CBSE NCERT Solutions for Class 12 Maths Chapter 03Β Β· Back of Chapter Questions. CBSE NCERT...

91
Class-XII-Maths Matrices 1 Practice more on Matrices www.embibe.com EXERCISE 3.1 1. In the matrix =[ 2 5 19 βˆ’7 35 βˆ’2 5 2 12 √3 1 βˆ’5 17 ], write: (i) The order of the matrix, (ii) The number of elements, (iii) Write the elements 13 , 21 , 33 , 24 , 23 . Solution: Given: =[ 2 5 19 βˆ’7 35 βˆ’2 5 2 12 √3 1 βˆ’5 17 ] Number of rows =3 Number of columns =4 Step 1: (i) The order of the matrix=number of rows Γ— number of columns Hence the order of the given matrix =3Γ—4 Step 2: ( ) Since, the order of matrix is 3Γ—4 So, the number of elements = 3 Γ— 4 = 12 () From the given matrix, we can observe the elements: 13 = 19 21 = 35 33 = βˆ’5 24 = 12 23 = 5 2 Back of Chapter Questions CBSE NCERT Solutions for Class 12 Maths Chapter 03

Transcript of CBSE NCERT Solutions for Class 12 Maths Chapter 03Β Β· Back of Chapter Questions. CBSE NCERT...

Class-XII-Maths Matrices

1 Practice more on Matrices www.embibe.com

EXERCISE 3.1

1. In the matrix 𝐴 = [

2 5 19 βˆ’7

35 βˆ’25

212

√3 1 βˆ’5 17

], write:

(i) The order of the matrix,

(ii) The number of elements,

(iii) Write the elements π‘Ž13, π‘Ž21, π‘Ž33, π‘Ž24, π‘Ž23.

Solution:

Given:

𝐴 = [

2 5 19 βˆ’7

35 βˆ’25

212

√3 1 βˆ’5 17

]

Number of rows = 3

Number of columns = 4

Step 1:

(i) The order of the matrix=number of rows Γ— number of columns

Hence the order of the given matrix = 3 Γ— 4

Step 2:

(𝑖𝑖) Since, the order of matrix is 3 Γ— 4

So, the number of elements = 3 Γ— 4 = 12

(𝑖𝑖𝑖) From the given matrix, we can observe the elements:

π‘Ž13 = 19

π‘Ž21 = 35

π‘Ž33 = βˆ’5

π‘Ž24 = 12

π‘Ž23 =5

2

Back of Chapter Questions

CBSE NCERT Solutions for Class 12 Maths Chapter 03

Class-XII-Maths Matrices

2 Practice more on Matrices www.embibe.com

2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

Solution:

Given:

The number of elements = 24

Step 1:

Therefore, the possible orders are as follows:

1 Γ— 24, 2 Γ— 12, 3 Γ— 8, 4 Γ— 6, 6 Γ— 4,8 Γ— 3, 12 Γ— 2 and 24 Γ— 1

Step 2:

Now, if it has 13 elements,

then the possible orders are 13 Γ— 1 and 1 Γ— 13

3. If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

Solution:

Given:

Total number of elements in matrix = 18

Step 1:

Therefore, the possible orders are as follows:

1 Γ— 18, 2 Γ— 9, 3 Γ— 6, 6 Γ— 3, 9 Γ— 2 and 18 Γ— 1

Step 2:

So, if it has 5 elements,

then the possible orders are 5 Γ— 1 and 1 Γ— 5

4. Construct a 2 Γ— 2 matrix, 𝐴 = [π‘Žπ‘–π‘—], whose elements are given by:

Class-XII-Maths Matrices

3 Practice more on Matrices www.embibe.com

(i) π‘Žπ‘–π‘— =(𝑖+𝑗)2

2 [2 marks]

(ii) π‘Žπ‘–π‘— =𝑖

𝑗 [2 marks]

(iii) π‘Žπ‘–π‘— =(𝑖+2𝑗)2

2 [2 marks]

Solution:

Given:

𝐴 = [π‘Žπ‘–π‘—]

Since, it is a 2 Γ— 2 matrix

𝐴 = [π‘Ž11 π‘Ž12

π‘Ž21 π‘Ž22]

Step 1:

(i) Here, π‘Žπ‘–π‘— =(𝑖+𝑗)2

2,

So, the elements of matrix are:

π‘Ž11 =(1+1)2

2= 2

π‘Ž12 =(1+2)2

2=

9

2

π‘Ž21 =(2+1)2

2=

9

2

π‘Ž22 =(2+2)2

2= 8

Therefore, the required matrix = [2

9

29

28]

Step 2:

(ii) Here ,π‘Žπ‘–π‘— =𝑖

𝑗

So, the elements of matrix are:

π‘Ž11 =1

1= 1

π‘Ž12 =1

2

π‘Ž21 =2

1= 2

π‘Ž22 =2

2= 1

Class-XII-Maths Matrices

4 Practice more on Matrices www.embibe.com

Therefore, the required matrix=[1

1

2

2 1] [2 marks]

Step 3:

(𝑖𝑖𝑖) Here, π‘Žπ‘–π‘— =(𝑖+2𝑗)2

2,

The elements of matrix are:

π‘Ž11 =(1+2(1))2

2=

(1+2)2

2=

32

2=

9

2

π‘Ž12 =(1+2(2))2

2=

(1+4)2

2=

52

2=

25

2

π‘Ž21 =(2+2(1))

2

2=

(2+2)2

2=

(4)2

2=

16

2= 8

π‘Ž22 =(2+2(2))2

2=

(2+4)2

2=

(6)2

2=

36

2= 18

Therefore, the required matrix = [9

2

25

2

8 18] [2 marks]

5. Construct a 3 Γ— 4 matrix, whose elements are given by:

(i) π‘Žπ‘–π‘— =1

2| βˆ’ 3𝑖 + 𝑗| [3 marks]

(ii) π‘Žπ‘–π‘— = 2𝑖 βˆ’ 𝑗 [3 marks]

Solution:

Given:

Since, it is a 3 Γ— 4 matrix

𝐴 = [

π‘Ž11 π‘Ž12 π‘Ž13 π‘Ž14

π‘Ž21 π‘Ž22 π‘Ž23 π‘Ž24

π‘Ž31 π‘Ž32 π‘Ž33 π‘Ž34

]

Step 1:

(i) Here, π‘Žπ‘–π‘— =1

2| βˆ’ 3𝑖 + 𝑗|

So, the elements of matrix are:

π‘Ž11 =1

2|βˆ’3(1) + 1| =

1

2|βˆ’3 + 1| =

1

2|βˆ’2| =

1

2(2) = 1 [

𝟏

πŸ’ Mark]

Class-XII-Maths Matrices

5 Practice more on Matrices www.embibe.com

π‘Ž12 =1

2| βˆ’ 3(1) + 2| =

1

2| βˆ’ 3 + 2| =

1

2| βˆ’ 1| =

1

2(1) =

1

2 [

𝟏

πŸ’ Mark]

π‘Ž13 =1

2| βˆ’ 3(1) + 3| =

1

2|0| =

1

2(0) = 0 [

𝟏

πŸ’ Mark]

π‘Ž14 =1

2| βˆ’ 3(1) + 4| =

1

2| βˆ’ 3 + 4| =

1

2|1| =

1

2(1) =

1

2 [

𝟏

πŸ’ Mark]

π‘Ž21 =1

2| βˆ’ 3(2) + 1| =

1

2| βˆ’ 6 + 1| =

1

2| βˆ’ 5| =

1

2(5) =

5

2

[𝟏

πŸ’ Mark]

π‘Ž22 =1

2| βˆ’ 3 Γ— 2 + 2| =

1

2| βˆ’ 6 + 2| =

1

2| βˆ’ 4| =

1

2(4) = 2 [

𝟏

πŸ’ Mark]

π‘Ž23 =1

2| βˆ’ 3(2) + 1| =

1

2| βˆ’ 6 + 3| =

1

2| βˆ’ 3| =

1

2(3) =

3

2 [

𝟏

πŸ’ Mark]

π‘Ž24 =1

2| βˆ’ 3 Γ— 2 + 2| =

1

2| βˆ’ 6 + 4| =

1

2| βˆ’ 2| =

1

2(2) = 1 [

𝟏

πŸ’ Mark]

π‘Ž31 =1

2| βˆ’ 3(3) + 1| =

1

2| βˆ’ 9 + 1| =

1

2| βˆ’ 8| =

1

2(8) = 4 [

𝟏

πŸ’ Mark]

π‘Ž32 =1

2| βˆ’ 3(3) + 2| =

1

2| βˆ’ 9 + 2| =

1

2| βˆ’ 7| =

1

2(7) =

7

2 [

𝟏

πŸ’ Mark]

π‘Ž33 =1

2| βˆ’ 3 Γ— 3 + 3| =

1

2| βˆ’ 9 + 3| =

1

2| βˆ’ 6| =

1

2(6) = 3 [

𝟏

πŸ’ Mark]

π‘Ž34 ==1

2| βˆ’ 3 Γ— 3 + 4| =

1

2| βˆ’ 9 + 4| =

1

2| βˆ’ 5| =

1

2(5) =

5

2 [

𝟏

πŸ’ Mark]

Therefore, the required matrix A =

[ 1

1

20

1

25

22

3

21

47

23

5

2]

Step 2:

(ii) Here, π‘Žπ‘–π‘— = 2𝑖 βˆ’ 𝑗,

So, the elements of matrix are:

π‘Ž11 = 2(1) βˆ’ 1 = 2 βˆ’ 1 = 1 [𝟏

πŸ’ Mark]

π‘Ž12 = 2(1) βˆ’ 2 = 2 βˆ’ 2 = 0 [𝟏

πŸ’ Mark]

π‘Ž13 = 2(1) βˆ’ 3 = 2 βˆ’ 3 = βˆ’1 [𝟏

πŸ’ Mark]

π‘Ž14 = 2(1) βˆ’ 4 = 2 βˆ’ 4 = βˆ’2 [𝟏

πŸ’ Mark]

π‘Ž21 = 2(2) βˆ’ 1 = 4 βˆ’ 1 = 3 [𝟏

πŸ’ Mark]

π‘Ž22 = 2(2) βˆ’ 2 = 4 βˆ’ 2 = 2 [𝟏

πŸ’ Mark]

π‘Ž23 = 2(2) βˆ’ 3 = 4 βˆ’ 3 = 1 [𝟏

πŸ’ Mark]

Class-XII-Maths Matrices

6 Practice more on Matrices www.embibe.com

π‘Ž24 = 2(2) βˆ’ 4 = 4 βˆ’ 4 = 0 [𝟏

πŸ’ Mark]

π‘Ž31 = 2(3) βˆ’ 1 = 6 βˆ’ 1 = 5 [𝟏

πŸ’ Mark]

π‘Ž32 = 2(3) βˆ’ 2 = 6 βˆ’ 2 = 4 [𝟏

πŸ’ Mark]

π‘Ž33 = 2(3) βˆ’ 3 = 6 βˆ’ 3 = 3 [𝟏

πŸ’ Mark]

π‘Ž34 = 2(3) βˆ’ 4 = 6 βˆ’ 4 = 2 [𝟏

πŸ’ Mark]

Therefore, the required matrix A = [1 0 βˆ’1 βˆ’23 2 1 05 4 3 2

]

6. Find the values of π‘₯, 𝑦 and 𝑧 from the following equations:

(i) [4 3π‘₯ 5

] = [𝑦 𝑧1 5

] [2 Marks]

(ii) [π‘₯ + 𝑦 25 + 𝑧 π‘₯𝑦

] = [6 25 8

] [2 Marks]

(iii) [

π‘₯ + 𝑦 + 𝑧π‘₯ + 𝑧𝑦 + 𝑧

] = [957] [2 Marks]

Solution:

(i) Step 1:

Given: [4 3π‘₯ 5

] = [𝑦 𝑧1 5

].

