bound form ofsilicon[J]New Phytologistꎬ2013ꎬ200(3)691 ̄699

[29] Meharg CꎬMeharg A ASiliconꎬthe silver bullet for mitiga ̄ting biotic and abiotic stressꎬand improving grain qualityꎬin rice [ J] Environmental and Experimental Botanyꎬ2015ꎬ1208 ̄17

[30] Ma JꎬCai HꎬHe Cꎬet al A hemicellulose ̄bound form ofsilicon inhibits cadmium ion uptake in rice (Oryza sativa)cells[J]New Phytologistꎬ2015ꎬ206(3)1 063 ̄1 074

[31] Yan Y FꎬChoi D HꎬKim D Sꎬet alAbsorptionꎬtransloca ̄tionꎬand remobilization of cadmium supplied at differentgrowth stages of rice[J]Journal of Crop Science and Bio ̄technologyꎬ2010ꎬ13(2)113 ̄119

[32] Yoneyama TꎬIshikawa SꎬFujimaki SRoute and regulationof zincꎬcadmiumꎬand iron transport in rice plants (Oryzasativa L) during vegetative growth and grain fillingmetaltransportersꎬmetal speciationꎬgrain Cd reduction and Znand Fe biofortification [ J ] International Journal ofMolecular Sciencesꎬ2015ꎬ16(8)19 111 ̄19 129

Study on the Differences of the Effects of Si ̄Ca ̄Mg Fertilizer on Uptake andAccumulation of Cadmium in Rice Plants on Different Soil Types

LI Xin ̄yang1ꎬ2ꎬ  LONG Jian1ꎬ2ꎬ  DONG Xia1ꎬ2ꎬ  JIANG Kai1ꎬ2ꎬ  WANG Shu ̄bing3ꎬLIU Wen ̄hui4ꎬ  HOU Hong ̄bo1ꎬ2ꎬ  PENG Pei ̄qin1ꎬ2lowastꎬ  LIAO Bo ̄han1ꎬ2

(1College of Environmental Science and EngineeringꎬCentral South University of Forestry and TechnologyꎬChangsha 410004ꎬChinaꎻ2Hunan Engineering Laboratory for Control of Rice Quality and SafetyꎬCentral South University of Forestry and TechnologyꎬChangsha410004ꎬChinaꎻ3Agricultural Integrated Service Center of Changsha CountyꎬHuang Xing TownꎬChangsha 410100ꎬChinaꎻ4AgriculturalIntegrated Service Center of Ningxiang CityꎬShuang Jiangkou TownꎬChangsha 410601ꎬChina)

AbstractIn order to study the effect of Si ̄Ca ̄Mg fertilizer (GF) on uptake and accumulation of Cd

8 湖南生态科学学报 2018 年 9 月

in rice plants on two typical paddy soilsꎬthe rice pot experiment was conducted in the yellow clayey soil(YCS) developed from plate shale parent materials and the granitic sandy soil (GSS) developed fromgranite parent materialsChanges of soil pH and CEC in different growing periodsꎬCd concentrations insoil solutionꎬCd contents in rice tissues ( rootsꎬstemsꎬleavesꎬhusks and brown rice) and total Cd accu ̄mulation in rice plantsꎬContent and total accumulation of Cd and Fe in iron plaque were analyzedThe re ̄sults showed that application of GF in rice soil decreased significantly the concentration of Cd in soil solu ̄tionꎬincreased significantly soil pH and CECꎬreduced Cd contents in rice rootsꎬstemsꎬleavesꎬhusks andbrown riceꎬand decreased significantly the total Cd accumulation in rice plantsApplication of GF in ricesoil promoted the formation of the iron plaqueꎬincreased the content of DCB ̄Fe in different growing peri ̄odsꎬreduced the content of DCB ̄Cd and inhibited the upward migration of Cd from rootWhen GF was ap ̄plied in the rice soilꎬthe Cd content of brown rice in YCS and GSS decreased to 011 and 015 mg kgꎬboth lower than the national standard for brown rice Cd 02 mg kgCorrelation analysis presented signifi ̄cant (Plt005) and extremely significant (Plt001) negative relationship between pH in soil solution andCd concentration in soil solution and Cd content in brown riceꎬand the extremely significant negative rela ̄tionship between Fe accumulation in iron plaque and DCB ̄Cd and Cd contents in root and brown riceThecontribution rate of leaves to Cd remobilization of brown rice by GF was reduced by 588 (in YCS) and1280 (in GSS)Application of GF in rice soil can effectively prevent and control the absorption andaccumulation of Cd in riceꎬand the effect of GSS was better than that of YCS

KeywordsCdꎻsoilꎻSi ̄Ca ̄Mg fertilizerꎻriceꎻiron plaqueꎻremobilization

9第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

由表 2 可以看出ꎬGF 降低了水稻各部位 Cd 累

积量ꎬ同时影响了 Cd 在水稻各部位的分布情况黄泥田与麻砂泥土壤中的水稻根部 Cd 百分比均较

CK 有所提升ꎬ而其他部位均有所降低ꎬ说明 GF 在

减少水稻从土壤吸收 Cd 的同时ꎬ抑制了根部 Cd 的

向上迁移过程

表 2  水稻全株 Cd 累积量(μg pot)与各部位 Cd 累积量分布比例()Tab2  Total accumulation and proportion of Cd in tissues of rice plants

土壤 处理 项目 根 茎 叶 谷壳 糙米 水稻全株 Cd 累积量

黄泥田

CK累积量 9583a 8630a 3593a 715a 1278a 23800a百分比 4026 3626 1510 300 537

GF累积量 6402b 5986b 1199b 478b 1224a 15290b百分比 4187 3915 784 313 800

麻砂泥

CK累积量 18248b 14793a 3891a 807a 2840a 40579a百分比 4497 3645 959 199 700

GF累积量 25489a 8358b 891b 571b 955b 36263a百分比 7029 2305 246 157 263

不同小写字母表示同一土壤中相同水稻部位 CK 与 GF 处理之间显著(Plt005)

24  硅钙镁肥对水稻根表铁膜的影响

表 3 显示了 CK 与 GF 处理下不同生育时期 Cd在水稻根表铁膜的富集特征CK 处理中ꎬDCB ̄Cd 与

DCB ̄Fe 含量随水稻生育时期的延长分别呈上升与

下降的趋势ꎬ添加 GF 显著降低了两种土壤水稻

DCB ̄Cd 含量(Plt005)ꎬ但黄泥田与麻砂泥土壤中

的水稻 DCB ̄Fe 含量分别随着 GF 的施加而有所降

低和提升ꎬ但不显著ꎬ这可能与两种土壤类型差异

有关由表 3 还可知ꎬ根表铁膜 Cd 累积量随着水稻

生育时期的推进而逐渐增加ꎬ并在成熟期达到最

多ꎬ如黄泥田的 14 23 μg pot 与麻砂泥的 9 18μg potꎬ而 GF 抑制了根表铁膜对 Cd 的富集ꎬ其中

抽穗期黄泥田中显著(Plt005)降低了 200 μg potꎬ并在成熟期降低最多达 301 μg potꎬ其他生育时期

均有所降低ꎬ但不显著水稻根表铁膜 Fe 累积量随

水稻生育时期的推进而逐渐降低ꎬGF 则在各生育时

期显著提高了铁膜数量(Plt005)比较 GF 对两种

土壤水稻 DCB ̄Cd 与 DCB ̄Fe 含量与累积量的影响

时发现ꎬ黄泥田中 DCB ̄Cd 含量与累积量降低率与

DCB ̄Fe 含量与累积量提升率均大于麻砂泥相关性研究表明(图 3)ꎬ根表铁膜 Fe 累积量与

根表铁膜根及糙米 Cd 含量均呈极显著负相关ꎬ表明增加根表铁膜数量可有效降低糙米 Cd 含量ꎬ施GF 可作为糙米降 Cd 的一种手段

表 3  GF 对水稻根表铁膜 Cd 与 Fe 吸收累积的影响

Tab3  Effects of GF on concentration and accumulation of Fe and Cd in iron plaque at different growing periods

土壤 生育期

含量

DCB ̄Cd (mg kg) DCB ̄Fe (mg kg)CK GF CK GF

累积量

Cd (μg pot) Fe (mg pot)CK GF CK GF

黄泥田

抽穗期 164plusmn003a 070plusmn006b 096plusmn004a 076plusmn036a 548plusmn012a 348plusmn028b 319plusmn005b 605plusmn025a灌浆期 247plusmn020a 130plusmn007b 055plusmn002a 036plusmn001b 835plusmn028a 760plusmn115a 188plusmn003b 413plusmn050a成熟期 485plusmn013a 204plusmn017b 030plusmn003a 022plusmn002a 1423plusmn001a 1122plusmn001a 089plusmn010b 237plusmn012a

麻砂泥

抽穗期 067plusmn009a 030plusmn005b 076plusmn036a 089plusmn004a 226plusmn011a 176plusmn035a 259plusmn023b 523plusmn040a灌浆期 189plusmn003a 082plusmn004b 036plusmn001a 047plusmn002a 621plusmn001a 505plusmn016a 118plusmn002b 289plusmn008a成熟期 299plusmn012a 143plusmn013b 022plusmn002b 036plusmn004a 918plusmn001a 797plusmn029a 067plusmn006b 199plusmn014a

同行 CK 与 GF 处理下根表铁膜 Cd 与 Fe 含量与累积量比较ꎬ相同小写字母表示差异不显著(Pgt005)

25  硅钙镁肥影响水稻叶对糙米 Cd 的转运

水稻灌浆期与成熟期叶对糙米 Cd 累积的贡献

率以及 GF 对其影响见表 4由表 4 可知ꎬCK 处理中

麻砂泥与黄泥田水稻灌浆期与成熟期叶对糙米 Cd累积的贡献率范围在 722 ~4993ꎬGF 显著降低

了水稻叶对糙米 Cd 累积的贡献率其中麻砂泥水稻

4 湖南生态科学学报 2018 年 9 月

图 3  根表铁膜 Fe 累积量与根 Cd 及糙米 Cd 含量相关性

Fig3  Correlations between Fe accumulation in iron plaqueand Cd contents in roots and brown rice

相比对照最多可降低 588 个百分点ꎬ麻砂泥最多可

降低 1280 个百分点ꎬGF 对叶 Cd 再转运过程的抑

制效果在麻砂泥土壤优于黄泥田

表 4  水稻叶对糙米 Cd 的贡献率()Tab4  Contribution rates of leaves to Cd uptake in brown rice

生育期

Cd黄泥田

CK GF麻砂泥

CK GF灌浆期 3603 4804 4993 4619成熟期 1843 563 722 508

贡献率通过公式(Ai-Ai-1) (B谷壳+B糙米) timesB糙米 (B谷壳 +B糙米)ꎬ其中 A 表示叶 Cd 累积量(μg pot)ꎬB谷壳和 B糙米分别表示谷壳和糙米中 Cd 累积量(μg pot)ꎬi 表示水稻生育期ꎬh 表示抽穗期

26  硅钙镁肥对土壤 pH 的影响

图 4(a)为施加 GF 对各水稻生长时期黄泥田与

麻砂泥土壤 pH 的影响 GF 显著提升了两种土壤

pHꎬ分别平均升高了 116 和 137 个单位为研究土

壤 pH 改变与土壤溶液 Cd 含量及水稻糙米 Cd 含量

变化的关系ꎬ进行了相关性分析(图 4ꎬb)ꎬ结果表

明ꎬ土壤 pH 与水稻糙米 Cd 与土壤溶液 Cd 含量呈

显著(Plt005)与极显著(Plt001)负相关

图 4  土壤 pH 与土壤溶液 Cd 及糙米 Cd 含量相关性

Fig4  Correlations between pH and Cd concentrations in soil solution and Cd contents in brown rice

