CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in...

16
Rachel Bean (Cornell University) On behalf of the CCAT Cosmology Working Group CCAT Special Session Cosmology and cluster science with CCAT 1 AAS Mee:ng 2013 CCAT Session

Transcript of CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in...

Page 1: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

Rachel  Bean  (Cornell  University)  On  behalf  of  the  CCAT  Cosmology  Working  Group  

 

CCAT  Special  Session  

Cosmology  and  cluster  science  with  CCAT  

1  AAS  Mee:ng  2013  -­‐  CCAT  Session  

Page 2: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

A  unique  cosmological  perspec:ve  

Broad  cosmological  surveys  fully  uBlizing  CCAT’s  unique  capabiliBes.    Immediate  capabiliBes:  •  Large  field  of  view  (1  deg  total,  20  arcmin  LWCAM)  •  Full  sky  surveys  possible  (up  to  3π  steradians)  •  Fine  angular  resolu:on  (12”  at  1  mm)  •  Mul:-­‐frequency  spectral  coverage  (350  μm  to  3  mm)    Longer  term:    •    Integral  field  spectroscopy  [570micron-­‐1.5mm]    

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session   2  

Page 3: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

CCAT  cosmology  priori:es  

CCAT’s  mulB-­‐frequency,  high  resoluBon  survey  will  open  up  a  new  window  on  cluster  astrophysics  and  cosmology  

Immediate  aims:    •  Detailed  characteriza:on  of  cluster  structure  (fine  &  large  scales)    •  Unambiguous  measurements  of  ICM  veloci:es  and  temperature  

To  realize:  •  A  deeper  understanding  of  cluster  processes  and  evolu:on  •  A  dynamical  imprint  of  the  epoch  of  reioniza:on  •  A  direct  measure  of  cosmic  flows,  a  dis:nct  test  of  gravity  •  Rich  complementarity  with  upcoming  X-­‐ray,  lensing  &  

spectroscopic  galaxy  surveys  

Longer  term:    •  A  new  redshi^  window  (at  z~3-­‐5)  on  the  cosmic  expansion  history  

and  galaxy  clustering.  Complementary  to  op:cal  /IR  surveys  at  z<2  

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session   3  

6 Morandi, Nagai, & Cui

Figure 2. The SZ brightness �I(⌫) maps of the cluster CL101 viewed along the z projection at 6 CCAT bands. The size of the regionshown in the figure is 5.7 Mpc centered on the minimum of cluster potential, with a pixel size of 22 kpc.

the SZ data, especially the peculiar velocity measured dis-cussed in § 5.2.

To assess the magnitude of this e↵ect, we have includedin the simulations the additional intensity change in theCMB spectrum due to populations of non-thermal electrons:

�Irel

(⌫)I0

= �

x3

(ex � 1)2⌧rel

(14)

where ⌧rel

= �Te

Rne,rel

dz is the optical depth of the rela-tivistic electrons.

For simplicity, the non-thermal emission region has beenassumed to have spherical symmetry with an electron spec-trum:

Ne

(p, r) = k0

p�s1· g

e

(r) p > p1

. (15)

Here we assume s1

= 3, p1

= 10, k0

= 3.7⇥ 10�3 cm�3 anda radial distribution of the electron population given by:

ge

(r) =

"1 +

✓r

rc

◆2

#�qe

(16)

with rc

= 10 kpc and qe

= 0.5. With this choice of k0

, thenon-thermal electron energy constitutes

< 1% of the thermalenergy in the cluster, in agreement with the observations ofComa cluster (Shimon & Rephaeli 2002).

Therefore, the contribution of the non-thermal SZ sig-

nal is generally small compared to the thermal SZ sig-nal (�I

rel

/�Ith

⌧ 10�2) in most bands, except near thecrossover frequency at 218 GHz (e.g., �I

rel

/�Ith

< 20% at211 GHz). Hence relativistic electrons have a a negligibleimpact on the cluster temperature determination (see, also,Shimon & Rephaeli 2002), but they can lead to significantbiases on the peculiar velocity determination, which stemsmainly from SZ measurements around 218 GHz. Note that,even if we increase k

0

by a factor of five in order to mimic theproperties of clusters hosting strong radio halos (e.g. A2199,Shimon & Rephaeli 2002), we still find a small impact of therelativistic population on the cluster temperature determi-nation.