If two matrices are equal, then their corresponding elements are also equal. [𝟏

𝟐 Mark]

Step 2:

Comparing the corresponding elements, we get

4 = y

3 = 𝑧

π‘₯ = 1

Therefore, 4 = y, 3 = 𝑧 and π‘₯ = 1 [𝟏𝟏

𝟐 Mark]

(ii)Step 1:

Class-XII-Maths Matrices

7 Practice more on Matrices www.embibe.com

Given: [π‘₯ + 𝑦 25 + 𝑧 π‘₯𝑦

] = [6 25 8

]

If two matrices are equal, then their corresponding elements are also equal. [𝟏

𝟐 Mark]

Step 2:

π‘₯ + 𝑦 = 6

5 + 𝑧 = 5

π‘₯𝑦 = 8 [𝟏

𝟐 Mark]

Step 3:

By solving these above equations, we get

π‘₯ = 2, 𝑦 = 4 and 𝑧 = 0 OR

π‘₯ = 4, 𝑦 = 2 and 𝑧 = 0

Therefore, π‘₯ = 2, 𝑦 = 4 and 𝑧 = 0 or π‘₯ = 4, 𝑦 = 2 and 𝑧 = 0 [𝟏 Mark]

(iii) Step 1:

Given: [

π‘₯ + 𝑦 + 𝑧π‘₯ + 𝑧𝑦 + 𝑧

] = [957]

If two matrices are equal, then their corresponding elements are also equal. [𝟏

𝟐 Mark]

Step 2:

Comparing the corresponding elements, we get

π‘₯ + 𝑦 + 𝑧 = 9

π‘₯ + 𝑧 = 5

𝑦 + 𝑧 = 7 [𝟏

𝟐 Mark]

Step 3:

By solving these above equations, we get

π‘₯ = 2,

𝑦 = 4

𝑧 = 3

Therefore, π‘₯ = 2, 𝑦 = 4 and 𝑧 = 3 [𝟏 Mark]

Class-XII-Maths Matrices

8 Practice more on Matrices www.embibe.com

7. Find the value of π‘Ž, 𝑏, 𝑐 and 𝑑 from the equation:

[π‘Ž βˆ’ 𝑏 2π‘Ž + 𝑐2π‘Ž βˆ’ 𝑏 3𝑐 + 𝑑

] = [βˆ’1 50 13

] [3 marks]

Solution:

Step 1:

If two matrices are equal, then their corresponding elements are also equal.

Therefore, on comparing the corresponding elements, we get

π‘Ž βˆ’ 𝑏 = βˆ’1… (1)

2π‘Ž βˆ’ 𝑏 = 0… (2)

2π‘Ž + 𝑐 = 5… (3)

3𝑐 + 𝑑 = 13… (4) [1𝟏

𝟐 Marks]

Step 2:

Now,

By solving equation (1) and (2), we get

π‘Ž = 1, 𝑏 = 2

Putting the value of π‘Ž in equation (3), we get

𝑐 = 3

Putting the value of 𝑐 in the equation (4), we get

𝑑 = 4

Hence, the required values are π‘Ž = 1, 𝑏 = 2, 𝑐 = 3 and 𝑑 = 4 [1𝟏

𝟐 Marks]

8. 𝐴 = [π‘Žπ‘–π‘—]π‘šΓ—π‘› is a square matrix, if

(A) π‘š < 𝑛

(B) π‘š > 𝑛

(C) π‘š = 𝑛

(D) None of these

Class-XII-Maths Matrices

9 Practice more on Matrices www.embibe.com

Solution:

(C)

Step 1:

𝐴 = [π‘Žπ‘–π‘—]π‘šΓ—π‘› means matrix A is of order m Γ— n

In a square matrix the number of column is same as the number of rows.

Number of rows = Number of columns

π‘š = 𝑛

Hence, the option (𝐢) is correct.

9. Which of the given values of π‘₯ and 𝑦 make the following pair of matrices equal

[3π‘₯ + 7 5𝑦 + 1 2 βˆ’ 3π‘₯

] , [0 𝑦 βˆ’ 28 4

] [2 marks]

(A) π‘₯ =βˆ’1

3, 𝑦 = 7

(B) Not possible to find

(C) 𝑦 = 7, π‘₯ =βˆ’2

3

(D) π‘₯ =βˆ’1

3, 𝑦 =

βˆ’2

3

Solution:

(B)

Step 1:

Here [3π‘₯ + 7 5𝑦 + 1 2 βˆ’ 3π‘₯

] = [0 𝑦 βˆ’ 28 4

]

If two matrices are equal, then their corresponding elements are also equal. [𝟏

𝟐 Mark]

Step 2:

Comparing the corresponding elements, we get

3π‘₯ + 7 = 0

5 = 𝑦 βˆ’ 2

Class-XII-Maths Matrices

10 Practice more on Matrices www.embibe.com

𝑦 βˆ’ 1 = 8

2 βˆ’ 3π‘₯ = 4 [𝟏

𝟐 Mark]

Step 3:

By solving these above equations, we get

𝑦 = 7, π‘₯ = βˆ’7

3 and π‘₯ = βˆ’

2

3,

Here, the value of π‘₯ is not unique.

Therefore, the option (𝐡) is correct.

10. The number of all possible matrices of order 3 Γ— 3 with each entry 0 or 1 is:

(A) 27

(B) 18

(C) 81

(D) 512 [2 Marks]

Solution:

(D)

Given:

It is a 3 Γ— 3 matrix.

Step 1:

A = [

π‘Ž11 π‘Ž12 π‘Ž13

π‘Ž21 π‘Ž22 π‘Ž23

π‘Ž31 π‘Ž32 π‘Ž33

]

The total number of elements in a matrix of order 3 Γ— 3 = 9

Step 2:

If each entry is 0 or 1, then total number of permutations for each element = 2

Therefore, the total permutation for 9 elements = 29 = 512

Hence, the option (D) is correct.

Class-XII-Maths Matrices

11 Practice more on Matrices www.embibe.com

EXERCISE 3.2

1. Let 𝐴 = [2 43 2

], 𝐡 = [1 3βˆ’2 5

], 𝐢 = [βˆ’2 5 3 4

]

Find each of the following:

(i) 𝐴 + 𝐡 [2 marks]

(ii) 𝐴 βˆ’ 𝐡 [2 marks]

(iii) 3𝐴 βˆ’ 𝐢 [3 marks]

(iv) AB [3 marks]

(v) BA [3 marks]

Solution:

Given:

𝐴 = [2 43 2

], 𝐡 = [1 3βˆ’2 5

], 𝐢 = [βˆ’2 5 3 4

]

(i) 𝐴 + 𝐡

Step 1:

𝐴 + 𝐡 = [2 43 2

] + [1 3βˆ’2 5

]

Step 2:

= [2 + 1 4 + 33 βˆ’ 2 2 + 5

] = [3 71 7

]

Hence, 𝐴 + 𝐡 = [3 71 7

]

(ii) A βˆ’ B

Step 1:

A βˆ’ B = [2 43 2

] βˆ’ [1 3

βˆ’2 5]

Step 2:

= [2 βˆ’ 1 4 βˆ’ 33 + 2 2 βˆ’ 5

] = [1 15 βˆ’3

]

Class-XII-Maths Matrices

12 Practice more on Matrices www.embibe.com

Hence, A βˆ’ B = [1 15 βˆ’3

]

(iii) 3𝐴 βˆ’ 𝐢

Step 1:

3𝐴 βˆ’ 𝐢 = 3 [2 43 2

] βˆ’ [βˆ’2 53 4

]

Step 2:

= [6 129 6

] βˆ’ [βˆ’2 53 4

]

Step 3:

= [6 + 2 12 βˆ’ 59 βˆ’ 3 6 βˆ’ 4

] = [8 76 2

]

Hence, 3𝐴 βˆ’ 𝐢 = [8 76 2

]

(iv) 𝐴𝐡

Step 1:

𝐴𝐡 = [2 43 2

] [1 3βˆ’2 5

]

= [2 Γ— 1 + 4 Γ— βˆ’2 2 Γ— 3 + 4 Γ— 53 Γ— 1 + 2 Γ— βˆ’2 3 Γ— 3 + 2 Γ— 5

]

Step 2:

= [2 βˆ’ 8 6 + 203 βˆ’ 4 9 + 10

]

Step 3:

= [βˆ’6 26βˆ’1 19

]

Hence, 𝐴𝐡 = [βˆ’6 26βˆ’1 19

]

(v) 𝐡𝐴

Step 1:

𝐡𝐴 = [1 3βˆ’2 5

] [2 43 2

]

= [1 Γ— 2 + 3 Γ— 3 1 Γ— 4 + 3 Γ— 2βˆ’2 Γ— 2 + 5 Γ— 3 βˆ’2 Γ— 4 + 5 Γ— 2

]

Step 2:

= [2 + 9 4 + 6

βˆ’4 + 15 βˆ’8 + 10]

Class-XII-Maths Matrices

13 Practice more on Matrices www.embibe.com

Step 3:

= [11 1011 2

]

Hence, 𝐡𝐴 = [11 1011 2

]