3  讨  论

31  硅钙镁肥对不同土壤类型稻田水稻 Cd 吸收累

积的影响及其差异原因

    总的来看ꎬGF 对麻砂泥土壤溶液 Cd 含量水稻各部位 Cd 含量水稻 Cd 累积量降低率显著大于

黄泥田(Plt005)ꎬ这与两种土壤发育成土母质差异

有关[17] 花岗岩母质发育而来的麻砂泥土壤黏粒矿

物主要是 1 ∶ 1 型(高岭土)ꎬ而板页岩发育而来的

黄泥田土壤黏粒矿物还含有 2 ∶ 1 型(云母伊利石

等)1 ∶ 1 型黏土矿物ꎬ无膨胀性ꎬ带电荷少ꎬ胶体特

性差ꎬCEC 低ꎻ2 ∶ 1 型黏土矿物则带电量较大ꎬCEC较 1 ∶ 1 型高ꎬGF 的加入对麻砂泥土壤电荷量的相

对提升可能多于黄泥田(图 5)ꎬ更好的改善了土壤

胶体膨胀性ꎬ促进了对 Cd2+的吸附[18ꎬ19] 因此ꎬ不同

母质土壤环境容量不同ꎬ土壤调理剂改良作用效果

与机理可能亦不同ꎬ污染修复控制措施应当根据土

壤类型进行区分

5第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

图 5  各水稻生育期土壤 CEC 变化

Fig5  Change of soil CEC contents at differentrice growing periods

32  硅钙镁肥有效降低土壤 Cd 的生物有效性

土壤溶液中的可溶性物质可反应游离态离子

浓度在生态系统中调节ꎬ这对于植物吸收利用极为

重要ꎬ而土壤 pH 则是控制土壤 Cd 形态溶解性与

迁移能力的重要环境因子[20]ꎬ进而影响着作物对

Cd 的吸收累积GF 显著提升了土壤 pH(图 4ꎬa)ꎬ土壤 pH 值升高会提升土壤溶液中 OH-浓度ꎬ从而降

低土壤 Cd2+的解吸[21ꎬ22]ꎬ也会促进 Cd2+向稳定形式

的 Cd 复合物和 Mn 氧化物的转化ꎬ增强土壤表面

Cd2+的吸附ꎬ降低土壤溶液 Cd 浓度[23ꎬ24] 另一方面ꎬGF 携带入的 Ca2+Mg2+会与根系表面 Cd2+竞争吸附

位点ꎬ减少水稻对 Cd 的吸收[25]

33  硅钙镁肥影响 Cd 在水稻根系的迁移累积

众多研究表明ꎬ淹水条件下水稻根系易形成铁

膜ꎬ阻止 Cd 向水稻根系上部转移[13ꎬ26] 本研究中ꎬ水稻根表铁膜数量在抽穗期达到最高并随生育期

延长而有所降低ꎬ这与盆栽试验抽穗期到灌浆期水

位较高ꎬ而到生育期后期控制了盆栽水位使土壤由

淹水逐渐向干旱转变有关随着淹水过程减弱ꎬ土壤

由厌氧状态向好氧状态转变ꎬ使得可溶性的 Fe2+氧

化为难溶性的 Fe3+化合物ꎬ从而抑制了根表铁膜的

形成[11ꎬ27] GF 显著提升了水稻各生育期根表铁膜

Fe 累积量(Plt005)ꎬ降低了 Cd 的累积量因此ꎬGF可通过促进根表铁膜的形成而增强水稻根系的阻

Cd 迁移能力GF 在降低水稻全株 Cd 累积的同时ꎬ抑制了 Cd

在水稻体内的迁移累积(表 2)水稻糙米 Cd 累积量

在 GF 处理降低明显ꎬ这与 GF 携带的 Mg 进入水稻

体内有关ꎬ胡坤等[24] 指出 Mg 能有效抑制 Cd 由茎

秆向糙米迁移较 CK 处理ꎬGF 处理的根 Cd 累积量

百分比有所提升ꎬ其它部位有所降低Si 进入作物根

系与 Cd 易生成共沉淀ꎬ且 Si 与作物细胞壁交互联

结ꎬ细胞壁中 Si 复合物所带负电荷会增强与 Cd2+的

结合抑制 Cd 向可食部位的转运ꎬ从而抑制 Cd 在作

物中的运输[28 ̄30]

34  硅钙镁肥影响 Cd 在水稻体内的分布

有研究表明大量富集于水稻老叶中的 Cd 伴随

着营养元素经再转运过程进入水稻生殖器官[31ꎬ32] 如韧皮部分泌的 Fe 柠檬酸盐进入成熟的新叶后ꎬ携带其中 Fe 进入水稻生殖器官ꎬ从而进入糙米ꎬ同时

由于 Cd 与 Fe 之间的协同作用ꎬ此过程促使 Cd 在

糙米中的累积ꎬ加重稻米 Cd 危害[32] 因此ꎬ叶部 Cd的再转运对水稻糙米吸收累积 Cd 的贡献不容忽视本研究表明ꎬGF 处理下ꎬ黄泥田与麻砂泥生长水稻

叶部对糙米 Cd 的贡献率分别可降低 5 88 和

1280ꎬ故施用 GF 可有效阻控糙米 Cd 累积基于本研究的结果ꎬGF 可用作水稻阻 Cd 的一

种改良措施ꎬ但对其用量还需多年多点结合田间试

验进一步研究ꎬ还应加强 SiMg 及 Fe 等营养元素在

水稻体内与 Cd 的交互关系及 Si 毒性研究ꎬ以进一

步提升稻米品质

4  结  论

1)麻砂泥土壤施加 GF 的降 Cd 效率优于黄

泥田2)土壤溶液 pH 与土壤溶液 Cd 浓度糙米 Cd

含量呈显著(Plt005)或极显著(Plt001)负相关ꎬ施加 GF 提升了麻砂泥与黄泥田土壤溶液 pHꎬ降低了

土壤溶液中 Cd 浓度ꎬ进而降低了 Cd 的生物有效性3)水稻根表铁膜 Fe 累积量与 DCB ̄Cd根糙

米 Cd 含量呈极显著负相关ꎬ施加 GF 显著提升了水

稻各生育期铁膜量ꎬ阻控 Cd 向根系上部迁移累积4)GF 有效抑制水稻叶部 Cd 向糙米转移ꎬ可使

叶对糙米 Cd 的贡献率最多降低 1280(麻砂泥)与 588(黄泥田)

6 湖南生态科学学报 2018 年 9 月

参考文献[1] Jackson B PꎬPunshon TRecent advances in the measure ̄

ment of arsenicꎬ cadmiumꎬand mercury in rice and otherfoods[ J] Current Environmental Health Reportsꎬ 2015ꎬ2(1)15 ̄24

[2] Imseng MꎬWiggenhauser MꎬKeller Aꎬet al Fate of Cd inagricultural soils A stable isotope approach toanthropogenic impactꎬsoil formation and soil ̄plant cycling[J]Environmental Science Technologyꎬ2018ꎬ52(4)1 919 ̄1 928

[3] Luo JꎬYin DꎬCheng Hꎬet alPlant induced changes to rhi ̄zosphere characteristics affecting supply of Cd to Noccaeacaerulescens and Ni to Thlaspi goesingense[J]Environmentalscience technologyꎬ2018ꎬ52(9)5 085 ̄5093

[4] Andrade G FꎬPaniz F PꎬMartins Jr A Cꎬet alAgriculturaluse of Samarcos spilled mud assessed by rice cultivationApromising residue use [ J ] Chemosphereꎬ 2018ꎬ 193892 ̄902

[5] Liang CꎬXiao HꎬHu Zꎬet alUptakeꎬtransportationꎬand ac ̄cumulation of C 60 fullerene and heavy metal ions ( CdꎬCuꎬand Pb) in rice plants grown in an agricultural soil[J]Environmental Pollutionꎬ2018ꎬ235330 ̄338

[6] 韩科峰硅钙镁磷钾肥对双季稻生长产量及土壤养分

的影响[D]杭州浙江农林大学ꎬ2015Han K FEffects of siliconꎬcalciumꎬmagnesiumꎬphosphorusand potassium fertilizer on growthꎬyield of double ̄croppingrice and soil properties[D]HangzhouZhejiang AF Uni ̄versityꎬ2015

[7] 曹  胜ꎬ周卫军ꎬ周雨舟ꎬ等硅钙镁土壤调理剂对酸性

镉污染土壤及稻米的降镉效果 [ J]河南农业科学ꎬ2017ꎬ46(12)54 ̄58Cao SꎬZhou W JꎬZhou Y Zꎬet alThe cadmium reductioneffect of silicon calcium magnesium soil conditioner on acidcadmium polluted soil and rice[J]Journal of Henan Agri ̄cultural Sciencesꎬ2017ꎬ46(12)54 ̄58

[8] 王怡璇ꎬ刘  杰ꎬ唐云舒ꎬ等硅对水稻镉转运的抑制效

应研究[J]生态环境学报ꎬ2016ꎬ25(11)1 822 ̄1 827Wang Y XꎬLiu JꎬTang Y Sꎬet alInhibitory effect of siliconon cadmium accumulation and transportation in rice [J]E ̄cology and Environmental Sciencesꎬ2016ꎬ25(11)1 822 ̄1 827

[9] 李造煌ꎬ杨文弢ꎬ邹佳玲ꎬ等钙镁磷肥对土壤 Cd 生物有

效性和糙米 Cd 含量的影响[J]环境科学学报ꎬ2017ꎬ37(6)2 322 ̄2 330Li Z HꎬYang W TꎬZou J Lꎬet alEffects of calcium magne ̄sium phosphate fertilizer on Cd bioavailability in soil and

Cd contents in rice [ J ] Acta Scientiae Circumstantiaeꎬ2017ꎬ37(6)2 322 ̄2 330

[10] Uraguchi SꎬFujiwara TRice breaks ground for cadmium ̄free cereals[J]Current opinion in plant biologyꎬ2013ꎬ16(3)328 ̄334

[11] Zhou HꎬZhu WꎬYang W Tꎬet alCadmium uptakeꎬaccu ̄mulationꎬ and remobilization in iron plaque and ricetissues at different growth stages [ J] Ecotoxicology andEnvironment Safetyꎬ2018ꎬ15291 ̄97

[12] 宗良纲ꎬ张丽娜ꎬ孙静克ꎬ等3 种改良剂对不同土壤 ̄水稻系统中 Cd 行为的影响 [ J]农业环境科学学报ꎬ2006ꎬ25(4)834 ̄840Zong L GꎬZhang L NꎬSun J Kꎬet al Effects of three a ̄mendments on behaviors of cadmium in different soil ̄ricesystem[J]Journal of Agro ̄Environment Scienceꎬ2006ꎬ25(4)834 ̄840

[13] Cao Z ZꎬQin M LꎬLin X Yꎬet al Sulfur supply reducescadmium uptake and translocation in rice grains (Oryzasativa L) by enhancing iron plaque formationꎬcadmiumchelation and vacuolar sequestration [ J ] EnvironmentalPollutionꎬ2018ꎬ23876 ̄84

[14] 中国科学院南京土壤研究所土壤理化分析[M]上海上海科学技术出版社ꎬ1978Nanjing Institute of Soil Researchꎬ Chinese Academy ofSciences Soil physicochemical analysis [ M] ShanghaiShanghai Science and Technology Pressꎬ1978

[15] 鲁如坤土壤农业化学分析方法[M]北京科学出版

社ꎬ2000Lu R K Soil agrochemical analysis method[M] BeijingScience Pressꎬ2000

[16] Wang XꎬJiang HꎬShang Xꎬet alComparison of dry ashingand wet oxidation methods for recovering articulated huskphytoliths of foxtail millet and common millet from archae ̄ological soil[ J]Journal of Archaeological Scienceꎬ2014ꎬ45234 ̄239

[17] 李欣阳ꎬ龙  坚ꎬ王树兵ꎬ等典型土壤双季稻对 Cd 吸

收累积差异[J]环境科学ꎬ2018ꎬ39(1)406 ̄414Li X YꎬLong JꎬWang S Bꎬet alDifferences in Cd accu ̄mulation in typical soils under the double rice system[J]Environmental Scienceꎬ2018ꎬ39(1)406 ̄414