4.5 Primary CMB anisotropies

The primary CMB anisotropies are potential sources of con-tamination in the SZ observations. CMB anisotropies �Ttranslate into uncertainties on the SZ signal �I(⌫) by thederivative of the blackbody with respect to temperature, i.e.�I(⌫)/I

0

= x4ex/(ex � 1)2 �T/Tcmb

. We tackled the e↵ectof the primary CMB anisotropies as follows. First, we pro-duced a realistic CMB map T

cmb

+�T in order to generatethe �I(⌫)/I

0

simulated images described in §4.3. Then, weexplicitly included in the covariance matrix C (see §3) boththe uncertainties due to the CMB correlated signal and the

c� 0000 RAS, MNRAS 000, 000–000

Figure  credit:  Daisuke  Nagai  

Page 4: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

Sub-­‐mm  cluster  surveys  

•  Sunyaev-­‐Zel’dovich  (SZ)  signal  from  CMB  photons  interacBng  with  clusters  

 •  MulBple  contribuBons  to  observed  

signal,  both  SZ  and  astrophysical  –  Thermal,  Kine:c  and  rela:vis:c  SZ    –  Sub-­‐mm  galaxies  (SMGs)  –  Radio  sources  

•  MulB-­‐frequency  sensiBvity  and  angular  resoluBon  are  crucial  to  disentangle  the  various  components  

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session   4  

CMB  γ

Hot  cluster  gas  

Energe:c  e-­‐  

Blue-­‐shi^ed  γ

Observatory

Page 5: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

Mul:-­‐frequency  measurements  

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session   5  

Rela:vis:c  SZ  

Kine:c  SZ  Thermal  SZ  

Sub-­‐mm  sources  

Radio  sources  

combined  

Page 6: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

A  unique  mul:-­‐frequency  and    high-­‐resolu:on  survey  

6  

10‘  

The  Bullet  Cluster   Planck  beams  

100  GHz  

857  545    353  217  GHz  

143  GHz  

1‘  

color:  X-­‐ray  blue  contours:  X-­‐ray  

white  contours:  lensing  

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session  

Page 7: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

A  unique  mul:-­‐frequency  and    high-­‐resolu:on  survey  

7  

The  Bullet  Cluster   ACT,  SPT  beams  

10‘  1‘  

Atacama  Cosmology  Telescope  

South  Pole  Telescope  

148  GHz  

218  GHz  

277  GHz  

95  GHz  

150  GHz  

218  GHz  

color:  X-­‐ray  blue  contours:  X-­‐ray  

white  contours:  lensing  

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session  

Page 8: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

A  unique  mul:-­‐frequency  and    high-­‐resolu:on  survey  

Date   Mee:ng  Title   8  

10‘  

ACT  

SPT  95  GHz  

150  GHz  

218  GHz  

277  GHz  

218  GHz  

148  GHz  

1‘  

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session  

The  Bullet  Cluster   ACT,  SPT  beams  color:  X-­‐ray  

blue  contours:  X-­‐ray  white  contours:  lensing  

Page 9: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session  

A  unique  mul:-­‐frequency  and    high-­‐resolu:on  survey  

Date   Mee:ng  Title   9  

90  GHz  

SWCam:  857  667  484  GHz  

150  GHz  

1‘  

The  Bullet  Cluster   CCAT  beams  

LWCam:  400  350          275  230  150  90  GHz  

color:  X-­‐ray  blue  contours:  X-­‐ray  

white  contours:  lensing  

Page 10: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

A  unique  mul:-­‐frequency  and    high-­‐resolu:on  survey  

10  

857  667  484    GHz        

400  350    GHz          

275  230  150            90        GHz  

1‘  

The  Bullet  Cluster   CCAT  beams  

SWCam  

LWCam  

color:  X-­‐ray  blue  contours:  X-­‐ray  

white  contours:  lensing  

Page 11: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

Comparison  of  simulated  CCAT  and  SPT  radial  profile  recovery  (with  same  noise)  

SPT    

CCAT  

Cluster  profile  reconstruc:on  

Constrain  cluster  pressure  profiles  &  non  self-­‐similar  redshi^  evolu:on    

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session   11  

non  self-­‐similar  evolu:on  ε    

Pressure  profile  shape    β    

SPT  constraints  

CCAT  

 Credit:  [LH]  Morandi,  Nagai  and  Cui  in  prep  [RH]  Ramos-­‐Ceja  &  Basu  in  prep.    