2. Compute the following:

(i) [π‘Ž π‘βˆ’π‘ π‘Ž

] + [π‘Ž 𝑏𝑏 π‘Ž

] [2 marks]

(ii) [π‘Ž2 + 𝑏2 𝑏2 + 𝑐2

π‘Ž2 + 𝑐2 π‘Ž2 + 𝑏2] + [2π‘Žπ‘ 2π‘π‘βˆ’2π‘Žπ‘ βˆ’2π‘Žπ‘

] [2 marks]

(iii) [βˆ’1 4 βˆ’68 5 162 8 5

] + [12 7 68 0 53 2 4

] [2 marks]

(iv) [cos2π‘₯ sin2π‘₯sin2π‘₯ cos2π‘₯

] + [sin2π‘₯ cos2π‘₯

cos2π‘₯ sin2π‘₯] [2 marks]

Solution:

(i) Given:

[π‘Ž π‘βˆ’π‘ π‘Ž

] + [π‘Ž 𝑏𝑏 π‘Ž

]

Step 1:

= [π‘Ž + π‘Ž 𝑏 + π‘βˆ’π‘ + 𝑏 π‘Ž + π‘Ž

]

Step 2:

= [2π‘Ž 2𝑏0 2π‘Ž

]

Therefore, [π‘Ž π‘βˆ’π‘ π‘Ž

] + [π‘Ž 𝑏𝑏 π‘Ž

] = [2π‘Ž 2𝑏0 2π‘Ž

]

(ii) Given:

[π‘Ž2 + 𝑏2 𝑏2 + 𝑐2

π‘Ž2 + 𝑐2 π‘Ž2 + 𝑏2] + [2π‘Žπ‘ 2π‘π‘βˆ’2π‘Žπ‘ βˆ’2π‘Žπ‘

]

Step 1:

= [π‘Ž2 + 𝑏2 + 2π‘Žπ‘ 𝑏2 + 𝑐2 + 2𝑏𝑐

π‘Ž2 + 𝑐2 βˆ’ 2π‘Žπ‘ π‘Ž2 + 𝑏2 βˆ’ 2π‘Žπ‘]

Class-XII-Maths Matrices

14 Practice more on Matrices www.embibe.com

Step 2:

= [(π‘Ž + 𝑏)2 (𝑏 + 𝑐)2

(π‘Ž βˆ’ 𝑐)2 (π‘Ž βˆ’ 𝑏)2]

Therefore, [π‘Ž2 + 𝑏2 𝑏2 + 𝑐2

π‘Ž2 + 𝑐2 π‘Ž2 + 𝑏2] + [2π‘Žπ‘ 2π‘π‘βˆ’2π‘Žπ‘ βˆ’2π‘Žπ‘

] = [(π‘Ž + 𝑏)2 (𝑏 + 𝑐)2

(π‘Ž βˆ’ 𝑐)2 (π‘Ž βˆ’ 𝑏)2]

(iii) Given:

[βˆ’1 4 βˆ’68 5 162 8 5

] + [12 7 68 0 53 2 4

]

Step 1:

= [βˆ’1 + 12 4 + 7 βˆ’6 + 68 + 8 5 + 0 16 + 52 + 3 8 + 2 5 + 4

]

Step 2:

= [11 11 016 5 215 10 9

]

Therefore, [βˆ’1 4 βˆ’68 5 162 8 5

] + [12 7 68 0 53 2 4

] = [11 11 016 5 215 10 9

]

(iv) Given:

[π‘π‘œπ‘ 2π‘₯ 𝑠𝑖𝑛2π‘₯𝑠𝑖𝑛2π‘₯ π‘π‘œπ‘ 2𝑋

] + [𝑠𝑖𝑛2𝑋 π‘π‘œπ‘ 2𝑋

π‘π‘œπ‘ 2π‘₯ 𝑠𝑖𝑛2π‘₯]

Step 1:

= [π‘π‘œπ‘ 2π‘₯ + 𝑠𝑖𝑛2𝑋 𝑠𝑖𝑛2π‘₯ + π‘π‘œπ‘ 2π‘₯𝑠𝑖𝑛2π‘₯ + π‘π‘œπ‘ 2𝑋 π‘π‘œπ‘ 2π‘₯ + 𝑠𝑖𝑛2π‘₯

]

Step 2:

= [1 11 1

]

Therefore, [π‘π‘œπ‘ 2π‘₯ 𝑠𝑖𝑛2π‘₯𝑠𝑖𝑛2π‘₯ π‘π‘œπ‘ 2𝑋

] + [𝑠𝑖𝑛2𝑋 π‘π‘œπ‘ 2𝑋

π‘π‘œπ‘ 2π‘₯ 𝑠𝑖𝑛2π‘₯] = [

1 11 1

]

Class-XII-Maths Matrices

15 Practice more on Matrices www.embibe.com

3. Compute the indicated products.

(i) [π‘Ž π‘βˆ’π‘ π‘Ž

] [π‘Ž βˆ’π‘π‘ π‘Ž

] [2 marks]

(ii) [123] [2 3 4] [2 marks]

(iii) [1 βˆ’22 3

] [1 2 32 3 1

] [2 marks]

(iv) [2 3 43 4 54 5 6

] [1 βˆ’3 50 2 43 0 5

] [2 marks]

(v) [2 13 2

βˆ’1 1] [

1 0 1βˆ’1 2 1

] [2 marks]

(vi) [3 βˆ’1 3βˆ’1 0 2

] [2 βˆ’31 03 1

] [2 marks]

Solution:

(i) Given:

[π‘Ž π‘βˆ’π‘ π‘Ž

] [π‘Ž βˆ’π‘π‘ π‘Ž

]

Step 1:

= [π‘Ž Γ— π‘Ž + 𝑏 Γ— 𝑏 π‘Ž Γ— (βˆ’π‘) + 𝑏 Γ— π‘Ž

βˆ’π‘ Γ— π‘Ž + 𝑏 Γ— 𝑏 (βˆ’π‘) Γ— (βˆ’π‘) + π‘Ž Γ— π‘Ž]

Step 2:

= [ π‘Ž2 + 𝑏2 βˆ’π‘Žπ‘ + π‘Žπ‘βˆ’π‘Žπ‘ + 𝑏2 𝑏2 + π‘Ž2 ]

= [π‘Ž2 + 𝑏2 0

0 𝑏2 + π‘Ž2]

Hence, [π‘Ž π‘βˆ’π‘ π‘Ž

] [π‘Ž βˆ’π‘π‘ π‘Ž

] = [π‘Ž2 + 𝑏2 0

0 𝑏2 + π‘Ž2]

(ii) Given:

[123] [2 3 4]

Step 1:

Class-XII-Maths Matrices

16 Practice more on Matrices www.embibe.com

= [1 Γ— 2 1 Γ— 3 1 Γ— 42 Γ— 2 2 Γ— 3 2 Γ— 43 Γ— 2 3 Γ— 3 3 Γ— 4

]

Step 2:

= [2 3 44 6 86 9 12

]

Hence, [123] [2 3 4] = [

2 3 44 6 86 9 12

]

(iii) Given:

[1 βˆ’22 3

] [1 2 32 3 1

]

Step 1:

= [1 Γ— 1 + (βˆ’2) Γ— 2 1 Γ— 2 + (βˆ’2) Γ— 3 1 Γ— 3 + (βˆ’2) Γ— 1

2 Γ— 1 + 3 Γ— 2 2 Γ— 2 + 3 Γ— 3 2 Γ— 3 + 3 Γ— 1]

= [1 βˆ’ 4 2 βˆ’ 6 3 βˆ’ 22 + 6 4 + 9 6 + 3

]

Step 2:

= [βˆ’3 βˆ’4 18 13 9

]

Hence, [1 βˆ’22 3

] [1 2 32 3 1

] = [βˆ’3 βˆ’4 18 13 9

]

(iv) Given:

[2 3 43 4 54 5 6

] [1 βˆ’3 50 2 43 0 5

]

Step 1:

= [2 Γ— 1 + 3 Γ— 0 + 4 Γ— 3 2 Γ— (βˆ’3) + 3 Γ— 2 + 4 Γ— 0 2 Γ— 5 + 3 Γ— 4 + 4 Γ— 53 Γ— 1 + 4 Γ— 0 + 5 Γ— 3 3 Γ— (βˆ’3) + 4 Γ— 2 + 5 Γ— 0 3 Γ— 5 + 4 Γ— 4 + 5 Γ— 54 Γ— 1 + 5 Γ— 0 + 6 Γ— 3 4 Γ— (βˆ’3) + 5 Γ— 2 + 6 Γ— 0 4 Γ— 5 + 5 Γ— 4 + 6 Γ— 5

]

Step 2:

Class-XII-Maths Matrices

17 Practice more on Matrices www.embibe.com

= [2 + 0 + 12 βˆ’6 + 6 + 0 10 + 12 + 203 + 0 + 15 βˆ’9 + 0 + 0 15 + 16 + 254 + 0 + 18 βˆ’12 + 10 + 0 20 + 20 + 30

]

= [14 0 4218 βˆ’1 5622 βˆ’2 70

]

Hence, [2 3 43 4 54 5 6

] [1 βˆ’3 50 2 43 0 5

] = [14 0 4218 βˆ’1 5622 βˆ’2 70

]

(v) Given:

[2 13 2βˆ’1 1

] [1 0 1

βˆ’1 2 1]

Step 1:

= [

2 Γ— 1 + 1 Γ— (βˆ’1) 2 Γ— 0 + 1 Γ— 2 2 Γ— 1 + 1 Γ— 13 Γ— 1 + 2 Γ— (βˆ’1) 3 Γ— 0 + 2 Γ— 2 3 Γ— 1 + 2 Γ— 1βˆ’1 Γ— 1 + 1 Γ— (βˆ’1) βˆ’1 Γ— 0 + 1 Γ— 2 βˆ’1 Γ— 1 + 1 Γ— 1

]

Step 2:

= [1 2 31 4 5βˆ’2 2 0

]

Hence, [2 13 2βˆ’1 1

] [1 0 1

βˆ’1 2 1] = [

1 2 31 4 5βˆ’2 2 0

]

(vi) Given:

[3 βˆ’1 3βˆ’1 0 2

] [2 βˆ’31 03 1

]

Step 1:

= [3 Γ— 2 + (βˆ’1) Γ— 1 + 3 Γ— 3 3 Γ— (βˆ’3) + (βˆ’1) Γ— 0 + 3 Γ— 1βˆ’1 Γ— 2 + 0 Γ— 1 + 2 Γ— 3 βˆ’1 Γ— (βˆ’3) + 0 Γ— 0 + 2 Γ— 1