[18] Wang XꎬLi XꎬMa Rꎬet alQuadratic discriminant analysismodel for assessing the risk of cadmium pollution forpaddy fields in a county in China[ J]Environmental Pol ̄lutionꎬ2018ꎬ236366 ̄372

[19] Yu H YꎬLiu CꎬZhu Jꎬet alCadmium availability in ricepaddy fields from a mining area the effects of soil

7第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

properties highlighting iron fractions and pH value[J]En ̄vironmental Pollutionꎬ2016ꎬ20938 ̄45

[20] Rafiq M TꎬAziz RꎬYang Xꎬet alCadmium phytoavailabilityto rice (Oryza sativa L) grown in representative Chinesesoils A model to improve soil environmental qualityguidelines for food safety [ J ] Ecotoxicology andEnvironmental Safetyꎬ2014ꎬ103101 ̄107

[21] Li ZꎬJia MꎬWu Lꎬet alChanges in metal availabilityꎬde ̄sorption kinetics and speciation in contaminated soilsduring repeated phytoextraction with the Zn Cd hyperac ̄cumulator Sedum plumbizincicola[ J]Environmental Pol ̄lutionꎬ2016ꎬ209123 ̄131

[22] Du Laing Gꎬ Rinklebe Jꎬ Vandecasteele Bꎬ et al Tracemetal behaviour in estuarine and riverine floodplain soilsand sedimentsa review[J]Science of the Total Environ ̄mentꎬ2009ꎬ407(13)3 972 ̄3 985

[23] Zhao Xꎬ Jiang Tꎬ Du B Effect of organic matter andcalcium carbonate on behaviors of cadmium adsorption ̄desorption on from purple paddy soils[J]Chemosphereꎬ2014ꎬ99(3)41 ̄48

[24] Wang JꎬChen B Adsorption and coadsorption of organicpollutants and a heavy metal by graphene oxide and re ̄duced graphene materials[J]Chemical Engineering Jour ̄nalꎬ2015ꎬ281379 ̄388

[25] 胡  坤淹水条件下不同中微量元素和有益元素对土

壤镉有效性和水稻吸收镉的影响[D]雅安四川农业

大学ꎬ2010Hu KEffects of different sources of secondaryꎬmicro ̄andbeneficial elements on availability of soil cadmium and itsuptake by rice under waterlogged condition[D]YaanSi ̄

chuan Agricultural Universityꎬ2010[26] Ye XꎬLi HꎬZhang Lꎬet alAmendment damages the func ̄

tion of continuous flooding in decreasing Cd and Pb uptakeby rice in acid paddy soil[ J]Ecotoxicology and Environ ̄mental Safetyꎬ2018ꎬ147708 ̄714

[27] Yamaguchi NꎬOhkura TꎬTakahashi Yꎬet alArsenic distri ̄bution and speciation near rice roots influenced by ironplaques and redox conditions of the soil matrix[ J]Envi ̄ronmental Science Technologyꎬ 2014ꎬ 48 ( 3) 1 549 ̄1 556

[28] Liu JꎬMa JꎬHe Cꎬet alInhibition of cadmium ion uptakein rice ( Oryza sativa) cells by a wall ̄bound form ofsilicon[J]New Phytologistꎬ2013ꎬ200(3)691 ̄699

[29] Meharg CꎬMeharg A ASiliconꎬthe silver bullet for mitiga ̄ting biotic and abiotic stressꎬand improving grain qualityꎬin rice [ J] Environmental and Experimental Botanyꎬ2015ꎬ1208 ̄17

[30] Ma JꎬCai HꎬHe Cꎬet al A hemicellulose ̄bound form ofsilicon inhibits cadmium ion uptake in rice (Oryza sativa)cells[J]New Phytologistꎬ2015ꎬ206(3)1 063 ̄1 074

[31] Yan Y FꎬChoi D HꎬKim D Sꎬet alAbsorptionꎬtransloca ̄tionꎬand remobilization of cadmium supplied at differentgrowth stages of rice[J]Journal of Crop Science and Bio ̄technologyꎬ2010ꎬ13(2)113 ̄119

[32] Yoneyama TꎬIshikawa SꎬFujimaki SRoute and regulationof zincꎬcadmiumꎬand iron transport in rice plants (Oryzasativa L) during vegetative growth and grain fillingmetaltransportersꎬmetal speciationꎬgrain Cd reduction and Znand Fe biofortification [ J ] International Journal ofMolecular Sciencesꎬ2015ꎬ16(8)19 111 ̄19 129

Study on the Differences of the Effects of Si ̄Ca ̄Mg Fertilizer on Uptake andAccumulation of Cadmium in Rice Plants on Different Soil Types

LI Xin ̄yang1ꎬ2ꎬ  LONG Jian1ꎬ2ꎬ  DONG Xia1ꎬ2ꎬ  JIANG Kai1ꎬ2ꎬ  WANG Shu ̄bing3ꎬLIU Wen ̄hui4ꎬ  HOU Hong ̄bo1ꎬ2ꎬ  PENG Pei ̄qin1ꎬ2lowastꎬ  LIAO Bo ̄han1ꎬ2

(1College of Environmental Science and EngineeringꎬCentral South University of Forestry and TechnologyꎬChangsha 410004ꎬChinaꎻ2Hunan Engineering Laboratory for Control of Rice Quality and SafetyꎬCentral South University of Forestry and TechnologyꎬChangsha410004ꎬChinaꎻ3Agricultural Integrated Service Center of Changsha CountyꎬHuang Xing TownꎬChangsha 410100ꎬChinaꎻ4AgriculturalIntegrated Service Center of Ningxiang CityꎬShuang Jiangkou TownꎬChangsha 410601ꎬChina)

AbstractIn order to study the effect of Si ̄Ca ̄Mg fertilizer (GF) on uptake and accumulation of Cd

8 湖南生态科学学报 2018 年 9 月

in rice plants on two typical paddy soilsꎬthe rice pot experiment was conducted in the yellow clayey soil(YCS) developed from plate shale parent materials and the granitic sandy soil (GSS) developed fromgranite parent materialsChanges of soil pH and CEC in different growing periodsꎬCd concentrations insoil solutionꎬCd contents in rice tissues ( rootsꎬstemsꎬleavesꎬhusks and brown rice) and total Cd accu ̄mulation in rice plantsꎬContent and total accumulation of Cd and Fe in iron plaque were analyzedThe re ̄sults showed that application of GF in rice soil decreased significantly the concentration of Cd in soil solu ̄tionꎬincreased significantly soil pH and CECꎬreduced Cd contents in rice rootsꎬstemsꎬleavesꎬhusks andbrown riceꎬand decreased significantly the total Cd accumulation in rice plantsApplication of GF in ricesoil promoted the formation of the iron plaqueꎬincreased the content of DCB ̄Fe in different growing peri ̄odsꎬreduced the content of DCB ̄Cd and inhibited the upward migration of Cd from rootWhen GF was ap ̄plied in the rice soilꎬthe Cd content of brown rice in YCS and GSS decreased to 011 and 015 mg kgꎬboth lower than the national standard for brown rice Cd 02 mg kgCorrelation analysis presented signifi ̄cant (Plt005) and extremely significant (Plt001) negative relationship between pH in soil solution andCd concentration in soil solution and Cd content in brown riceꎬand the extremely significant negative rela ̄tionship between Fe accumulation in iron plaque and DCB ̄Cd and Cd contents in root and brown riceThecontribution rate of leaves to Cd remobilization of brown rice by GF was reduced by 588 (in YCS) and1280 (in GSS)Application of GF in rice soil can effectively prevent and control the absorption andaccumulation of Cd in riceꎬand the effect of GSS was better than that of YCS

KeywordsCdꎻsoilꎻSi ̄Ca ̄Mg fertilizerꎻriceꎻiron plaqueꎻremobilization

9第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

图 3  根表铁膜 Fe 累积量与根 Cd 及糙米 Cd 含量相关性

Fig3  Correlations between Fe accumulation in iron plaqueand Cd contents in roots and brown rice

相比对照最多可降低 588 个百分点ꎬ麻砂泥最多可

降低 1280 个百分点ꎬGF 对叶 Cd 再转运过程的抑

制效果在麻砂泥土壤优于黄泥田

表 4  水稻叶对糙米 Cd 的贡献率()Tab4  Contribution rates of leaves to Cd uptake in brown rice

生育期

Cd黄泥田

CK GF麻砂泥

CK GF灌浆期 3603 4804 4993 4619成熟期 1843 563 722 508

贡献率通过公式(Ai-Ai-1) (B谷壳+B糙米) timesB糙米 (B谷壳 +B糙米)ꎬ其中 A 表示叶 Cd 累积量(μg pot)ꎬB谷壳和 B糙米分别表示谷壳和糙米中 Cd 累积量(μg pot)ꎬi 表示水稻生育期ꎬh 表示抽穗期

26  硅钙镁肥对土壤 pH 的影响

图 4(a)为施加 GF 对各水稻生长时期黄泥田与

麻砂泥土壤 pH 的影响 GF 显著提升了两种土壤

pHꎬ分别平均升高了 116 和 137 个单位为研究土

壤 pH 改变与土壤溶液 Cd 含量及水稻糙米 Cd 含量

变化的关系ꎬ进行了相关性分析(图 4ꎬb)ꎬ结果表

明ꎬ土壤 pH 与水稻糙米 Cd 与土壤溶液 Cd 含量呈

显著(Plt005)与极显著(Plt001)负相关

图 4  土壤 pH 与土壤溶液 Cd 及糙米 Cd 含量相关性

Fig4  Correlations between pH and Cd concentrations in soil solution and Cd contents in brown rice

3  讨  论

31  硅钙镁肥对不同土壤类型稻田水稻 Cd 吸收累

积的影响及其差异原因

    总的来看ꎬGF 对麻砂泥土壤溶液 Cd 含量水稻各部位 Cd 含量水稻 Cd 累积量降低率显著大于

黄泥田(Plt005)ꎬ这与两种土壤发育成土母质差异

有关[17] 花岗岩母质发育而来的麻砂泥土壤黏粒矿

物主要是 1 ∶ 1 型(高岭土)ꎬ而板页岩发育而来的

黄泥田土壤黏粒矿物还含有 2 ∶ 1 型(云母伊利石

等)1 ∶ 1 型黏土矿物ꎬ无膨胀性ꎬ带电荷少ꎬ胶体特

性差ꎬCEC 低ꎻ2 ∶ 1 型黏土矿物则带电量较大ꎬCEC较 1 ∶ 1 型高ꎬGF 的加入对麻砂泥土壤电荷量的相

对提升可能多于黄泥田(图 5)ꎬ更好的改善了土壤

胶体膨胀性ꎬ促进了对 Cd2+的吸附[18ꎬ19] 因此ꎬ不同

母质土壤环境容量不同ꎬ土壤调理剂改良作用效果

与机理可能亦不同ꎬ污染修复控制措施应当根据土

壤类型进行区分

5第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

图 5  各水稻生育期土壤 CEC 变化

Fig5  Change of soil CEC contents at differentrice growing periods

32  硅钙镁肥有效降低土壤 Cd 的生物有效性

土壤溶液中的可溶性物质可反应游离态离子

浓度在生态系统中调节ꎬ这对于植物吸收利用极为

重要ꎬ而土壤 pH 则是控制土壤 Cd 形态溶解性与

迁移能力的重要环境因子[20]ꎬ进而影响着作物对

Cd 的吸收累积GF 显著提升了土壤 pH(图 4ꎬa)ꎬ土壤 pH 值升高会提升土壤溶液中 OH-浓度ꎬ从而降

低土壤 Cd2+的解吸[21ꎬ22]ꎬ也会促进 Cd2+向稳定形式

的 Cd 复合物和 Mn 氧化物的转化ꎬ增强土壤表面

Cd2+的吸附ꎬ降低土壤溶液 Cd 浓度[23ꎬ24] 另一方面ꎬGF 携带入的 Ca2+Mg2+会与根系表面 Cd2+竞争吸附

位点ꎬ减少水稻对 Cd 的吸收[25]