Cluster  astrophysics  parameters  

T(keV)  

R(kpc)  more  precise  handle  on  cluster  details  e.g.  halo  triaxiality,  non-­‐thermal  pressure  modeling,  studies  of  accre:on  at  the  virial  radius  

Page 12: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

SZ  power  spectrum  constraints  

7th  January  2013   AAS  Mee:ng  2013  -­‐  CCAT  Session   12  

Credit:  Ramos-­‐Ceja  &  Basu  in  prep,  

1

10

100

1000

5000 10000 15000 20000

Dl[µK]2at150GHz

l

Secondary  anisotropy  power  spectrum  

CCAT  3σ

radio  sources  

IR-­‐galaxies  

SPT  CCAT  

predic:on  

SPT  

Page 13: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

Strong  complementarity  with  lensing  and  X-­‐ray  measurements  

•  CCAT  SZ  resoluBon  commensurate  with  X-­‐rays  and  lensing.    –  A  significant  advance  over  prior  SZ  instruments.  –  comparable  to  XMM  (6"  FWHM,  15"  half-­‐power  

diameter)  and  closer  to  Chandra  (0.5"  FHWM)  

•  CCAT  follow-­‐up  will  improve  eROSITA  mass  esBmates  by  x4  –  SZ  masses  from  rSZ  and  tSZ  independent  of  X-­‐ray  –  eROSITA  will  detect  10,000s  of  clusters,  but  0.5‘resolu:on  

does  not  permit  core  excision  to  es:mate  M  from  LX  

•  CCAT  SZ  at  virial  radius  =>  joint  lensing-­‐SZ  cluster  mass  and  pressure  profiles  (and  temp  with  rSZ)    –  HSC,  DES,  and  LSST  will  drama:cally  increase  #  of  clusters  

with  weak  lensing  out  to  virial  radius  

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session   13  

Bullet  Cluster  

SZ  

X-­‐ray  

Lensing  

Page 14: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-x e

(z)

Zahn et al. 2011

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-x e

(z)

Zahn et al. 2011

Planck + CCAT

4 6 8 10 12 14z

4 6 8 10 12 14z

The Astrophysical Journal, 761:47 (15pp), 2012 December 10 Mroczkowski et al.

Figure 8. Bolocam map, processed models (tSZE + kSZE Gaussian), and residuals. Upper panels are for the 140 GHz data, and lower panels are the corresponding plotsfor the 268 GHz data. Black dashed circles in the middle and right panels show location and size of added 90!! FWHM Gaussian model. Upper left: Bolocam 140 GHzmap, smoothed with a 60!! FWHM Gaussian. Contours are overlaid at 3! intervals. Upper middle: model superposition of the best-fit kSZE + pseudo-Compton-ytemplate, processed through the same pipeline as the data set it was used to fit. The normalizations of both models were allowed to vary in order to find the bestfit for the data set. Contours are overlaid at 3! intervals. Upper right: Bolocam 140 GHz residuals with full model (kSZE + pseudo-Compton-y) removed. Contoursare overlaid at 1! intervals, and the color map scale was changed to enhance residuals. Lower left: Bolocam 268 GHz map smoothed with a 30!! FWHM Gaussian.Contours are overlaid at 1! intervals. Lower middle: pseudo-Compton-y (tSZE) model at 268 GHz, processed through the same pipeline as the data, so that thefiltering effects are the same for the model and the data. The normalizations of both models were freely varied. Contours are overlaid at 1! intervals. Lower right:Bolocam 268 GHz residuals with full model (kSZE + pseudo-Compton-y) removed. Contours are overlaid at 1! intervals. Note that the color scale is unchanged forthe 268 GHz plots.(A color version of this figure is available in the online journal.)

the electron depth, x " h"/(kBTCMB) is the dimensionlessfrequency, and #kSZE(Te, x, vz) is a small relativistic correction,which we compute according to Nozawa et al. (2006). It can beseen from Equation (2) that under the assumption of constanttemperature along the line of sight, $e # y/Te. For fixedCompton-y, the kSZE will be suppressed at higher temperature.