]

Step 2:

Class-XII-Maths Matrices

18 Practice more on Matrices www.embibe.com

= [6 βˆ’ 1 + 9 βˆ’9 βˆ’ 0 + 3

βˆ’2 + 0 + 6 3 + 0 + 2]

= [14 βˆ’64 5

]

Hence, [3 βˆ’1 3βˆ’1 0 2

] [2 βˆ’31 03 1

] = [14 βˆ’64 5

]

4. If 𝐴 = [1 2 βˆ’35 0 21 βˆ’1 1

], 𝐡 = [3 βˆ’1 24 2 52 0 3

] and 𝐢 = [4 1 20 3 21 βˆ’2 3

], then compute (𝐴 + 𝐡)

and (𝐡—𝐢). Also, verify that 𝐴 + (𝐡 βˆ’ 𝐢) = (𝐴 + 𝐡) βˆ’ 𝐢. [3 marks]

Solution:

Given:

𝐴 = [1 2 βˆ’35 0 21 βˆ’1 1

], 𝐡 = [3 βˆ’1 24 2 52 0 3

] and 𝐢 = [4 1 20 3 21 βˆ’2 3

]

Step 1:

So, 𝐴 + 𝐡 = [1 2 βˆ’35 0 21 βˆ’1 1

] + [3 βˆ’1 24 2 52 0 3

]

= [1 + 3 2 βˆ’ 1 βˆ’3 + 25 + 4 0 + 2 2 + 51 + 2 βˆ’1 + 0 1 + 3

]

∴ 𝐴 + 𝐡 = [4 1 βˆ’19 2 73 βˆ’1 4

]

Step 2:

Now, 𝐡 βˆ’ 𝐢 = [3 βˆ’1 24 2 52 0 3

] βˆ’ [4 1 20 3 21 βˆ’2 3

]

= [3 βˆ’ 4 βˆ’1 βˆ’ 1 2 βˆ’ 24 βˆ’ 0 2 βˆ’ 3 5 βˆ’ 22 βˆ’ 1 0 βˆ’ (βˆ’2) 3 βˆ’ 3

]

∴ 𝐡 βˆ’ 𝐢 = [βˆ’1 βˆ’2 04 βˆ’1 31 2 0

]

Class-XII-Maths Matrices

19 Practice more on Matrices www.embibe.com

Step 3:

𝐿𝐻𝑆 = 𝐴 + (𝐡 βˆ’ 𝐢) = [1 2 βˆ’35 0 21 βˆ’1 1

] + [βˆ’1 βˆ’2 04 βˆ’1 31 2 0

] = [0 0 βˆ’39 βˆ’1 52 1 1

]

𝑅𝐻𝑆 = (𝐴 + 𝐡) βˆ’ 𝐢 = [4 1 βˆ’19 2 73 βˆ’1 4

] βˆ’ [4 1 20 3 21 βˆ’2 3

] = [0 0 βˆ’39 βˆ’1 52 1 1

]

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

Hence, 𝐴 + (𝐡 βˆ’ 𝐢) = (𝐴 + 𝐡) βˆ’ 𝐢 = [0 0 βˆ’39 βˆ’1 52 1 1

]

5. If 𝐴 =

[ 2

31

5

31

3

2

3

4

37

32

2

3]

and =

[ 2

5

3

51

1

5

2

5

4

57

5

6

5

2

5]

, then compute 3𝐴 βˆ’ 5𝐡. [3 Marks]

Solution:

Given:

𝐴 =

[ 2

31

5

31

3

2

3

4

37

32

2

3]

and 𝐡 =

[ 2

5

3

51

1

5

2

5

4

57

5

6

5

2

5]

Step 1:

3𝐴 βˆ’ 5𝐡 = 3

[ 2

31

5

31

3

2

3

4

37

32

2

3]

βˆ’ 5

[ 2

5

3

51

1

5

2

5

4

57

5

6

5

2

5]

Step 2:

=

[ 2

3Γ— 3 1 Γ— 3

5

3Γ— 3

1

3Γ— 3

2

3Γ— 3

4

3Γ— 3

7

3Γ— 3 2 Γ— 3

2

3Γ— 3]

βˆ’

[ 2

5Γ— 5

3

5Γ— 5 1 Γ— 5

1

5Γ— 5

2

5Γ— 5

4

5Γ— 5

7

5Γ— 5

6

5Γ— 5

2

5Γ— 5]

Step 3:

Class-XII-Maths Matrices

20 Practice more on Matrices www.embibe.com

= [2 3 51 2 47 6 2

] βˆ’ [2 3 51 2 47 6 2

]

= [2 βˆ’ 2 3 βˆ’ 3 5 βˆ’ 51 βˆ’ 1 2 βˆ’ 2 4 βˆ’ 47 βˆ’ 7 6 βˆ’ 6 2 βˆ’ 2

] = [0 0 00 0 00 0 0

] = 0

Therefore, 3𝐴 βˆ’ 5𝐡 = [0 0 00 0 00 0 0

]

6. Simplify cosπœƒ [cosπœƒ sinπœƒβˆ’sinπœƒ cosπœƒ

] + sinπœƒ [sinπœƒ βˆ’cosπœƒcosπœƒ sinπœƒ

] [3 Marks]

Solution:

Given:

π‘π‘œπ‘ πœƒ [π‘π‘œπ‘ πœƒ π‘ π‘–π‘›πœƒβˆ’π‘ π‘–π‘›πœƒ π‘π‘œπ‘ πœƒ

] + π‘ π‘–π‘›πœƒ [π‘ π‘–π‘›πœƒ βˆ’π‘π‘œπ‘ πœƒπ‘π‘œπ‘ πœƒ π‘ π‘–π‘›πœƒ

]

Step 1:

= [cosπœƒ(cosπœƒ) cosπœƒ(sinπœƒ)

cosπœƒ(βˆ’sinπœƒ) cosπœƒ(cosπœƒ)] + [

sinπœƒ(sinπœƒ) sinπœƒ(βˆ’cosπœƒ)

sinπœƒ(cosπœƒ) sinπœƒ(sinπœƒ)]

= [π‘π‘œπ‘ 2πœƒ π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒβˆ’π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ π‘π‘œπ‘ 2πœƒ

] + [𝑠𝑖𝑛2πœƒ βˆ’π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ

π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ 𝑠𝑖𝑛2πœƒ]

Step 2:

= [π‘π‘œπ‘ 2πœƒ + 𝑠𝑖𝑛2πœƒ π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ βˆ’ π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒβˆ’π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ + π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ π‘π‘œπ‘ 2πœƒ + 𝑠𝑖𝑛2πœƒ

]

= [cos2πœƒ + sin2πœƒ 00 cos2πœƒ + sin2πœƒ

] (∡ cos2πœƒ + sin2πœƒ = 1)

Step 3:

= [1 00 1

] = 𝐼

Hence, cosπœƒ [cosπœƒ sinπœƒβˆ’sinπœƒ cosπœƒ

] + sinπœƒ [sinπœƒ βˆ’cosπœƒcosπœƒ sinπœƒ

] = [1 00 1

]

Class-XII-Maths Matrices

21 Practice more on Matrices www.embibe.com

7. Find 𝑋 and π‘Œ, if

(i) 𝑋 + π‘Œ = [7 02 5

] and 𝑋 βˆ’ π‘Œ = [3 00 3

] [3 Marks]

(ii) 2𝑋 + 3π‘Œ = [2 34 0

] and 3𝑋 + 2π‘Œ = [2 βˆ’2βˆ’1 5

] [3 Marks]

Solution:

(i) Given:

𝑋 + π‘Œ = [7 02 5

] β‹― (1)

and 𝑋 βˆ’ π‘Œ = [3 00 3

] …. (2)

Step 1:

Adding equation (1) and (2), we get

𝑋 + π‘Œ + 𝑋 βˆ’ π‘Œ = [7 02 5

] + [3 00 3

]

2𝑋 = [10 02 8

]

β‡’ 𝑋 = [5 01 4

] [1𝟏

𝟐 Mark]

Step 2:

Putting the value of 𝑋 in equation (1), we get

[5 01 4

] + π‘Œ = [7 02 5

]

π‘Œ = [7 02 5

] βˆ’ [5 01 4

]

β‡’ π‘Œ = [2 01 1

]

Therefore, 𝑋 = [5 01 4

] and π‘Œ = [2 01 1

] [1𝟏

𝟐 Mark]

(ii) Given:

2𝑋 + 3π‘Œ = [2 34 0

]… (1)

Class-XII-Maths Matrices

22 Practice more on Matrices www.embibe.com

3𝑋 + 2Y = [2 βˆ’2βˆ’1 5

] β‹―(2)

Step 1:

Multiply equation (1) by 3 and equation (2) by 2, on subtracting, we get

3 (2𝑋 + 3π‘Œ) βˆ’ 2(3𝑋 + 2π‘Œ) = 3 [2 34 0

] βˆ’ 2 [2 βˆ’2βˆ’1 5

]

β‡’ 6𝑋 + 9π‘Œ βˆ’ 6𝑋 βˆ’ 4π‘Œ = [6 912 0

] βˆ’ [4 βˆ’4βˆ’2 10

]

β‡’ 5π‘Œ = [2 1314 βˆ’10

]

β‡’ π‘Œ = [

2

5

13

514

5βˆ’2

] [1𝟏

𝟐 Mark]

Step 2:

Putting the value of π‘Œ in equation (1), we get

2𝑋 + 3 [

2

5

13

514

5βˆ’2

] = [2 34 0

]

β‡’ 2𝑋 = [2 34 0

] βˆ’ [

6

5

39

542

5βˆ’6

]

= [2 βˆ’

6

53 βˆ’

39

5

4 βˆ’42

50 + 6

] = [

4

5βˆ’

24

5

βˆ’22

56

]

β‡’ 𝑋 = [

2

5βˆ’

12

5

βˆ’11

53

]

Hence, 𝑋 = [

2

5βˆ’

12

5

βˆ’11

53

] and π‘Œ = [

2

5

13

514

5βˆ’2

] [1𝟏

𝟐 Mark]

8. Find X, if π‘Œ = [3 21 4

] and 2𝑋 + π‘Œ = [1 0βˆ’3 2

] [3 Marks]

Class-XII-Maths Matrices

23 Practice more on Matrices www.embibe.com

Solution:

Given:

π‘Œ = [3 21 4

]

Step 1:

2𝑋 + π‘Œ = [1 0βˆ’3 2

]

β‡’ 2𝑋 + [3 21 4

] = [1 0βˆ’3 2

] [β‹…: π‘Œ = [3 21 4

]]

[1𝟏

𝟐 Mark]

Step 3:

β‡’ 2𝑋 = [1 0βˆ’3 2

] βˆ’ [3 21 4

] = [βˆ’2 βˆ’ 2βˆ’4 βˆ’ 2

]

β‡’ 𝑋 = [βˆ’1 βˆ’ 1βˆ’2 βˆ’ 1

]

Hence, the value of 𝑋 = [βˆ’1 βˆ’ 1βˆ’2 βˆ’ 1

][1𝟏

𝟐 Mark]

9. Find π‘₯ and 𝑦, if 2 [1 30 π‘₯

] + [𝑦 01 2

] = [5 61 8

] [3 Marks]

Solution:

Given:

2 [1 30 π‘₯

] + [𝑦 01 2

] = [5 61 8

]

Step 1:

β‡’ [2 60 2π‘₯

] + [𝑦 01 2

] = [5 61 8

]

β‡’ [2 + 𝑦 6 + 00 + 1 2π‘₯ + 2

] = [5 61 8

]

Step 2:

If two matrices are equal, then their corresponding elements are also equal.