33  硅钙镁肥影响 Cd 在水稻根系的迁移累积

众多研究表明ꎬ淹水条件下水稻根系易形成铁

膜ꎬ阻止 Cd 向水稻根系上部转移[13ꎬ26] 本研究中ꎬ水稻根表铁膜数量在抽穗期达到最高并随生育期

延长而有所降低ꎬ这与盆栽试验抽穗期到灌浆期水

位较高ꎬ而到生育期后期控制了盆栽水位使土壤由

淹水逐渐向干旱转变有关随着淹水过程减弱ꎬ土壤

由厌氧状态向好氧状态转变ꎬ使得可溶性的 Fe2+氧

化为难溶性的 Fe3+化合物ꎬ从而抑制了根表铁膜的

形成[11ꎬ27] GF 显著提升了水稻各生育期根表铁膜

Fe 累积量(Plt005)ꎬ降低了 Cd 的累积量因此ꎬGF可通过促进根表铁膜的形成而增强水稻根系的阻

Cd 迁移能力GF 在降低水稻全株 Cd 累积的同时ꎬ抑制了 Cd

在水稻体内的迁移累积(表 2)水稻糙米 Cd 累积量

在 GF 处理降低明显ꎬ这与 GF 携带的 Mg 进入水稻

体内有关ꎬ胡坤等[24] 指出 Mg 能有效抑制 Cd 由茎

秆向糙米迁移较 CK 处理ꎬGF 处理的根 Cd 累积量

百分比有所提升ꎬ其它部位有所降低Si 进入作物根

系与 Cd 易生成共沉淀ꎬ且 Si 与作物细胞壁交互联

结ꎬ细胞壁中 Si 复合物所带负电荷会增强与 Cd2+的

结合抑制 Cd 向可食部位的转运ꎬ从而抑制 Cd 在作

物中的运输[28 ̄30]

34  硅钙镁肥影响 Cd 在水稻体内的分布

有研究表明大量富集于水稻老叶中的 Cd 伴随

着营养元素经再转运过程进入水稻生殖器官[31ꎬ32] 如韧皮部分泌的 Fe 柠檬酸盐进入成熟的新叶后ꎬ携带其中 Fe 进入水稻生殖器官ꎬ从而进入糙米ꎬ同时

由于 Cd 与 Fe 之间的协同作用ꎬ此过程促使 Cd 在

糙米中的累积ꎬ加重稻米 Cd 危害[32] 因此ꎬ叶部 Cd的再转运对水稻糙米吸收累积 Cd 的贡献不容忽视本研究表明ꎬGF 处理下ꎬ黄泥田与麻砂泥生长水稻

叶部对糙米 Cd 的贡献率分别可降低 5 88 和

1280ꎬ故施用 GF 可有效阻控糙米 Cd 累积基于本研究的结果ꎬGF 可用作水稻阻 Cd 的一

种改良措施ꎬ但对其用量还需多年多点结合田间试

验进一步研究ꎬ还应加强 SiMg 及 Fe 等营养元素在

水稻体内与 Cd 的交互关系及 Si 毒性研究ꎬ以进一

步提升稻米品质

4  结  论

1)麻砂泥土壤施加 GF 的降 Cd 效率优于黄

泥田2)土壤溶液 pH 与土壤溶液 Cd 浓度糙米 Cd

含量呈显著(Plt005)或极显著(Plt001)负相关ꎬ施加 GF 提升了麻砂泥与黄泥田土壤溶液 pHꎬ降低了

土壤溶液中 Cd 浓度ꎬ进而降低了 Cd 的生物有效性3)水稻根表铁膜 Fe 累积量与 DCB ̄Cd根糙

米 Cd 含量呈极显著负相关ꎬ施加 GF 显著提升了水

稻各生育期铁膜量ꎬ阻控 Cd 向根系上部迁移累积4)GF 有效抑制水稻叶部 Cd 向糙米转移ꎬ可使

叶对糙米 Cd 的贡献率最多降低 1280(麻砂泥)与 588(黄泥田)

6 湖南生态科学学报 2018 年 9 月

参考文献[1] Jackson B PꎬPunshon TRecent advances in the measure ̄

ment of arsenicꎬ cadmiumꎬand mercury in rice and otherfoods[ J] Current Environmental Health Reportsꎬ 2015ꎬ2(1)15 ̄24

[2] Imseng MꎬWiggenhauser MꎬKeller Aꎬet al Fate of Cd inagricultural soils A stable isotope approach toanthropogenic impactꎬsoil formation and soil ̄plant cycling[J]Environmental Science Technologyꎬ2018ꎬ52(4)1 919 ̄1 928

[3] Luo JꎬYin DꎬCheng Hꎬet alPlant induced changes to rhi ̄zosphere characteristics affecting supply of Cd to Noccaeacaerulescens and Ni to Thlaspi goesingense[J]Environmentalscience technologyꎬ2018ꎬ52(9)5 085 ̄5093

[4] Andrade G FꎬPaniz F PꎬMartins Jr A Cꎬet alAgriculturaluse of Samarcos spilled mud assessed by rice cultivationApromising residue use [ J ] Chemosphereꎬ 2018ꎬ 193892 ̄902

[5] Liang CꎬXiao HꎬHu Zꎬet alUptakeꎬtransportationꎬand ac ̄cumulation of C 60 fullerene and heavy metal ions ( CdꎬCuꎬand Pb) in rice plants grown in an agricultural soil[J]Environmental Pollutionꎬ2018ꎬ235330 ̄338

[6] 韩科峰硅钙镁磷钾肥对双季稻生长产量及土壤养分

的影响[D]杭州浙江农林大学ꎬ2015Han K FEffects of siliconꎬcalciumꎬmagnesiumꎬphosphorusand potassium fertilizer on growthꎬyield of double ̄croppingrice and soil properties[D]HangzhouZhejiang AF Uni ̄versityꎬ2015

[7] 曹  胜ꎬ周卫军ꎬ周雨舟ꎬ等硅钙镁土壤调理剂对酸性

镉污染土壤及稻米的降镉效果 [ J]河南农业科学ꎬ2017ꎬ46(12)54 ̄58Cao SꎬZhou W JꎬZhou Y Zꎬet alThe cadmium reductioneffect of silicon calcium magnesium soil conditioner on acidcadmium polluted soil and rice[J]Journal of Henan Agri ̄cultural Sciencesꎬ2017ꎬ46(12)54 ̄58

[8] 王怡璇ꎬ刘  杰ꎬ唐云舒ꎬ等硅对水稻镉转运的抑制效

应研究[J]生态环境学报ꎬ2016ꎬ25(11)1 822 ̄1 827Wang Y XꎬLiu JꎬTang Y Sꎬet alInhibitory effect of siliconon cadmium accumulation and transportation in rice [J]E ̄cology and Environmental Sciencesꎬ2016ꎬ25(11)1 822 ̄1 827

[9] 李造煌ꎬ杨文弢ꎬ邹佳玲ꎬ等钙镁磷肥对土壤 Cd 生物有

效性和糙米 Cd 含量的影响[J]环境科学学报ꎬ2017ꎬ37(6)2 322 ̄2 330Li Z HꎬYang W TꎬZou J Lꎬet alEffects of calcium magne ̄sium phosphate fertilizer on Cd bioavailability in soil and

Cd contents in rice [ J ] Acta Scientiae Circumstantiaeꎬ2017ꎬ37(6)2 322 ̄2 330

[10] Uraguchi SꎬFujiwara TRice breaks ground for cadmium ̄free cereals[J]Current opinion in plant biologyꎬ2013ꎬ16(3)328 ̄334

[11] Zhou HꎬZhu WꎬYang W Tꎬet alCadmium uptakeꎬaccu ̄mulationꎬ and remobilization in iron plaque and ricetissues at different growth stages [ J] Ecotoxicology andEnvironment Safetyꎬ2018ꎬ15291 ̄97

[12] 宗良纲ꎬ张丽娜ꎬ孙静克ꎬ等3 种改良剂对不同土壤 ̄水稻系统中 Cd 行为的影响 [ J]农业环境科学学报ꎬ2006ꎬ25(4)834 ̄840Zong L GꎬZhang L NꎬSun J Kꎬet al Effects of three a ̄mendments on behaviors of cadmium in different soil ̄ricesystem[J]Journal of Agro ̄Environment Scienceꎬ2006ꎬ25(4)834 ̄840

[13] Cao Z ZꎬQin M LꎬLin X Yꎬet al Sulfur supply reducescadmium uptake and translocation in rice grains (Oryzasativa L) by enhancing iron plaque formationꎬcadmiumchelation and vacuolar sequestration [ J ] EnvironmentalPollutionꎬ2018ꎬ23876 ̄84

[14] 中国科学院南京土壤研究所土壤理化分析[M]上海上海科学技术出版社ꎬ1978Nanjing Institute of Soil Researchꎬ Chinese Academy ofSciences Soil physicochemical analysis [ M] ShanghaiShanghai Science and Technology Pressꎬ1978

[15] 鲁如坤土壤农业化学分析方法[M]北京科学出版

社ꎬ2000Lu R K Soil agrochemical analysis method[M] BeijingScience Pressꎬ2000

[16] Wang XꎬJiang HꎬShang Xꎬet alComparison of dry ashingand wet oxidation methods for recovering articulated huskphytoliths of foxtail millet and common millet from archae ̄ological soil[ J]Journal of Archaeological Scienceꎬ2014ꎬ45234 ̄239

[17] 李欣阳ꎬ龙  坚ꎬ王树兵ꎬ等典型土壤双季稻对 Cd 吸

收累积差异[J]环境科学ꎬ2018ꎬ39(1)406 ̄414Li X YꎬLong JꎬWang S Bꎬet alDifferences in Cd accu ̄mulation in typical soils under the double rice system[J]Environmental Scienceꎬ2018ꎬ39(1)406 ̄414

[18] Wang XꎬLi XꎬMa Rꎬet alQuadratic discriminant analysismodel for assessing the risk of cadmium pollution forpaddy fields in a county in China[ J]Environmental Pol ̄lutionꎬ2018ꎬ236366 ̄372

[19] Yu H YꎬLiu CꎬZhu Jꎬet alCadmium availability in ricepaddy fields from a mining area the effects of soil

7第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

properties highlighting iron fractions and pH value[J]En ̄vironmental Pollutionꎬ2016ꎬ20938 ̄45

[20] Rafiq M TꎬAziz RꎬYang Xꎬet alCadmium phytoavailabilityto rice (Oryza sativa L) grown in representative Chinesesoils A model to improve soil environmental qualityguidelines for food safety [ J ] Ecotoxicology andEnvironmental Safetyꎬ2014ꎬ103101 ̄107

[21] Li ZꎬJia MꎬWu Lꎬet alChanges in metal availabilityꎬde ̄sorption kinetics and speciation in contaminated soilsduring repeated phytoextraction with the Zn Cd hyperac ̄cumulator Sedum plumbizincicola[ J]Environmental Pol ̄lutionꎬ2016ꎬ209123 ̄131

[22] Du Laing Gꎬ Rinklebe Jꎬ Vandecasteele Bꎬ et al Tracemetal behaviour in estuarine and riverine floodplain soilsand sedimentsa review[J]Science of the Total Environ ̄mentꎬ2009ꎬ407(13)3 972 ̄3 985

[23] Zhao Xꎬ Jiang Tꎬ Du B Effect of organic matter andcalcium carbonate on behaviors of cadmium adsorption ̄desorption on from purple paddy soils[J]Chemosphereꎬ2014ꎬ99(3)41 ̄48