Since we lack precise knowledge of the shape of the possiblekSZE signal sourced by component B, we chose to describeit using a Gaussian profile with a 90!! FWHM.14 We then re-fit our 140 GHz data with a model consisting of the pseudo-Compton-y map and the Gaussian source centered on componentB, allowing the normalization of each component to vary. Theinclusion of this Gaussian clump significantly improves the fitquality (%2/DOF = 153/142 and PTE = 24%), indicating both

14 We varied the FWHM of the profile between 30!! and 120!! and found abroad maximum in the fit quality at both 140 and 268 GHz, centered near 90!!.We therefore left the FWHM fixed at that value for the fit to the Bolocam dataat both 140 and 268 GHz.

that this Gaussian clump is justified statistically and that the co-added model is adequate to describe our data. Jointly fit with theGaussian clump, the normalization for the pseudo-Compton-ymap fit to the 140 GHz data is 0.768 ± 0.084, indicating theelectron depth & $ 0.8 Mpc (see Section 4.1). We then fitthe same Gaussian model to our 268 GHz data, allowing thenormalizations of it and of the pseudo-Compton-y map to float.For this fit, the normalization for the tSZE template fit to the268 GHz data is 1.78 ± 0.68. We again find that including theGaussian clump improves the fit quality (%2/DOF = 593/574and PTE = 50%). The combined models and residuals areshown in Figure 8.

Using the results of our model fits to compute flux density,we attempt to fit for a tSZE+kSZE spectrum that can ade-quately describe subcluster B, the highest velocity member ofMACS J0717.5+3745. For comparison, we also fit the spectrumof subcluster C, since it is the most massive component, it has alower known optical velocity (%&700 km s&1), and it is detected

11

U:lizing  the  kine:c  SZ  signal  

CCAT  can  unambiguously  extract  kSZ    from  tSZ  &  other  astrophysical  signals    kSZ  gives  strongest  constraint  on  the  duraBon  of  reionizaBon      Cosmological  bulk  flows  of  clusters    •  Interes:ng  test  of  gravity  •  first  correla:on  ACT  +  BOSS    (Hand  

et  al    2012),  tenta:ve  individual  detec:on  (Mroczkowski  et  al  2012)  

•  CCAT  rich  cross-­‐correla:on  possibili:es  with  a  range  of  surveys  (e.g.  LSST,  DES,  HSC,  BOSS)    

 

 

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session   14  

Figure  based  on  Zahn  et  al  2011  

1-­‐x e(z)  

z  

Mroczkowski  et  al  2012  

Page 15: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

A  new  redshi^  window  on  the  cosmic  expansion  &  growth  history  

C+  (158µm)  line  gives  new  redshi]  window  z~3-­‐5    with  two  applicaBons:  •  Baryonic  acous,c  oscilla,ons  (BAO):    

–  Distances  to  spectroscopic  z  –  Constrains  expansion  history  

•  Redshi7  space  distor,ons  (RSD):    –  Clustering  proper:es  over  range  of  

scales  &  z.  –  Constrains  both  expansion  history  &  

proper:es  of  gravita:onal  collapse.  

Unique  constraints  on  dark  energy/  modified  gravity  and  neutrino  mass  

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session   15  

Mueller  and  Bean  in  prep  

CCAT Forecasts: BAO and RSD - Eva-Maria Mueller and Rachel Bean - Nov 7th 2012 5

FIG. 2: Early dark energy models for different early dark energy energy fraction ⌦e

. Upper panel: Energydensity of dark energy for different early dark energy models. During matter dominated era these modelshave a constant, non-zero dark energy fraction. Lower panel: Relative change on the Hubble parameter fordifferent dark energy models and the expected CCAT error. For the CCAT forecast we used bias Model Aand a number density of n

g

= 1⇥ 10�3(h/Mpc)3.

CCAT  5000  deg  n=10-­‐3  h/Mpc3  

Dark  energy  models  

WFIRST    EUCLID  

Page 16: CCAT Cosmology Bean jan6 · Rachel’Bean’(Cornell’University)’ ... energy in the cluster, in agreement with the observations of Coma cluster (Shimon & Rephaeli 2002). Therefore,

CCAT’s  unique  combinaBon  of  mulB-­‐band  &  high  resoluBon  sub-­‐mm  surveys  will  enable  broad  and  unique  cosmological  insights:  

•  Unambiguous  separa:on  of  the  ICM  veloci:es  and  temperatures  •  Detailed  characteriza:on  of  cluster  structure  and  evolu:on  •  SZ  mass  es:mates  independent  of  X-­‐ray  data    •  New  insights  from  the  kSZ  signature:  

–  How  long  reioniza:on  endured  for    –  The  bulk  flow  of  clusters  (dark  energy,  structure  growth)  

•  A  new  redshi^  window  on  the  cosmic  expansion  &  growth  history  

CCAT  will  give  a  unique  cosmological  perspec:ve  

Rachel  Bean   AAS  Mee:ng  2013  -­‐  CCAT  Session   16