Class-XII-Maths Matrices

24 Practice more on Matrices www.embibe.com

Comparing the corresponding elements, we get

2 + 𝑦 = 5 and 2π‘₯ + 2 = 8

Step 3:

By solving these equations, we get

𝑦 = 3 and π‘₯ = 3

Therefore, the values of 𝑦 = 3 and π‘₯ = 3.

10. Solve the equation for π‘₯, 𝑦, 𝑧 and 𝑑, if 2 [π‘₯ 𝑧𝑦 𝑑] + 3 [

1 βˆ’10 2

] = 3 [3 54 6

] [3 Marks]

Solution:

Given:

2 [π‘₯ 𝑧𝑦 𝑑] + 3 [

1 βˆ’10 2

] = 3 [3 54 6

]

Step 1:

[π‘₯ Γ— 2 𝑧 Γ— 2𝑦 Γ— 2 𝑑 Γ— 2

] + [1 Γ— 3 βˆ’1 Γ— 30 Γ— 3 2 Γ— 3

] = [3 Γ— 3 5 Γ— 34 Γ— 3 6 Γ— 3

]

β‡’ [2π‘₯ 2𝑧2𝑦 2𝑑

] + [3 βˆ’30 6

] = [9 1512 18

]

Step 2:

If two matrices are equal, then their corresponding elements are also equal.

Comparing the corresponding elements, we get

2π‘₯ + 3 = 9

2𝑧 βˆ’ 3 = 15

2𝑦 = 12

2𝑑 + 6 = 18

Step 3:

By solving these equations, we get

π‘₯ = 3, 𝑧 = 9, 𝑦 = 6 and 𝑑 = 6

Hence, the values of π‘₯ = 3, 𝑧 = 9, 𝑦 = 6 and 𝑑 = 6

Class-XII-Maths Matrices

25 Practice more on Matrices www.embibe.com

11. If π‘₯ [23] + 𝑦 [

βˆ’11

] = [105

], find the values of π‘₯ and 𝑦. [3 Marks]

Solution:

Given:

π‘₯ [23] + 𝑦 [

βˆ’11

] = [105

]

Step 1:

β‡’ [2π‘₯3π‘₯

] + [βˆ’π‘¦π‘¦ ] = [

105

]

β‡’ [2π‘₯ βˆ’ 𝑦3π‘₯ + 𝑦

] = [105

]

Step 2:

If two matrices are equal, then their corresponding elements are also equal.

Comparing the corresponding elements, we get

2π‘₯ βˆ’ 𝑦 = 10

3π‘₯ + 𝑦 = 5

Step 3:

Adding both the equations, we get

5π‘₯ = 15

β‡’ π‘₯ = 3

Putting the value of π‘₯ in the equation 3π‘₯ + 𝑦 = 5, we get

3(3) + 𝑦 = 5

β‡’ 𝑦 = βˆ’4

Therefore, the values x and y are 3 and -4 respectively.

12. Given 3 [π‘₯ 𝑦𝑧 𝑀

] = [π‘₯ 6βˆ’1 2𝑀

] + [4 π‘₯ + 𝑦𝑧 + 𝑀 3

], find the values of π‘₯, 𝑦, 𝑧 and 𝑀. [3

Marks]

Class-XII-Maths Matrices

26 Practice more on Matrices www.embibe.com

Solution:

Given:

3 [π‘₯ 𝑦𝑧 𝑀

] = [π‘₯ 6βˆ’1 2𝑀

] + [4 π‘₯ + 𝑦𝑧 + 𝑀 3

]

Step 1:

[3 Γ— π‘₯ 3 Γ— 𝑦3 Γ— 𝑧 3 Γ— 𝑀

] = [π‘₯ + 4 6 + π‘₯ + 𝑦

βˆ’1 + 𝑧 + 𝑀 2𝑀 + 3]

β‡’ [3π‘₯ 3𝑦3𝑧 3𝑀

] = [π‘₯ + 4 6 + π‘₯ + 𝑦1 + 𝑧 + 𝑀 2𝑀 + 3

]

Step 2:

If two matrices are equal, then their corresponding elements are also equal.

Comparing the corresponding elements, we get

3π‘₯ = π‘₯ + 4

3𝑦 = 6 + π‘₯ + 𝑦

3𝑧 = βˆ’1 + 𝑧 + 𝑀

3𝑀 = 2𝑀 + 3

Step 3:

By solving these equations, we get

β‡’ π‘₯ = 2, 𝑦 = 4, 𝑧 = 1 and 𝑀 = 3

Therefore, the values of π‘₯ = 2, 𝑦 = 4, 𝑧 = 1 and 𝑀 = 3

13. If 𝐹(π‘₯) = [cos π‘₯ βˆ’ sinπ‘₯ 0sinπ‘₯ cosπ‘₯ 00 0 1

], show that 𝐹(π‘₯)𝐹(𝑦) = 𝐹(π‘₯ + 𝑦). [3 Marks]

Solution:

Given:

𝐹(π‘₯) = [cos π‘₯ βˆ’ sinπ‘₯ 0sinπ‘₯ cos π‘₯ 00 0 1

]

Step 1:

For 𝐹(𝑦), replace x by y in 𝐹(π‘₯)

Class-XII-Maths Matrices

27 Practice more on Matrices www.embibe.com

𝐹(𝑦) = [cos𝑦 βˆ’ sin 𝑦 0sin 𝑦 cos𝑦 00 0 1

] [𝟏

𝟐 Mark]

Step 2:

By taking LHS = 𝐹(π‘₯)𝐹(𝑦)

= [π‘π‘œπ‘ π‘₯ βˆ’π‘ π‘–π‘›π‘₯ 0𝑠𝑖𝑛π‘₯ π‘π‘œπ‘ π‘₯ 00 0 1

] [cos 𝑦 βˆ’ sin𝑦 0 0sin𝑦 cos 𝑦 0

0 0 1] [

𝟏

𝟐 Mark]

Step 3:

= [

cosπ‘₯ cos𝑦 + (βˆ’sinπ‘₯)sin𝑦 + 0 cosπ‘₯(βˆ’sin𝑦) + (βˆ’sinπ‘₯)cos𝑦 + 0 0 + 0 + 0 Γ— 1

sinπ‘₯ cos𝑦 + cosπ‘₯ sin𝑦 + 0 sinπ‘₯(βˆ’sin𝑦) + cosπ‘₯ cos𝑦 + 0 0 + 0 + 0 Γ— 1

0 Γ— cos𝑦 + 0 Γ— sin𝑦 + 0 Γ— 1 0 Γ— (βˆ’sin𝑦) + 0 Γ— cos𝑦 + 0 0 + 0 + 1 Γ— 1

]

= [cos(π‘₯ + 𝑦) βˆ’[cosπ‘₯ sin𝑦 + sinπ‘₯ cos𝑦] 0

sin(π‘₯ + 𝑦) cosπ‘₯ cos𝑦 βˆ’ sinπ‘₯ sin𝑦 00 0 1

]

∡ cosπ‘₯ cos𝑦 βˆ’ sinπ‘₯ sin𝑦 = cos(π‘₯ + 𝑦)sinπ‘₯ cos𝑦 + cosπ‘₯ sin𝑦 = sin(π‘₯ + 𝑦)

[1Mark]

Step 4:

= [π‘π‘œπ‘ (π‘₯ + 𝑦) βˆ’π‘ π‘–π‘›(π‘₯ + 𝑦) 0𝑠𝑖𝑛(π‘₯ + 𝑦) π‘π‘œπ‘ (π‘₯ + 𝑦) 00 0 1

] = 𝐹(π‘₯ + 𝑦) = 𝑅𝐻𝑆

𝐿𝐻𝑆 = 𝑅𝐻𝑆

Hence it is proved 𝐹(π‘₯)𝐹(𝑦) = 𝐹(π‘₯ + 𝑦).