[24] Wang JꎬChen B Adsorption and coadsorption of organicpollutants and a heavy metal by graphene oxide and re ̄duced graphene materials[J]Chemical Engineering Jour ̄nalꎬ2015ꎬ281379 ̄388

[25] 胡  坤淹水条件下不同中微量元素和有益元素对土

壤镉有效性和水稻吸收镉的影响[D]雅安四川农业

大学ꎬ2010Hu KEffects of different sources of secondaryꎬmicro ̄andbeneficial elements on availability of soil cadmium and itsuptake by rice under waterlogged condition[D]YaanSi ̄

chuan Agricultural Universityꎬ2010[26] Ye XꎬLi HꎬZhang Lꎬet alAmendment damages the func ̄

tion of continuous flooding in decreasing Cd and Pb uptakeby rice in acid paddy soil[ J]Ecotoxicology and Environ ̄mental Safetyꎬ2018ꎬ147708 ̄714

[27] Yamaguchi NꎬOhkura TꎬTakahashi Yꎬet alArsenic distri ̄bution and speciation near rice roots influenced by ironplaques and redox conditions of the soil matrix[ J]Envi ̄ronmental Science Technologyꎬ 2014ꎬ 48 ( 3) 1 549 ̄1 556

[28] Liu JꎬMa JꎬHe Cꎬet alInhibition of cadmium ion uptakein rice ( Oryza sativa) cells by a wall ̄bound form ofsilicon[J]New Phytologistꎬ2013ꎬ200(3)691 ̄699

[29] Meharg CꎬMeharg A ASiliconꎬthe silver bullet for mitiga ̄ting biotic and abiotic stressꎬand improving grain qualityꎬin rice [ J] Environmental and Experimental Botanyꎬ2015ꎬ1208 ̄17

[30] Ma JꎬCai HꎬHe Cꎬet al A hemicellulose ̄bound form ofsilicon inhibits cadmium ion uptake in rice (Oryza sativa)cells[J]New Phytologistꎬ2015ꎬ206(3)1 063 ̄1 074

[31] Yan Y FꎬChoi D HꎬKim D Sꎬet alAbsorptionꎬtransloca ̄tionꎬand remobilization of cadmium supplied at differentgrowth stages of rice[J]Journal of Crop Science and Bio ̄technologyꎬ2010ꎬ13(2)113 ̄119

[32] Yoneyama TꎬIshikawa SꎬFujimaki SRoute and regulationof zincꎬcadmiumꎬand iron transport in rice plants (Oryzasativa L) during vegetative growth and grain fillingmetaltransportersꎬmetal speciationꎬgrain Cd reduction and Znand Fe biofortification [ J ] International Journal ofMolecular Sciencesꎬ2015ꎬ16(8)19 111 ̄19 129

Study on the Differences of the Effects of Si ̄Ca ̄Mg Fertilizer on Uptake andAccumulation of Cadmium in Rice Plants on Different Soil Types

LI Xin ̄yang1ꎬ2ꎬ  LONG Jian1ꎬ2ꎬ  DONG Xia1ꎬ2ꎬ  JIANG Kai1ꎬ2ꎬ  WANG Shu ̄bing3ꎬLIU Wen ̄hui4ꎬ  HOU Hong ̄bo1ꎬ2ꎬ  PENG Pei ̄qin1ꎬ2lowastꎬ  LIAO Bo ̄han1ꎬ2

(1College of Environmental Science and EngineeringꎬCentral South University of Forestry and TechnologyꎬChangsha 410004ꎬChinaꎻ2Hunan Engineering Laboratory for Control of Rice Quality and SafetyꎬCentral South University of Forestry and TechnologyꎬChangsha410004ꎬChinaꎻ3Agricultural Integrated Service Center of Changsha CountyꎬHuang Xing TownꎬChangsha 410100ꎬChinaꎻ4AgriculturalIntegrated Service Center of Ningxiang CityꎬShuang Jiangkou TownꎬChangsha 410601ꎬChina)

AbstractIn order to study the effect of Si ̄Ca ̄Mg fertilizer (GF) on uptake and accumulation of Cd

8 湖南生态科学学报 2018 年 9 月

in rice plants on two typical paddy soilsꎬthe rice pot experiment was conducted in the yellow clayey soil(YCS) developed from plate shale parent materials and the granitic sandy soil (GSS) developed fromgranite parent materialsChanges of soil pH and CEC in different growing periodsꎬCd concentrations insoil solutionꎬCd contents in rice tissues ( rootsꎬstemsꎬleavesꎬhusks and brown rice) and total Cd accu ̄mulation in rice plantsꎬContent and total accumulation of Cd and Fe in iron plaque were analyzedThe re ̄sults showed that application of GF in rice soil decreased significantly the concentration of Cd in soil solu ̄tionꎬincreased significantly soil pH and CECꎬreduced Cd contents in rice rootsꎬstemsꎬleavesꎬhusks andbrown riceꎬand decreased significantly the total Cd accumulation in rice plantsApplication of GF in ricesoil promoted the formation of the iron plaqueꎬincreased the content of DCB ̄Fe in different growing peri ̄odsꎬreduced the content of DCB ̄Cd and inhibited the upward migration of Cd from rootWhen GF was ap ̄plied in the rice soilꎬthe Cd content of brown rice in YCS and GSS decreased to 011 and 015 mg kgꎬboth lower than the national standard for brown rice Cd 02 mg kgCorrelation analysis presented signifi ̄cant (Plt005) and extremely significant (Plt001) negative relationship between pH in soil solution andCd concentration in soil solution and Cd content in brown riceꎬand the extremely significant negative rela ̄tionship between Fe accumulation in iron plaque and DCB ̄Cd and Cd contents in root and brown riceThecontribution rate of leaves to Cd remobilization of brown rice by GF was reduced by 588 (in YCS) and1280 (in GSS)Application of GF in rice soil can effectively prevent and control the absorption andaccumulation of Cd in riceꎬand the effect of GSS was better than that of YCS

KeywordsCdꎻsoilꎻSi ̄Ca ̄Mg fertilizerꎻriceꎻiron plaqueꎻremobilization

9第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

图 5  各水稻生育期土壤 CEC 变化

Fig5  Change of soil CEC contents at differentrice growing periods

32  硅钙镁肥有效降低土壤 Cd 的生物有效性

土壤溶液中的可溶性物质可反应游离态离子

浓度在生态系统中调节ꎬ这对于植物吸收利用极为

重要ꎬ而土壤 pH 则是控制土壤 Cd 形态溶解性与

迁移能力的重要环境因子[20]ꎬ进而影响着作物对

Cd 的吸收累积GF 显著提升了土壤 pH(图 4ꎬa)ꎬ土壤 pH 值升高会提升土壤溶液中 OH-浓度ꎬ从而降

低土壤 Cd2+的解吸[21ꎬ22]ꎬ也会促进 Cd2+向稳定形式

的 Cd 复合物和 Mn 氧化物的转化ꎬ增强土壤表面

Cd2+的吸附ꎬ降低土壤溶液 Cd 浓度[23ꎬ24] 另一方面ꎬGF 携带入的 Ca2+Mg2+会与根系表面 Cd2+竞争吸附

位点ꎬ减少水稻对 Cd 的吸收[25]

33  硅钙镁肥影响 Cd 在水稻根系的迁移累积

众多研究表明ꎬ淹水条件下水稻根系易形成铁

膜ꎬ阻止 Cd 向水稻根系上部转移[13ꎬ26] 本研究中ꎬ水稻根表铁膜数量在抽穗期达到最高并随生育期

延长而有所降低ꎬ这与盆栽试验抽穗期到灌浆期水

位较高ꎬ而到生育期后期控制了盆栽水位使土壤由

淹水逐渐向干旱转变有关随着淹水过程减弱ꎬ土壤

由厌氧状态向好氧状态转变ꎬ使得可溶性的 Fe2+氧

化为难溶性的 Fe3+化合物ꎬ从而抑制了根表铁膜的

形成[11ꎬ27] GF 显著提升了水稻各生育期根表铁膜

Fe 累积量(Plt005)ꎬ降低了 Cd 的累积量因此ꎬGF可通过促进根表铁膜的形成而增强水稻根系的阻

Cd 迁移能力GF 在降低水稻全株 Cd 累积的同时ꎬ抑制了 Cd

在水稻体内的迁移累积(表 2)水稻糙米 Cd 累积量

在 GF 处理降低明显ꎬ这与 GF 携带的 Mg 进入水稻

体内有关ꎬ胡坤等[24] 指出 Mg 能有效抑制 Cd 由茎

秆向糙米迁移较 CK 处理ꎬGF 处理的根 Cd 累积量

百分比有所提升ꎬ其它部位有所降低Si 进入作物根

系与 Cd 易生成共沉淀ꎬ且 Si 与作物细胞壁交互联

结ꎬ细胞壁中 Si 复合物所带负电荷会增强与 Cd2+的

结合抑制 Cd 向可食部位的转运ꎬ从而抑制 Cd 在作

物中的运输[28 ̄30]

34  硅钙镁肥影响 Cd 在水稻体内的分布

有研究表明大量富集于水稻老叶中的 Cd 伴随

着营养元素经再转运过程进入水稻生殖器官[31ꎬ32] 如韧皮部分泌的 Fe 柠檬酸盐进入成熟的新叶后ꎬ携带其中 Fe 进入水稻生殖器官ꎬ从而进入糙米ꎬ同时

由于 Cd 与 Fe 之间的协同作用ꎬ此过程促使 Cd 在

糙米中的累积ꎬ加重稻米 Cd 危害[32] 因此ꎬ叶部 Cd的再转运对水稻糙米吸收累积 Cd 的贡献不容忽视本研究表明ꎬGF 处理下ꎬ黄泥田与麻砂泥生长水稻

叶部对糙米 Cd 的贡献率分别可降低 5 88 和

1280ꎬ故施用 GF 可有效阻控糙米 Cd 累积基于本研究的结果ꎬGF 可用作水稻阻 Cd 的一

种改良措施ꎬ但对其用量还需多年多点结合田间试

验进一步研究ꎬ还应加强 SiMg 及 Fe 等营养元素在

水稻体内与 Cd 的交互关系及 Si 毒性研究ꎬ以进一

步提升稻米品质

4  结  论

1)麻砂泥土壤施加 GF 的降 Cd 效率优于黄

泥田2)土壤溶液 pH 与土壤溶液 Cd 浓度糙米 Cd

含量呈显著(Plt005)或极显著(Plt001)负相关ꎬ施加 GF 提升了麻砂泥与黄泥田土壤溶液 pHꎬ降低了

土壤溶液中 Cd 浓度ꎬ进而降低了 Cd 的生物有效性3)水稻根表铁膜 Fe 累积量与 DCB ̄Cd根糙

米 Cd 含量呈极显著负相关ꎬ施加 GF 显著提升了水

稻各生育期铁膜量ꎬ阻控 Cd 向根系上部迁移累积4)GF 有效抑制水稻叶部 Cd 向糙米转移ꎬ可使

叶对糙米 Cd 的贡献率最多降低 1280(麻砂泥)与 588(黄泥田)

6 湖南生态科学学报 2018 年 9 月

参考文献[1] Jackson B PꎬPunshon TRecent advances in the measure ̄

ment of arsenicꎬ cadmiumꎬand mercury in rice and otherfoods[ J] Current Environmental Health Reportsꎬ 2015ꎬ2(1)15 ̄24

[2] Imseng MꎬWiggenhauser MꎬKeller Aꎬet al Fate of Cd inagricultural soils A stable isotope approach toanthropogenic impactꎬsoil formation and soil ̄plant cycling[J]Environmental Science Technologyꎬ2018ꎬ52(4)1 919 ̄1 928

[3] Luo JꎬYin DꎬCheng Hꎬet alPlant induced changes to rhi ̄zosphere characteristics affecting supply of Cd to Noccaeacaerulescens and Ni to Thlaspi goesingense[J]Environmentalscience technologyꎬ2018ꎬ52(9)5 085 ̄5093

[4] Andrade G FꎬPaniz F PꎬMartins Jr A Cꎬet alAgriculturaluse of Samarcos spilled mud assessed by rice cultivationApromising residue use [ J ] Chemosphereꎬ 2018ꎬ 193892 ̄902

[5] Liang CꎬXiao HꎬHu Zꎬet alUptakeꎬtransportationꎬand ac ̄cumulation of C 60 fullerene and heavy metal ions ( CdꎬCuꎬand Pb) in rice plants grown in an agricultural soil[J]Environmental Pollutionꎬ2018ꎬ235330 ̄338

[6] 韩科峰硅钙镁磷钾肥对双季稻生长产量及土壤养分

的影响[D]杭州浙江农林大学ꎬ2015Han K FEffects of siliconꎬcalciumꎬmagnesiumꎬphosphorusand potassium fertilizer on growthꎬyield of double ̄croppingrice and soil properties[D]HangzhouZhejiang AF Uni ̄versityꎬ2015

[7] 曹  胜ꎬ周卫军ꎬ周雨舟ꎬ等硅钙镁土壤调理剂对酸性

镉污染土壤及稻米的降镉效果 [ J]河南农业科学ꎬ2017ꎬ46(12)54 ̄58Cao SꎬZhou W JꎬZhou Y Zꎬet alThe cadmium reductioneffect of silicon calcium magnesium soil conditioner on acidcadmium polluted soil and rice[J]Journal of Henan Agri ̄cultural Sciencesꎬ2017ꎬ46(12)54 ̄58

[8] 王怡璇ꎬ刘  杰ꎬ唐云舒ꎬ等硅对水稻镉转运的抑制效

应研究[J]生态环境学报ꎬ2016ꎬ25(11)1 822 ̄1 827Wang Y XꎬLiu JꎬTang Y Sꎬet alInhibitory effect of siliconon cadmium accumulation and transportation in rice [J]E ̄cology and Environmental Sciencesꎬ2016ꎬ25(11)1 822 ̄1 827

[9] 李造煌ꎬ杨文弢ꎬ邹佳玲ꎬ等钙镁磷肥对土壤 Cd 生物有

效性和糙米 Cd 含量的影响[J]环境科学学报ꎬ2017ꎬ37(6)2 322 ̄2 330Li Z HꎬYang W TꎬZou J Lꎬet alEffects of calcium magne ̄sium phosphate fertilizer on Cd bioavailability in soil and

Cd contents in rice [ J ] Acta Scientiae Circumstantiaeꎬ2017ꎬ37(6)2 322 ̄2 330

[10] Uraguchi SꎬFujiwara TRice breaks ground for cadmium ̄free cereals[J]Current opinion in plant biologyꎬ2013ꎬ16(3)328 ̄334

[11] Zhou HꎬZhu WꎬYang W Tꎬet alCadmium uptakeꎬaccu ̄mulationꎬ and remobilization in iron plaque and ricetissues at different growth stages [ J] Ecotoxicology andEnvironment Safetyꎬ2018ꎬ15291 ̄97

[12] 宗良纲ꎬ张丽娜ꎬ孙静克ꎬ等3 种改良剂对不同土壤 ̄水稻系统中 Cd 行为的影响 [ J]农业环境科学学报ꎬ2006ꎬ25(4)834 ̄840Zong L GꎬZhang L NꎬSun J Kꎬet al Effects of three a ̄mendments on behaviors of cadmium in different soil ̄ricesystem[J]Journal of Agro ̄Environment Scienceꎬ2006ꎬ25(4)834 ̄840

[13] Cao Z ZꎬQin M LꎬLin X Yꎬet al Sulfur supply reducescadmium uptake and translocation in rice grains (Oryzasativa L) by enhancing iron plaque formationꎬcadmiumchelation and vacuolar sequestration [ J ] EnvironmentalPollutionꎬ2018ꎬ23876 ̄84

[14] 中国科学院南京土壤研究所土壤理化分析[M]上海上海科学技术出版社ꎬ1978Nanjing Institute of Soil Researchꎬ Chinese Academy ofSciences Soil physicochemical analysis [ M] ShanghaiShanghai Science and Technology Pressꎬ1978

[15] 鲁如坤土壤农业化学分析方法[M]北京科学出版

社ꎬ2000Lu R K Soil agrochemical analysis method[M] BeijingScience Pressꎬ2000

[16] Wang XꎬJiang HꎬShang Xꎬet alComparison of dry ashingand wet oxidation methods for recovering articulated huskphytoliths of foxtail millet and common millet from archae ̄ological soil[ J]Journal of Archaeological Scienceꎬ2014ꎬ45234 ̄239

[17] 李欣阳ꎬ龙  坚ꎬ王树兵ꎬ等典型土壤双季稻对 Cd 吸

收累积差异[J]环境科学ꎬ2018ꎬ39(1)406 ̄414Li X YꎬLong JꎬWang S Bꎬet alDifferences in Cd accu ̄mulation in typical soils under the double rice system[J]Environmental Scienceꎬ2018ꎬ39(1)406 ̄414

[18] Wang XꎬLi XꎬMa Rꎬet alQuadratic discriminant analysismodel for assessing the risk of cadmium pollution forpaddy fields in a county in China[ J]Environmental Pol ̄lutionꎬ2018ꎬ236366 ̄372

[19] Yu H YꎬLiu CꎬZhu Jꎬet alCadmium availability in ricepaddy fields from a mining area the effects of soil

7第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

properties highlighting iron fractions and pH value[J]En ̄vironmental Pollutionꎬ2016ꎬ20938 ̄45

[20] Rafiq M TꎬAziz RꎬYang Xꎬet alCadmium phytoavailabilityto rice (Oryza sativa L) grown in representative Chinesesoils A model to improve soil environmental qualityguidelines for food safety [ J ] Ecotoxicology andEnvironmental Safetyꎬ2014ꎬ103101 ̄107

[21] Li ZꎬJia MꎬWu Lꎬet alChanges in metal availabilityꎬde ̄sorption kinetics and speciation in contaminated soilsduring repeated phytoextraction with the Zn Cd hyperac ̄cumulator Sedum plumbizincicola[ J]Environmental Pol ̄lutionꎬ2016ꎬ209123 ̄131

[22] Du Laing Gꎬ Rinklebe Jꎬ Vandecasteele Bꎬ et al Tracemetal behaviour in estuarine and riverine floodplain soilsand sedimentsa review[J]Science of the Total Environ ̄mentꎬ2009ꎬ407(13)3 972 ̄3 985

[23] Zhao Xꎬ Jiang Tꎬ Du B Effect of organic matter andcalcium carbonate on behaviors of cadmium adsorption ̄desorption on from purple paddy soils[J]Chemosphereꎬ2014ꎬ99(3)41 ̄48

[24] Wang JꎬChen B Adsorption and coadsorption of organicpollutants and a heavy metal by graphene oxide and re ̄duced graphene materials[J]Chemical Engineering Jour ̄nalꎬ2015ꎬ281379 ̄388

[25] 胡  坤淹水条件下不同中微量元素和有益元素对土

壤镉有效性和水稻吸收镉的影响[D]雅安四川农业

大学ꎬ2010Hu KEffects of different sources of secondaryꎬmicro ̄andbeneficial elements on availability of soil cadmium and itsuptake by rice under waterlogged condition[D]YaanSi ̄

chuan Agricultural Universityꎬ2010[26] Ye XꎬLi HꎬZhang Lꎬet alAmendment damages the func ̄

tion of continuous flooding in decreasing Cd and Pb uptakeby rice in acid paddy soil[ J]Ecotoxicology and Environ ̄mental Safetyꎬ2018ꎬ147708 ̄714

[27] Yamaguchi NꎬOhkura TꎬTakahashi Yꎬet alArsenic distri ̄bution and speciation near rice roots influenced by ironplaques and redox conditions of the soil matrix[ J]Envi ̄ronmental Science Technologyꎬ 2014ꎬ 48 ( 3) 1 549 ̄1 556

[28] Liu JꎬMa JꎬHe Cꎬet alInhibition of cadmium ion uptakein rice ( Oryza sativa) cells by a wall ̄bound form ofsilicon[J]New Phytologistꎬ2013ꎬ200(3)691 ̄699

[29] Meharg CꎬMeharg A ASiliconꎬthe silver bullet for mitiga ̄ting biotic and abiotic stressꎬand improving grain qualityꎬin rice [ J] Environmental and Experimental Botanyꎬ2015ꎬ1208 ̄17

[30] Ma JꎬCai HꎬHe Cꎬet al A hemicellulose ̄bound form ofsilicon inhibits cadmium ion uptake in rice (Oryza sativa)cells[J]New Phytologistꎬ2015ꎬ206(3)1 063 ̄1 074

[31] Yan Y FꎬChoi D HꎬKim D Sꎬet alAbsorptionꎬtransloca ̄tionꎬand remobilization of cadmium supplied at differentgrowth stages of rice[J]Journal of Crop Science and Bio ̄technologyꎬ2010ꎬ13(2)113 ̄119

[32] Yoneyama TꎬIshikawa SꎬFujimaki SRoute and regulationof zincꎬcadmiumꎬand iron transport in rice plants (Oryzasativa L) during vegetative growth and grain fillingmetaltransportersꎬmetal speciationꎬgrain Cd reduction and Znand Fe biofortification [ J ] International Journal ofMolecular Sciencesꎬ2015ꎬ16(8)19 111 ̄19 129

Study on the Differences of the Effects of Si ̄Ca ̄Mg Fertilizer on Uptake andAccumulation of Cadmium in Rice Plants on Different Soil Types

LI Xin ̄yang1ꎬ2ꎬ  LONG Jian1ꎬ2ꎬ  DONG Xia1ꎬ2ꎬ  JIANG Kai1ꎬ2ꎬ  WANG Shu ̄bing3ꎬLIU Wen ̄hui4ꎬ  HOU Hong ̄bo1ꎬ2ꎬ  PENG Pei ̄qin1ꎬ2lowastꎬ  LIAO Bo ̄han1ꎬ2

(1College of Environmental Science and EngineeringꎬCentral South University of Forestry and TechnologyꎬChangsha 410004ꎬChinaꎻ2Hunan Engineering Laboratory for Control of Rice Quality and SafetyꎬCentral South University of Forestry and TechnologyꎬChangsha410004ꎬChinaꎻ3Agricultural Integrated Service Center of Changsha CountyꎬHuang Xing TownꎬChangsha 410100ꎬChinaꎻ4AgriculturalIntegrated Service Center of Ningxiang CityꎬShuang Jiangkou TownꎬChangsha 410601ꎬChina)

AbstractIn order to study the effect of Si ̄Ca ̄Mg fertilizer (GF) on uptake and accumulation of Cd

8 湖南生态科学学报 2018 年 9 月

in rice plants on two typical paddy soilsꎬthe rice pot experiment was conducted in the yellow clayey soil(YCS) developed from plate shale parent materials and the granitic sandy soil (GSS) developed fromgranite parent materialsChanges of soil pH and CEC in different growing periodsꎬCd concentrations insoil solutionꎬCd contents in rice tissues ( rootsꎬstemsꎬleavesꎬhusks and brown rice) and total Cd accu ̄mulation in rice plantsꎬContent and total accumulation of Cd and Fe in iron plaque were analyzedThe re ̄sults showed that application of GF in rice soil decreased significantly the concentration of Cd in soil solu ̄tionꎬincreased significantly soil pH and CECꎬreduced Cd contents in rice rootsꎬstemsꎬleavesꎬhusks andbrown riceꎬand decreased significantly the total Cd accumulation in rice plantsApplication of GF in ricesoil promoted the formation of the iron plaqueꎬincreased the content of DCB ̄Fe in different growing peri ̄odsꎬreduced the content of DCB ̄Cd and inhibited the upward migration of Cd from rootWhen GF was ap ̄plied in the rice soilꎬthe Cd content of brown rice in YCS and GSS decreased to 011 and 015 mg kgꎬboth lower than the national standard for brown rice Cd 02 mg kgCorrelation analysis presented signifi ̄cant (Plt005) and extremely significant (Plt001) negative relationship between pH in soil solution andCd concentration in soil solution and Cd content in brown riceꎬand the extremely significant negative rela ̄tionship between Fe accumulation in iron plaque and DCB ̄Cd and Cd contents in root and brown riceThecontribution rate of leaves to Cd remobilization of brown rice by GF was reduced by 588 (in YCS) and1280 (in GSS)Application of GF in rice soil can effectively prevent and control the absorption andaccumulation of Cd in riceꎬand the effect of GSS was better than that of YCS