14. Show that

(i) [5 βˆ’16 7

] [2 13 4

] β‰  [2 13 4

] [5 βˆ’16 7

] [3 Marks]

(ii) [1 2 30 1 01 1 0

] [βˆ’1 1 00 βˆ’1 12 3 4

] β‰  [βˆ’1 1 00 βˆ’1 12 3 4

] [1 2 30 1 01 1 0

] [4 Marks]

Solution:

(i)Step 1:

By taking 𝐿𝐻𝑆 = [5 βˆ’16 7

] [2 13 4

]

Class-XII-Maths Matrices

28 Practice more on Matrices www.embibe.com

= [5 Γ— 2 + (βˆ’1) Γ— 3 5 Γ— 1 + (βˆ’1) Γ— 4

6 Γ— 2 + 7 Γ— 3 6 Γ— 1 + 7 Γ— 4] [

𝟏

𝟐 Mark]

Step 2:

= [10 βˆ’ 3 5 βˆ’ 412 + 21 6 + 28

]

= [7 133 34

]

Step 3:

Now,

By taking 𝑅𝐻𝑆 = [2 13 4

] [5 βˆ’16 7

]

= [2 Γ— 5 + 1 Γ— 6 2 Γ— (βˆ’1) + 1 Γ— 73 Γ— 5 + 4 Γ— 6 6 Γ— 1 + 7 Γ— 4

] [𝟏

𝟐 Mark]

Step 4:

= [10 + 6 βˆ’2 + 715 + 24 βˆ’3 + 28

] = [16 539 25

]

Hence, [5 βˆ’16 7

] [2 13 4

] β‰  [2 13 4

] [5 βˆ’16 7

]

(ii)Step 1:

By taking 𝐿𝐻𝑆 = [1 2 30 1 01 1 0

] [βˆ’1 1 00 βˆ’1 12 3 4

]

= [1 Γ— (βˆ’1) + 2 Γ— 0 + 3 Γ— 2 1 Γ— 1 + 2 Γ— (βˆ’1) + 3 Γ— 3 1 Γ— 0 + 2 Γ— 1 + 3 Γ— 40 Γ— (βˆ’1) + 1 Γ— 0 + 0 Γ— 2 0 Γ— 1 + 1 Γ— (βˆ’1) + 0 Γ— 3 0 Γ— 0 + 1 Γ— 1 + 0 Γ— 41 Γ— (βˆ’1) + 1 Γ— 0 + 0 Γ— 2 1 Γ— 1 + 1 Γ— (βˆ’1) + 0 Γ— 3 1 Γ— 0 + 1 Γ— 1 + 0 Γ— 4

]

Step 2:

= [βˆ’1 + 0 + 6 1 βˆ’ 0 + 9 0 + 2 + 120 + 0 + 0 0 βˆ’ 1 + 0 0 + 1 + 0

βˆ’1 + 0 + 0 1 βˆ’ 1 + 0 0 + 1 + 0]

𝐿𝐻𝑆 = [5 8 140 βˆ’1 1βˆ’1 0 1

]

Step 3:

Now,

Class-XII-Maths Matrices

29 Practice more on Matrices www.embibe.com

By taking 𝑅𝐻𝑆 = [βˆ’1 1 00 βˆ’1 12 3 4

] [1 2 30 1 01 1 0

]

=

[βˆ’1 Γ— 1 + 1 Γ— 0 + 0 Γ— 1 βˆ’1 Γ— 2 + 1 Γ— 1 + 0 Γ— 1 βˆ’1 Γ— 3 + 1 Γ— 0 + 0 Γ— 00 Γ— 1 + (βˆ’1) Γ— 0 + 1 Γ— 1 0 Γ— 2 + (βˆ’1) Γ— 1 + 1 Γ— 1 0 Γ— 3 + (βˆ’1) Γ— 0 + 1 Γ— 02 Γ— 1 + 3 Γ— 0 + 4 Γ— 1 2 Γ— 2 + 3 Γ— 1 + 4 Γ— 1 2 Γ— 3 + 3 Γ— 0 + 4 Γ— 0

]

Step 4:

= [βˆ’1 + 0 + 0 βˆ’2 + 1 + 0 βˆ’3 + 0 + 00 + 0 + 1 0 βˆ’ 1 + 1 0 + 0 + 02 + 0 + 4 4 + 3 + 4 6 + 0 + 0

]

𝑅𝐻𝑆 = [βˆ’1 βˆ’1 βˆ’31 0 06 11 6

]

∴ 𝐿𝐻𝑆 β‰  𝑅𝐻𝑆

Hence, [1 2 30 1 01 1 0

] [βˆ’1 1 00 βˆ’1 12 3 4

] β‰  [βˆ’1 1 00 βˆ’1 32 3 4

] [1 2 30 1 01 1 0

]

15. Find 𝐴2 βˆ’ 5𝐴 + 6𝐼, if 𝐴 = [2 0 12 1 31 βˆ’1 0

] [4 marks]

Solution:

Given:

𝐴 = [2 0 12 1 31 βˆ’1 0

]

Step 1:

We know that, 𝐴2 = 𝐴. 𝐴

Class-XII-Maths Matrices

30 Practice more on Matrices www.embibe.com

β‡’ 𝐴2 = [2 0 12 1 31 βˆ’1 0

] [2 0 12 1 31 βˆ’1 0

]

=

[

2 Γ— 2 + 0 Γ— 2 + 1 Γ— 1 2 Γ— 0 + 0 Γ— 1 + 1 Γ— (βˆ’1) 2 Γ— 1 + 0 Γ— 3 + 1 Γ— 02 Γ— 2 + 1 Γ— 2 + 3 Γ— 1 2 Γ— 0 + 1 Γ— 1 + 3 Γ— (βˆ’1) 2 Γ— 1 + 1 Γ— 3 + 3 Γ— 01 Γ— 2 + (βˆ’1) Γ— 2 + 0 Γ— 1 1 Γ— 0 + (βˆ’1) Γ— 1 + 0 Γ— (βˆ’1) 1 Γ— 1 + (βˆ’1) Γ— 3 + 0 Γ— 0

]

Step 2:

= [4 + 0 + 1 0 + 0 βˆ’ 1 2 + 0 + 04 + 2 + 3 0 + 1 βˆ’ 3 2 + 3 + 02 βˆ’ 2 + 0 0 βˆ’ 1 + 0 1 βˆ’ 3 + 0

]

𝐴2 = [5 βˆ’1 29 βˆ’2 50 βˆ’1 βˆ’2

]

Step 3:

Therefore, 𝐴2 βˆ’ 5𝐴 + 6𝐼

= [5 βˆ’1 29 βˆ’2 50 βˆ’1 βˆ’2

] βˆ’ 5 [2 0 12 1 31 βˆ’1 0

] + 6 [1 0 00 1 00 0 1

]

Step 4:

= [5 βˆ’1 29 βˆ’2 50 βˆ’1 βˆ’2

] βˆ’ [10 0 510 5 155 βˆ’5 0

] + [6 0 00 6 00 0 6

]

= [5 βˆ’ 10 + 6 βˆ’1 βˆ’ 0 + 0 2 βˆ’ 5 + 09 βˆ’ 10 + 0 βˆ’2 βˆ’ 5 + 6 5 βˆ’ 15 + 00 βˆ’ 5 + 0 βˆ’1 + 5 + 0 βˆ’2 βˆ’ 0 + 6

]

= [1 βˆ’1 βˆ’3

βˆ’1 βˆ’1 βˆ’10βˆ’5 4 4

]

Hence, 𝐴2 βˆ’ 5𝐴 + 6𝐼 = [1 βˆ’1 βˆ’3

βˆ’1 βˆ’1 βˆ’10βˆ’5 4 4

]

Class-XII-Maths Matrices

31 Practice more on Matrices www.embibe.com

16. If 𝐴 = [1 0 20 2 12 0 3

], prove that 𝐴3 βˆ’ 6𝐴2 + 7𝐴 + 2𝐼 = 0 [5 Marks]

Solution:

Given:

𝐴 = [1 0 20 2 12 0 3

]

Step 1:

We know that, 𝐴2 = 𝐴. 𝐴

β‡’ 𝐴2 = [1 0 20 2 12 0 3

] [1 0 20 2 12 0 3

]

= [1 Γ— 1 + 0 Γ— 0 + 2 Γ— 2 1 Γ— 0 + 0 Γ— 2 + 2 Γ— 0 1 Γ— 2 + 0 Γ— 1 + 2 Γ— 30 Γ— 1 + 2 Γ— 0 + 1 Γ— 2 0 Γ— 0 + 2 Γ— 2 + 1 Γ— 0 0 Γ— 2 + 2 Γ— 1 + 1 Γ— 32 Γ— 1 + 0 Γ— 0 + 3 Γ— 2 2 Γ— 0 + 0 Γ— 2 + 3 Γ— 0 2 Γ— 2 + 0 Γ— 1 + 3 Γ— 3

]

Step 2:

= [1 + 0 + 4 0 + 0 + 0 2 + 0 + 60 + 0 + 2 0 + 4 + 0 0 + 2 + 32 + 0 + 6 0 + 0 + 0 4 + 0 + 9

]

𝐴2 = [5 0 82 4 58 0 13

]

Step 3:

Now,

𝐴3 = 𝐴2𝐴 = [5 0 82 4 58 0 13

] [1 0 20 2 12 0 3

]

= [5 Γ— 1 + 0 Γ— 0 + 8 Γ— 2 5 Γ— 0 + 0 Γ— 2 + 8 Γ— 0 5 Γ— 2 + 0 Γ— 1 + 8 Γ— 3 2 Γ— 1 + 4 Γ— 0 + 5 Γ— 2 2 Γ— 0 + 4 Γ— 2 + 5 Γ— 0 2 Γ— 2 + 4 Γ— 1 + 5 + 3 8 Γ— 1 + 0 Γ— 0 + 13 Γ— 2 8 Γ— 0 + 0 Γ— 2 + 13 Γ— 0 8 Γ— 2 + 0 Γ— 1 + 13 Γ— 3

]

= [5 + 0 + 16 0 + 0 + 0 10 + 0 + 242 + 0 + 10 0 + 8 + 0 4 + 4 + 158 + 0 + 26 0 + 0 + 0 16 + 0 + 39

]

𝐴3 = [21 0 3412 8 2334 0 55

]

Step 4:

Class-XII-Maths Matrices

32 Practice more on Matrices www.embibe.com

Therefore, 𝐴3 βˆ’ 6𝐴2 + 7𝐴 + 2𝐼

𝐿𝐻𝑆 = [21 0 3412 8 2334 0 55

] βˆ’ 6 [5 0 82 4 58 0 13

] + 7 [1 0 20 2 12 0 3

] + 2 [1 0 00 1 00 0 1

]

= [21 0 3412 8 2334 0 55

] βˆ’ [

6(5) 0(5) 8(6)

2(6) 4(6) 5(6)

8(6) 0(6) 13(6)] + [

1(7) 0(7) 2(7)

0(7) 2(7) 1(7)

2(7) 0(7) 3(7)] +

[

2(1) 2(0) 2(0)

2(0) 1(2) 0(2)

2(0) 0(2) 1(2)]

Step 5:

= [21 βˆ’ 30 + 7 + 2 0 βˆ’ 0 + 0 + 0 34 βˆ’ 48 + 14 + 012 βˆ’ 12 + 0 + 0 8 βˆ’ 24 + 14 + 2 23 βˆ’ 30 + 7 + 034 βˆ’ 48 + 14 + 0 0 + 0 + 0 + 0 55 βˆ’ 78 + 21 + 2

]

= [0 0 00 0 00 0 0

] = 0

∡ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

Hence proved.