KeywordsCdꎻsoilꎻSi ̄Ca ̄Mg fertilizerꎻriceꎻiron plaqueꎻremobilization

9第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

参考文献[1] Jackson B PꎬPunshon TRecent advances in the measure ̄

ment of arsenicꎬ cadmiumꎬand mercury in rice and otherfoods[ J] Current Environmental Health Reportsꎬ 2015ꎬ2(1)15 ̄24

[2] Imseng MꎬWiggenhauser MꎬKeller Aꎬet al Fate of Cd inagricultural soils A stable isotope approach toanthropogenic impactꎬsoil formation and soil ̄plant cycling[J]Environmental Science Technologyꎬ2018ꎬ52(4)1 919 ̄1 928

[3] Luo JꎬYin DꎬCheng Hꎬet alPlant induced changes to rhi ̄zosphere characteristics affecting supply of Cd to Noccaeacaerulescens and Ni to Thlaspi goesingense[J]Environmentalscience technologyꎬ2018ꎬ52(9)5 085 ̄5093

[4] Andrade G FꎬPaniz F PꎬMartins Jr A Cꎬet alAgriculturaluse of Samarcos spilled mud assessed by rice cultivationApromising residue use [ J ] Chemosphereꎬ 2018ꎬ 193892 ̄902

[5] Liang CꎬXiao HꎬHu Zꎬet alUptakeꎬtransportationꎬand ac ̄cumulation of C 60 fullerene and heavy metal ions ( CdꎬCuꎬand Pb) in rice plants grown in an agricultural soil[J]Environmental Pollutionꎬ2018ꎬ235330 ̄338

[6] 韩科峰硅钙镁磷钾肥对双季稻生长产量及土壤养分

的影响[D]杭州浙江农林大学ꎬ2015Han K FEffects of siliconꎬcalciumꎬmagnesiumꎬphosphorusand potassium fertilizer on growthꎬyield of double ̄croppingrice and soil properties[D]HangzhouZhejiang AF Uni ̄versityꎬ2015

[7] 曹  胜ꎬ周卫军ꎬ周雨舟ꎬ等硅钙镁土壤调理剂对酸性

镉污染土壤及稻米的降镉效果 [ J]河南农业科学ꎬ2017ꎬ46(12)54 ̄58Cao SꎬZhou W JꎬZhou Y Zꎬet alThe cadmium reductioneffect of silicon calcium magnesium soil conditioner on acidcadmium polluted soil and rice[J]Journal of Henan Agri ̄cultural Sciencesꎬ2017ꎬ46(12)54 ̄58

[8] 王怡璇ꎬ刘  杰ꎬ唐云舒ꎬ等硅对水稻镉转运的抑制效

应研究[J]生态环境学报ꎬ2016ꎬ25(11)1 822 ̄1 827Wang Y XꎬLiu JꎬTang Y Sꎬet alInhibitory effect of siliconon cadmium accumulation and transportation in rice [J]E ̄cology and Environmental Sciencesꎬ2016ꎬ25(11)1 822 ̄1 827

[9] 李造煌ꎬ杨文弢ꎬ邹佳玲ꎬ等钙镁磷肥对土壤 Cd 生物有

效性和糙米 Cd 含量的影响[J]环境科学学报ꎬ2017ꎬ37(6)2 322 ̄2 330Li Z HꎬYang W TꎬZou J Lꎬet alEffects of calcium magne ̄sium phosphate fertilizer on Cd bioavailability in soil and

Cd contents in rice [ J ] Acta Scientiae Circumstantiaeꎬ2017ꎬ37(6)2 322 ̄2 330

[10] Uraguchi SꎬFujiwara TRice breaks ground for cadmium ̄free cereals[J]Current opinion in plant biologyꎬ2013ꎬ16(3)328 ̄334

[11] Zhou HꎬZhu WꎬYang W Tꎬet alCadmium uptakeꎬaccu ̄mulationꎬ and remobilization in iron plaque and ricetissues at different growth stages [ J] Ecotoxicology andEnvironment Safetyꎬ2018ꎬ15291 ̄97

[12] 宗良纲ꎬ张丽娜ꎬ孙静克ꎬ等3 种改良剂对不同土壤 ̄水稻系统中 Cd 行为的影响 [ J]农业环境科学学报ꎬ2006ꎬ25(4)834 ̄840Zong L GꎬZhang L NꎬSun J Kꎬet al Effects of three a ̄mendments on behaviors of cadmium in different soil ̄ricesystem[J]Journal of Agro ̄Environment Scienceꎬ2006ꎬ25(4)834 ̄840

[13] Cao Z ZꎬQin M LꎬLin X Yꎬet al Sulfur supply reducescadmium uptake and translocation in rice grains (Oryzasativa L) by enhancing iron plaque formationꎬcadmiumchelation and vacuolar sequestration [ J ] EnvironmentalPollutionꎬ2018ꎬ23876 ̄84

[14] 中国科学院南京土壤研究所土壤理化分析[M]上海上海科学技术出版社ꎬ1978Nanjing Institute of Soil Researchꎬ Chinese Academy ofSciences Soil physicochemical analysis [ M] ShanghaiShanghai Science and Technology Pressꎬ1978

[15] 鲁如坤土壤农业化学分析方法[M]北京科学出版

社ꎬ2000Lu R K Soil agrochemical analysis method[M] BeijingScience Pressꎬ2000

[16] Wang XꎬJiang HꎬShang Xꎬet alComparison of dry ashingand wet oxidation methods for recovering articulated huskphytoliths of foxtail millet and common millet from archae ̄ological soil[ J]Journal of Archaeological Scienceꎬ2014ꎬ45234 ̄239

[17] 李欣阳ꎬ龙  坚ꎬ王树兵ꎬ等典型土壤双季稻对 Cd 吸

收累积差异[J]环境科学ꎬ2018ꎬ39(1)406 ̄414Li X YꎬLong JꎬWang S Bꎬet alDifferences in Cd accu ̄mulation in typical soils under the double rice system[J]Environmental Scienceꎬ2018ꎬ39(1)406 ̄414

[18] Wang XꎬLi XꎬMa Rꎬet alQuadratic discriminant analysismodel for assessing the risk of cadmium pollution forpaddy fields in a county in China[ J]Environmental Pol ̄lutionꎬ2018ꎬ236366 ̄372

[19] Yu H YꎬLiu CꎬZhu Jꎬet alCadmium availability in ricepaddy fields from a mining area the effects of soil

7第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

properties highlighting iron fractions and pH value[J]En ̄vironmental Pollutionꎬ2016ꎬ20938 ̄45

[20] Rafiq M TꎬAziz RꎬYang Xꎬet alCadmium phytoavailabilityto rice (Oryza sativa L) grown in representative Chinesesoils A model to improve soil environmental qualityguidelines for food safety [ J ] Ecotoxicology andEnvironmental Safetyꎬ2014ꎬ103101 ̄107

[21] Li ZꎬJia MꎬWu Lꎬet alChanges in metal availabilityꎬde ̄sorption kinetics and speciation in contaminated soilsduring repeated phytoextraction with the Zn Cd hyperac ̄cumulator Sedum plumbizincicola[ J]Environmental Pol ̄lutionꎬ2016ꎬ209123 ̄131

[22] Du Laing Gꎬ Rinklebe Jꎬ Vandecasteele Bꎬ et al Tracemetal behaviour in estuarine and riverine floodplain soilsand sedimentsa review[J]Science of the Total Environ ̄mentꎬ2009ꎬ407(13)3 972 ̄3 985

[23] Zhao Xꎬ Jiang Tꎬ Du B Effect of organic matter andcalcium carbonate on behaviors of cadmium adsorption ̄desorption on from purple paddy soils[J]Chemosphereꎬ2014ꎬ99(3)41 ̄48

[24] Wang JꎬChen B Adsorption and coadsorption of organicpollutants and a heavy metal by graphene oxide and re ̄duced graphene materials[J]Chemical Engineering Jour ̄nalꎬ2015ꎬ281379 ̄388

[25] 胡  坤淹水条件下不同中微量元素和有益元素对土

壤镉有效性和水稻吸收镉的影响[D]雅安四川农业

大学ꎬ2010Hu KEffects of different sources of secondaryꎬmicro ̄andbeneficial elements on availability of soil cadmium and itsuptake by rice under waterlogged condition[D]YaanSi ̄

chuan Agricultural Universityꎬ2010[26] Ye XꎬLi HꎬZhang Lꎬet alAmendment damages the func ̄

tion of continuous flooding in decreasing Cd and Pb uptakeby rice in acid paddy soil[ J]Ecotoxicology and Environ ̄mental Safetyꎬ2018ꎬ147708 ̄714

[27] Yamaguchi NꎬOhkura TꎬTakahashi Yꎬet alArsenic distri ̄bution and speciation near rice roots influenced by ironplaques and redox conditions of the soil matrix[ J]Envi ̄ronmental Science Technologyꎬ 2014ꎬ 48 ( 3) 1 549 ̄1 556

[28] Liu JꎬMa JꎬHe Cꎬet alInhibition of cadmium ion uptakein rice ( Oryza sativa) cells by a wall ̄bound form ofsilicon[J]New Phytologistꎬ2013ꎬ200(3)691 ̄699

[29] Meharg CꎬMeharg A ASiliconꎬthe silver bullet for mitiga ̄ting biotic and abiotic stressꎬand improving grain qualityꎬin rice [ J] Environmental and Experimental Botanyꎬ2015ꎬ1208 ̄17

[30] Ma JꎬCai HꎬHe Cꎬet al A hemicellulose ̄bound form ofsilicon inhibits cadmium ion uptake in rice (Oryza sativa)cells[J]New Phytologistꎬ2015ꎬ206(3)1 063 ̄1 074

[31] Yan Y FꎬChoi D HꎬKim D Sꎬet alAbsorptionꎬtransloca ̄tionꎬand remobilization of cadmium supplied at differentgrowth stages of rice[J]Journal of Crop Science and Bio ̄technologyꎬ2010ꎬ13(2)113 ̄119

[32] Yoneyama TꎬIshikawa SꎬFujimaki SRoute and regulationof zincꎬcadmiumꎬand iron transport in rice plants (Oryzasativa L) during vegetative growth and grain fillingmetaltransportersꎬmetal speciationꎬgrain Cd reduction and Znand Fe biofortification [ J ] International Journal ofMolecular Sciencesꎬ2015ꎬ16(8)19 111 ̄19 129

Study on the Differences of the Effects of Si ̄Ca ̄Mg Fertilizer on Uptake andAccumulation of Cadmium in Rice Plants on Different Soil Types

LI Xin ̄yang1ꎬ2ꎬ  LONG Jian1ꎬ2ꎬ  DONG Xia1ꎬ2ꎬ  JIANG Kai1ꎬ2ꎬ  WANG Shu ̄bing3ꎬLIU Wen ̄hui4ꎬ  HOU Hong ̄bo1ꎬ2ꎬ  PENG Pei ̄qin1ꎬ2lowastꎬ  LIAO Bo ̄han1ꎬ2

(1College of Environmental Science and EngineeringꎬCentral South University of Forestry and TechnologyꎬChangsha 410004ꎬChinaꎻ2Hunan Engineering Laboratory for Control of Rice Quality and SafetyꎬCentral South University of Forestry and TechnologyꎬChangsha410004ꎬChinaꎻ3Agricultural Integrated Service Center of Changsha CountyꎬHuang Xing TownꎬChangsha 410100ꎬChinaꎻ4AgriculturalIntegrated Service Center of Ningxiang CityꎬShuang Jiangkou TownꎬChangsha 410601ꎬChina)

AbstractIn order to study the effect of Si ̄Ca ̄Mg fertilizer (GF) on uptake and accumulation of Cd

8 湖南生态科学学报 2018 年 9 月

in rice plants on two typical paddy soilsꎬthe rice pot experiment was conducted in the yellow clayey soil(YCS) developed from plate shale parent materials and the granitic sandy soil (GSS) developed fromgranite parent materialsChanges of soil pH and CEC in different growing periodsꎬCd concentrations insoil solutionꎬCd contents in rice tissues ( rootsꎬstemsꎬleavesꎬhusks and brown rice) and total Cd accu ̄mulation in rice plantsꎬContent and total accumulation of Cd and Fe in iron plaque were analyzedThe re ̄sults showed that application of GF in rice soil decreased significantly the concentration of Cd in soil solu ̄tionꎬincreased significantly soil pH and CECꎬreduced Cd contents in rice rootsꎬstemsꎬleavesꎬhusks andbrown riceꎬand decreased significantly the total Cd accumulation in rice plantsApplication of GF in ricesoil promoted the formation of the iron plaqueꎬincreased the content of DCB ̄Fe in different growing peri ̄odsꎬreduced the content of DCB ̄Cd and inhibited the upward migration of Cd from rootWhen GF was ap ̄plied in the rice soilꎬthe Cd content of brown rice in YCS and GSS decreased to 011 and 015 mg kgꎬboth lower than the national standard for brown rice Cd 02 mg kgCorrelation analysis presented signifi ̄cant (Plt005) and extremely significant (Plt001) negative relationship between pH in soil solution andCd concentration in soil solution and Cd content in brown riceꎬand the extremely significant negative rela ̄tionship between Fe accumulation in iron plaque and DCB ̄Cd and Cd contents in root and brown riceThecontribution rate of leaves to Cd remobilization of brown rice by GF was reduced by 588 (in YCS) and1280 (in GSS)Application of GF in rice soil can effectively prevent and control the absorption andaccumulation of Cd in riceꎬand the effect of GSS was better than that of YCS

KeywordsCdꎻsoilꎻSi ̄Ca ̄Mg fertilizerꎻriceꎻiron plaqueꎻremobilization

9第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

properties highlighting iron fractions and pH value[J]En ̄vironmental Pollutionꎬ2016ꎬ20938 ̄45

[20] Rafiq M TꎬAziz RꎬYang Xꎬet alCadmium phytoavailabilityto rice (Oryza sativa L) grown in representative Chinesesoils A model to improve soil environmental qualityguidelines for food safety [ J ] Ecotoxicology andEnvironmental Safetyꎬ2014ꎬ103101 ̄107

[21] Li ZꎬJia MꎬWu Lꎬet alChanges in metal availabilityꎬde ̄sorption kinetics and speciation in contaminated soilsduring repeated phytoextraction with the Zn Cd hyperac ̄cumulator Sedum plumbizincicola[ J]Environmental Pol ̄lutionꎬ2016ꎬ209123 ̄131

[22] Du Laing Gꎬ Rinklebe Jꎬ Vandecasteele Bꎬ et al Tracemetal behaviour in estuarine and riverine floodplain soilsand sedimentsa review[J]Science of the Total Environ ̄mentꎬ2009ꎬ407(13)3 972 ̄3 985

[23] Zhao Xꎬ Jiang Tꎬ Du B Effect of organic matter andcalcium carbonate on behaviors of cadmium adsorption ̄desorption on from purple paddy soils[J]Chemosphereꎬ2014ꎬ99(3)41 ̄48

[24] Wang JꎬChen B Adsorption and coadsorption of organicpollutants and a heavy metal by graphene oxide and re ̄duced graphene materials[J]Chemical Engineering Jour ̄nalꎬ2015ꎬ281379 ̄388

[25] 胡  坤淹水条件下不同中微量元素和有益元素对土

壤镉有效性和水稻吸收镉的影响[D]雅安四川农业

大学ꎬ2010Hu KEffects of different sources of secondaryꎬmicro ̄andbeneficial elements on availability of soil cadmium and itsuptake by rice under waterlogged condition[D]YaanSi ̄

chuan Agricultural Universityꎬ2010[26] Ye XꎬLi HꎬZhang Lꎬet alAmendment damages the func ̄

tion of continuous flooding in decreasing Cd and Pb uptakeby rice in acid paddy soil[ J]Ecotoxicology and Environ ̄mental Safetyꎬ2018ꎬ147708 ̄714

[27] Yamaguchi NꎬOhkura TꎬTakahashi Yꎬet alArsenic distri ̄bution and speciation near rice roots influenced by ironplaques and redox conditions of the soil matrix[ J]Envi ̄ronmental Science Technologyꎬ 2014ꎬ 48 ( 3) 1 549 ̄1 556

[28] Liu JꎬMa JꎬHe Cꎬet alInhibition of cadmium ion uptakein rice ( Oryza sativa) cells by a wall ̄bound form ofsilicon[J]New Phytologistꎬ2013ꎬ200(3)691 ̄699

[29] Meharg CꎬMeharg A ASiliconꎬthe silver bullet for mitiga ̄ting biotic and abiotic stressꎬand improving grain qualityꎬin rice [ J] Environmental and Experimental Botanyꎬ2015ꎬ1208 ̄17

[30] Ma JꎬCai HꎬHe Cꎬet al A hemicellulose ̄bound form ofsilicon inhibits cadmium ion uptake in rice (Oryza sativa)cells[J]New Phytologistꎬ2015ꎬ206(3)1 063 ̄1 074

[31] Yan Y FꎬChoi D HꎬKim D Sꎬet alAbsorptionꎬtransloca ̄tionꎬand remobilization of cadmium supplied at differentgrowth stages of rice[J]Journal of Crop Science and Bio ̄technologyꎬ2010ꎬ13(2)113 ̄119

[32] Yoneyama TꎬIshikawa SꎬFujimaki SRoute and regulationof zincꎬcadmiumꎬand iron transport in rice plants (Oryzasativa L) during vegetative growth and grain fillingmetaltransportersꎬmetal speciationꎬgrain Cd reduction and Znand Fe biofortification [ J ] International Journal ofMolecular Sciencesꎬ2015ꎬ16(8)19 111 ̄19 129

Study on the Differences of the Effects of Si ̄Ca ̄Mg Fertilizer on Uptake andAccumulation of Cadmium in Rice Plants on Different Soil Types

LI Xin ̄yang1ꎬ2ꎬ  LONG Jian1ꎬ2ꎬ  DONG Xia1ꎬ2ꎬ  JIANG Kai1ꎬ2ꎬ  WANG Shu ̄bing3ꎬLIU Wen ̄hui4ꎬ  HOU Hong ̄bo1ꎬ2ꎬ  PENG Pei ̄qin1ꎬ2lowastꎬ  LIAO Bo ̄han1ꎬ2

(1College of Environmental Science and EngineeringꎬCentral South University of Forestry and TechnologyꎬChangsha 410004ꎬChinaꎻ2Hunan Engineering Laboratory for Control of Rice Quality and SafetyꎬCentral South University of Forestry and TechnologyꎬChangsha410004ꎬChinaꎻ3Agricultural Integrated Service Center of Changsha CountyꎬHuang Xing TownꎬChangsha 410100ꎬChinaꎻ4AgriculturalIntegrated Service Center of Ningxiang CityꎬShuang Jiangkou TownꎬChangsha 410601ꎬChina)

AbstractIn order to study the effect of Si ̄Ca ̄Mg fertilizer (GF) on uptake and accumulation of Cd

8 湖南生态科学学报 2018 年 9 月

in rice plants on two typical paddy soilsꎬthe rice pot experiment was conducted in the yellow clayey soil(YCS) developed from plate shale parent materials and the granitic sandy soil (GSS) developed fromgranite parent materialsChanges of soil pH and CEC in different growing periodsꎬCd concentrations insoil solutionꎬCd contents in rice tissues ( rootsꎬstemsꎬleavesꎬhusks and brown rice) and total Cd accu ̄mulation in rice plantsꎬContent and total accumulation of Cd and Fe in iron plaque were analyzedThe re ̄sults showed that application of GF in rice soil decreased significantly the concentration of Cd in soil solu ̄tionꎬincreased significantly soil pH and CECꎬreduced Cd contents in rice rootsꎬstemsꎬleavesꎬhusks andbrown riceꎬand decreased significantly the total Cd accumulation in rice plantsApplication of GF in ricesoil promoted the formation of the iron plaqueꎬincreased the content of DCB ̄Fe in different growing peri ̄odsꎬreduced the content of DCB ̄Cd and inhibited the upward migration of Cd from rootWhen GF was ap ̄plied in the rice soilꎬthe Cd content of brown rice in YCS and GSS decreased to 011 and 015 mg kgꎬboth lower than the national standard for brown rice Cd 02 mg kgCorrelation analysis presented signifi ̄cant (Plt005) and extremely significant (Plt001) negative relationship between pH in soil solution andCd concentration in soil solution and Cd content in brown riceꎬand the extremely significant negative rela ̄tionship between Fe accumulation in iron plaque and DCB ̄Cd and Cd contents in root and brown riceThecontribution rate of leaves to Cd remobilization of brown rice by GF was reduced by 588 (in YCS) and1280 (in GSS)Application of GF in rice soil can effectively prevent and control the absorption andaccumulation of Cd in riceꎬand the effect of GSS was better than that of YCS

KeywordsCdꎻsoilꎻSi ̄Ca ̄Mg fertilizerꎻriceꎻiron plaqueꎻremobilization

9第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究

in rice plants on two typical paddy soilsꎬthe rice pot experiment was conducted in the yellow clayey soil(YCS) developed from plate shale parent materials and the granitic sandy soil (GSS) developed fromgranite parent materialsChanges of soil pH and CEC in different growing periodsꎬCd concentrations insoil solutionꎬCd contents in rice tissues ( rootsꎬstemsꎬleavesꎬhusks and brown rice) and total Cd accu ̄mulation in rice plantsꎬContent and total accumulation of Cd and Fe in iron plaque were analyzedThe re ̄sults showed that application of GF in rice soil decreased significantly the concentration of Cd in soil solu ̄tionꎬincreased significantly soil pH and CECꎬreduced Cd contents in rice rootsꎬstemsꎬleavesꎬhusks andbrown riceꎬand decreased significantly the total Cd accumulation in rice plantsApplication of GF in ricesoil promoted the formation of the iron plaqueꎬincreased the content of DCB ̄Fe in different growing peri ̄odsꎬreduced the content of DCB ̄Cd and inhibited the upward migration of Cd from rootWhen GF was ap ̄plied in the rice soilꎬthe Cd content of brown rice in YCS and GSS decreased to 011 and 015 mg kgꎬboth lower than the national standard for brown rice Cd 02 mg kgCorrelation analysis presented signifi ̄cant (Plt005) and extremely significant (Plt001) negative relationship between pH in soil solution andCd concentration in soil solution and Cd content in brown riceꎬand the extremely significant negative rela ̄tionship between Fe accumulation in iron plaque and DCB ̄Cd and Cd contents in root and brown riceThecontribution rate of leaves to Cd remobilization of brown rice by GF was reduced by 588 (in YCS) and1280 (in GSS)Application of GF in rice soil can effectively prevent and control the absorption andaccumulation of Cd in riceꎬand the effect of GSS was better than that of YCS

KeywordsCdꎻsoilꎻSi ̄Ca ̄Mg fertilizerꎻriceꎻiron plaqueꎻremobilization

9第 5 卷第 3 期 李欣阳ꎬ等硅钙镁肥对不同母质稻田土壤水稻 Cd 吸收累积的影响及其差异研究