17. If 𝐴 = [3 βˆ’24 βˆ’2

] and 𝐼 = [1 00 1

], find π‘˜ so that 𝐴2 = π‘˜π΄ βˆ’ 2𝐼 [3 marks]

Solution:

Given:

𝐴 = [3 βˆ’24 βˆ’2

] and 𝐼 = [1 00 1

]

Step 1:

𝐴2 = π‘˜π΄ βˆ’ 2𝐼

We know that, 𝐴2 = 𝐴. 𝐴

β‡’ [3 βˆ’24 βˆ’2

] [3 βˆ’24 βˆ’2

] = π‘˜ [3 βˆ’24 βˆ’2

] βˆ’ 2 [1 00 1

]

Class-XII-Maths Matrices

33 Practice more on Matrices www.embibe.com

Step 2:

β‡’ [3 Γ— 3 + (βˆ’2) Γ— 4 3 Γ— (βˆ’2) + (βˆ’2) Γ— (βˆ’2)

4 Γ— 3 + (βˆ’2) Γ— 4 4 Γ— (βˆ’2) + (βˆ’2) Γ— (βˆ’2)] = [

3π‘˜ βˆ’2π‘˜4π‘˜ βˆ’2π‘˜

] βˆ’ [2 00 2

]

β‡’ [1 βˆ’24 βˆ’4

] = [3π‘˜ βˆ’ 2 βˆ’2π‘˜

4π‘˜ βˆ’2π‘˜ βˆ’ 2]

Step 3:

Here, matrices are equal.

Comparing the corresponding elements, we get

β‡’ 4π‘˜ = 4

∴ π‘˜ = 1

Hence, the value of π‘˜ is 1.

18. If 𝐴 = [0 βˆ’ tan

𝛼

2

tan𝛼

20

] and 𝐼 is the identity matrix of order 2, show that

𝐼 + 𝐴 = (𝐼 βˆ’ 𝐴) [cos 𝛼 βˆ’ sin𝛼sin𝛼 cos𝛼

] [5 Marks]

Solution:

Given:

𝐴 = [0 βˆ’ tan

𝛼

2

tan𝛼

20

]

Step 1:

By considering LHS = 𝐼 + 𝐴

= [1 00 1

] + [0 βˆ’ tan

𝛼

2

tan𝛼

20

] = [1 βˆ’ tan

𝛼

2

tan𝛼

21

]

Step 2:

Now,

Class-XII-Maths Matrices

34 Practice more on Matrices www.embibe.com

By taking RHS = (𝐼 βˆ’ 𝐴) [π‘π‘œπ‘ π›Ό βˆ’π‘ π‘–π‘›π›Όπ‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό

]

= ([1 00 1

] βˆ’ [0 βˆ’ tan

𝛼

2

tan𝛼

20

]) [π‘π‘œπ‘ π›Ό βˆ’π‘ π‘–π‘›π›Όπ‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό

]

= [1 βˆ’ tan

𝛼

2

tan𝛼

21

] [π‘π‘œπ‘ π›Ό βˆ’π‘ π‘–π‘›π›Όπ‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό

]

Step 3:

= [cos𝛼 + tan

𝛼

2sin𝛼 βˆ’sin𝛼 + tan

𝛼

2cos 𝛼

βˆ’ tan𝛼

2cos 𝛼 + sin𝛼 tan

𝛼

2sin 𝛼 + cos𝛼

]

Step 4:

=

[ π‘π‘œπ‘ π›Ό +

sin𝛼

2

π‘π‘œπ‘ π›Ό

2

𝑠𝑖𝑛𝛼 βˆ’π‘ π‘–π‘›π›Ό +𝑠𝑖𝑛

𝛼

2

π‘π‘œπ‘ π›Ό

2

π‘π‘œπ‘ π›Ό

βˆ’π‘ π‘–π‘›

𝛼

2

π‘π‘œπ‘ π›Ό

2

π‘π‘œπ‘ π›Ό + 𝑠𝑖𝑛𝛼𝑠𝑖𝑛

𝛼

2

π‘π‘œπ‘ π›Ό

2

𝑠𝑖𝑛𝛼 + π‘π‘œπ‘ π›Ό]

[𝟏

𝟐 Mark]

Step 5:

=

[ π‘π‘œπ‘ π›Ό π‘π‘œπ‘ 

𝛼

2+𝑠𝑖𝑛

𝛼

2𝑠𝑖𝑛𝛼

π‘π‘œπ‘ π›Ό

2

βˆ’π‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό

2+𝑠𝑖𝑛

𝛼

2π‘π‘œπ‘ π›Ό

π‘π‘œπ‘ π›Ό

2

βˆ’π‘π‘œπ‘ π›Ό 𝑠𝑖𝑛𝛼

2+π‘π‘œπ‘ 

𝛼

2𝑠𝑖𝑛𝛼

π‘π‘œπ‘ π›Ό

2

𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛼

2+π‘π‘œπ‘ 

𝛼

2π‘π‘œπ‘ π›Ό

π‘π‘œπ‘ π›Ό

2 ]

[𝟏

𝟐 Mark]

Step 6:

=

[ cos(π›Όβˆ’

𝛼

2)

π‘π‘œπ‘ π›Ό

2

βˆ’sin(π›Όβˆ’π›Ό

2)

π‘π‘œπ‘ π›Ό

2

sin(π›Όβˆ’π›Ό

2)

π‘π‘œπ‘ π›Ό

2

cos(π›Όβˆ’π›Ό

2)

π‘π‘œπ‘ π›Ό

2 ]

[𝟏

𝟐 Mark]

Step 7:

= [1 βˆ’ tan

𝛼

2

tan𝛼

21

] = 𝐿𝐻𝑆 [𝟏

𝟐 Mark]

∡ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

Hence, it is proved.

Class-XII-Maths Matrices

35 Practice more on Matrices www.embibe.com

19. A trust fund has β‚Ή 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide β‚Ή 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of: [5 Marks]

(a) β‚Ή1800

(b) β‚Ή2000

Solution:

Given:

Trust fund= β‚Ή 30,000

First bond pays interest = 5% per year

Second bond pays interest = 7% per year

Step 1:

Let the amount invested in first bond = β‚Ή π‘₯

The amount invested in second bond = β‚Ή(30000 βˆ’ π‘₯)

(π‘Ž) If the total annual interest is β‚Ή1800, then

Investment in Bonds (in β‚Ή) Annual Interest Rate Interest (in ≀]

[π‘₯

30,000 βˆ’ π‘₯] [5%7%

] [1800]

Step 2:

By solving, we get

π‘₯ Γ— 5% + (30000 βˆ’ π‘₯) Γ— 7%=1800

β‡’5π‘₯

100+

7

100(30000 βˆ’ π‘₯) = 1800

β‡’ 5π‘₯ + 210000 βˆ’ 7π‘₯ = 180000

β‡’ βˆ’2π‘₯ = βˆ’30000

π‘₯ = 15000

Step 3:

So, amount investment at 5% = β‚Ή15000

The amount investment at 7% = β‚Ή(30000 βˆ’ π‘₯)

= β‚Ή(30000 βˆ’ 15000) = β‚Ή15000

Class-XII-Maths Matrices

36 Practice more on Matrices www.embibe.com

Therefore, the amount invested in first bond is β‚Ή15000 and second bond is β‚Ή15000 [𝟏

𝟐

Mark]

Step 4:

(b) If the total annual interest is β‚Ή2000, then

Investment in Bonds (in β‚Ή] Annual Interest Rate Interest (inβ‚Ή)

[π‘₯

30,000 βˆ’ π‘₯] [5%7%

] [2000]

Step 5:

By solving, we get

π‘₯ Γ— 5% + (30000 βˆ’ π‘₯) Γ— 7% = 2000

β‡’5π‘₯

100+

7

100(30000 βˆ’ π‘₯) = 2000

β‡’ 5π‘₯ + 210000 βˆ’ 7π‘₯ = 200000

β‡’ βˆ’2π‘₯ = βˆ’10000

β‡’ π‘₯ = 5000

Step 6:

So, amount investment at 5% = β‚Ή5000

The amount investment at 7% = β‚Ή(30000 βˆ’ π‘₯)

= β‚Ή(30000 βˆ’ 5000) = β‚Ή25000

Therefore, the amount invested in first bond is β‚Ή 5000 and second bond is β‚Ή25000. [𝟏

𝟐

Mark]

20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are β‚Ή 80, β‚Ή 60 and β‚Ή 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

[3 Marks]

Class-XII-Maths Matrices

37 Practice more on Matrices www.embibe.com

Solution:

Given:

Step 1:

Number of chemistry books = 10 dozen = 10 Γ— 12 = 120

Number of physics books = 8 dozen = 8 Γ— 12 = 96

Number of economics books = 10 dozen = 10 Γ— 12 = 120 [𝟏

𝟐 Mark]

Step 2:

Number of books

Chemistry Physics Economics

Selling Price per book Total amount (in β‚Ή)

[120 96 120] [806040

] [π‘₯]

[1Mark]

Step 3:

Now,

The shopkeeper receives the total amount of = Number of books Γ—Selling price per book

= [120 96 120] [806040

]

= [180 Γ— 80 + 96 Γ— 60 + 120 Γ— 40]

= 120 Γ— 80 + 96 Γ— 60 + 120 Γ— 40

= 9600 + 5760 + 4800

= β‚Ή 20160 [1𝟏

𝟐 Marks]

Hence, the bookshop will receive β‚Ή20160 from selling all the books.

Class-XII-Maths Matrices

38 Practice more on Matrices www.embibe.com

21. Assume X, Y, Z, W and P are matrices of order 2 Γ— n, 3 Γ— k, 2 Γ— p, n Γ— 3 and p Γ— k,

respectively.

The restriction on 𝑛, π‘˜ and 𝑝 so that π‘ƒπ‘Œ + π‘Šπ‘Œ will be defined are: [2 Marks]

(A) π‘˜ = 3, 𝑝 = 𝑛

(B) π‘˜ is arbitrary, 𝑝 = 2

(C) 𝑝 is arbitrary, π‘˜ = 3

(D) π‘˜ = 2, 𝑝 = 3

Solution:

Given:

The order of 𝑃 = 𝑝 Γ— π‘˜

The order of π‘Œ = 3 Γ— π‘˜.

Step 1:

So, π‘ƒπ‘Œ will be defined if, π‘˜ = 3.

Hence, the order of π‘ƒπ‘Œ is 𝑝 Γ— π‘˜.

Step 2:

Order of π‘Š = 𝑛 Γ— 3 and order of π‘Œ = 3 Γ— π‘˜

According to order, WY is defined and its order is 𝑛 Γ— π‘˜.

π‘ƒπ‘Œ + π‘Šπ‘Œ is defined, if the order of PY and WY are equal.

β‡’ 𝑝 Γ— π‘˜ = 𝑛 Γ— π‘˜

β‡’ 𝑝 = 𝑛,

Therefore, the option (A) is correct.

22. Assume X, Y, Z, W and P are matrices of order 2 Γ— n, 3 Γ— k, 2 Γ— p, n Γ— 3 and p Γ— k,

respectively.

If 𝑛 = 𝑝, then the order of the matrix 7𝑋 βˆ’ 5𝑍 is: [2 marks]

(A) 𝑝 Γ— 2

Class-XII-Maths Matrices

39 Practice more on Matrices www.embibe.com

(B) 2 Γ— 𝑛

(C) 𝑛 Γ— 3

(D) 𝑝 Γ— 𝑛

Solution:

Given:

The order of 𝑋 = 2 Γ— 𝑛

The order of 𝑍 = 2 Γ— 𝑝

𝑛 = 𝑝

Step 1:

During the addition or subtraction, the order of matrix doesn’t change.

Therefore, the order of 7𝑋 βˆ’ 5𝑍 = order of 𝑋 = order of 𝑍

Step 2:

β‡’ 2 Γ— 𝑛 = 2 Γ— 𝑝

= 2 Γ— 𝑛

Hence, the option (𝐡) is correct

EXERCISE 3.3

1. Find the transpose of each of the following matrices:

(i) [

51

2

βˆ’1

]

(ii) [1 βˆ’12 3

]

(iii) [βˆ’1 5 6

√3 5 62 3 βˆ’1

]

Solution:

(i) Let 𝐴 = [

51

2

βˆ’1

]

Class-XII-Maths Matrices

40 Practice more on Matrices www.embibe.com

𝐴′ = [

51

2

βˆ’1

]

β€²

= [51

2βˆ’1]

Hence the transpose of the given matrix is [5 1

2 βˆ’ 1]

(𝑖𝑖) Let 𝐡 = [1 βˆ’12 3

]

𝐡′ = [1 βˆ’12 3

]β€²

= [1 2

βˆ’1 3]

Hence the transpose of the given matrix is [1 2βˆ’1 3

]

(iii) Let 𝐢 = [βˆ’1 5 6

√3 5 62 3 βˆ’1

]

𝐢′ = [βˆ’1 5 6

√3 5 62 3 βˆ’1

]

β€²

= [βˆ’1 √3 25 5 36 6 βˆ’1

]

Hence the transpose of the given matrix is [βˆ’1 √3 25 5 36 6 βˆ’1

]

2. If 𝐴 = [βˆ’1 2 35 7 9βˆ’2 1 1

] and 𝐡 = [βˆ’4 1 βˆ’51 2 01 3 1

], then verify that

(i) (𝐴 + 𝐡)β€² = 𝐴′ + 𝐡′, [3 Marks]

(ii) (𝐴 βˆ’ 𝐡)β€² = 𝐴′ βˆ’ 𝐡′ [3 Marks]

Solution:

Given:

𝐴 = [βˆ’1 2 35 7 9βˆ’2 1 1

] and 𝐡 = [βˆ’4 1 βˆ’51 2 01 3 1

]

(i) (𝐴 + 𝐡)β€² = 𝐴′ + 𝐡′ Step 1:

(𝐴 + 𝐡)

Class-XII-Maths Matrices

41 Practice more on Matrices www.embibe.com

= [βˆ’1 2 35 7 9

βˆ’2 1 1] + [

βˆ’4 1 βˆ’51 2 01 3 1

] = [βˆ’1 βˆ’ 4 2 + 1 3 βˆ’ 55 + 1 7 + 2 9 + 0

βˆ’2 + 1 1 + 3 1 + 1]

(𝐴 + 𝐡) = [βˆ’5 3 βˆ’26 9 9

βˆ’1 4 2]

Step 2:

Hence (𝐴 + 𝐡)’ = [βˆ’5 βˆ’6 βˆ’13 9 4

βˆ’2 9 2] ….(1) [

𝟏

𝟐 Mark]

Step 3:

Now,

𝐴′ + 𝐡′ = [βˆ’1 2 35 7 9

βˆ’2 1 1]

β€²

+ [βˆ’4 1 βˆ’51 2 01 3 1

]

β€²

[𝟏

𝟐 Mark]

Step 4:

= [βˆ’1 5 βˆ’22 7 13 9 1

] + [βˆ’4 1 11 2 3

βˆ’5 0 1] = [

βˆ’1 βˆ’ 4 5 + 1 βˆ’2 + 12 + 1 7 + 2 1 + 33 βˆ’ 5 9 + 0 1 + 1

] = [βˆ’5 6 βˆ’13 9 4

βˆ’2 9 2] ….(2)

From the equation (1) and (2], we get

(𝐴 + 𝐡)’ = 𝐴′ + 𝐡′ [1Mark]

Hence it is proved.

(ii) (𝐴 βˆ’ 𝐡)β€² = 𝐴′ βˆ’ 𝐡′

Step 1:

(𝐴 βˆ’ 𝐡)

= [βˆ’1 2 35 7 9βˆ’2 1 1

] βˆ’ [βˆ’4 1 βˆ’51 2 01 3 1

] = [βˆ’1 + 4 2 βˆ’ 1 3 + 55 βˆ’ 1 7 βˆ’ 2 9 βˆ’ 0

βˆ’2 βˆ’ 1 1 βˆ’ 3 1 βˆ’ 1]

(𝐴 βˆ’ 𝐡) = [3 1 84 5 9

βˆ’3 βˆ’2 0] [1Mark]

Step 2:

Thus, (𝐴 βˆ’ 𝐡)’ = [3 4 βˆ’31 5 βˆ’28 9 0

] β‹― (1) [𝟏

𝟐 Mark]

Class-XII-Maths Matrices

42 Practice more on Matrices www.embibe.com

Step 3:

Aβ€² βˆ’ 𝐡′ = [βˆ’1 2 35 7 9

βˆ’2 1 1]

β€²

βˆ’ [βˆ’4 1 βˆ’51 2 01 3 1

]

β€²

[𝟏

𝟐 Mark]

Step 4:

= [βˆ’1 5 βˆ’22 7 13 9 1

] βˆ’ [βˆ’4 1 11 2 3

βˆ’5 0 1] = [

βˆ’1 + 4 5 βˆ’ 1 βˆ’2 βˆ’ 12 βˆ’ 1 7 βˆ’ 2 1 βˆ’ 33 + 5 9 βˆ’ 0 1 βˆ’ 1

] = [3 4 βˆ’31 5 βˆ’28 9 0

] β‹― (2)

From the equation (1) and (2), we get

(𝐴 + 𝐡)β€² = 𝐴′ + 𝐡′ [1Mark]

Hence it is proved.

3. If 𝐴′ = [3 4βˆ’1 20 1

] and 𝐡 = [βˆ’1 2 11 2 3

], then verify that

(i) (𝐴 + 𝐡)β€² = 𝐴′ + 𝐡′ [3 Marks]

(ii) (𝐴 βˆ’ 𝐡)β€² = 𝐴′ βˆ’ 𝐡′ [3 Marks]

Solution:

Given:

𝐴′ = [3 4βˆ’1 20 1

] and 𝐡 = [βˆ’1 2 11 2 3

]

(i) (𝐴 + 𝐡)β€² = 𝐴′ + 𝐡′ Step 1:

𝐴′ = [3 4

βˆ’1 20 1

]

β‡’ 𝐴 = [3 βˆ’1 04 2 1

] [∡ (𝐴′)β€² = 𝐴] [𝟏

𝟐 Mark]

Step 2:

(𝐴 + 𝐡) = [3 βˆ’1 04 2 1

] + [βˆ’1 2 11 2 3

]

Class-XII-Maths Matrices

43 Practice more on Matrices www.embibe.com

= [3 βˆ’ 1 βˆ’1 + 2 0 + 14 + 1 2 + 2 1 + 3

] = [2 1 15 4 4

]

Step 3:

Therefore (𝐴 + 𝐡)β€² = [2 51 41 4

] …. (1) [𝟏

𝟐 Mark]

Step 4:

𝐴′ + 𝐡’ = [3 βˆ’1 04 2 1

]β€²

+ [βˆ’1 2 11 2 3

]β€²

= [3 4

βˆ’1 20 1

] + [βˆ’1 12 21 3

] = [3 βˆ’ 1 4 + 1

βˆ’1 + 2 2 + 20 + 1 1 + 3

]

𝐴′ + 𝐡’ = [2 51 41 4

] β‹― (2)

From the equation (1) and (2), we get

(𝐴 + 𝐡)’ = 𝐴′ + 𝐡′

Hence, it is proved.

(ii) (𝐴 βˆ’ 𝐡)β€² = 𝐴′ βˆ’ 𝐡′

Step 1:

𝐴′ = [3 4βˆ’1 20 1

]

β‡’ 𝐴 = [3 βˆ’π‘™ 04 2 1

] [∡ (𝐴′)β€² = 𝐴] [𝟏

𝟐 Mark]

Step 2:

(A βˆ’ B) = [3 βˆ’1 04 2 1

]β€”[βˆ’1 2 11 2 3

]

= [3 + 1 βˆ’1 βˆ’ 2 0 βˆ’ 14 βˆ’ 1 2 βˆ’ 2 1 βˆ’ 3

] = [4 βˆ’3 βˆ’13 0 βˆ’2

]

Step 3:

Therefore (A βˆ’ B)’ = [4 3βˆ’3 0βˆ’1 βˆ’2

] β‹― (1) [𝟏

𝟐 Mark]

Step 4:

𝐴′ βˆ’ 𝐡′ = [3 βˆ’1 04 2 1

]β€²

βˆ’ [βˆ’1 2 11 2 3

]β€²

Class-XII-Maths Matrices

44 Practice more on Matrices www.embibe.com

= [3 4

βˆ’1 20 1

] βˆ’ [βˆ’1 12 21 3

] = [3 + 1 4 βˆ’ 1

βˆ’1 βˆ’ 2 2 βˆ’ 20 βˆ’ 1 1 βˆ’ 3

]

= [4 3

βˆ’3 0βˆ’1 βˆ’2

]β‹― (2)

From the equation (1) and (2], we get

(𝐴 βˆ’ 𝐡)’ = 𝐴′ βˆ’ 𝐡′

Hence, it is proved.

4. If 𝐴 = [βˆ’2 31 2

] and 𝐡 = [βˆ’1 01 2

], then find (𝐴 + 2𝐡)β€² [2 Marks]

Solution:

Given:

A = [βˆ’2 31 2

] and 𝐡 = [βˆ’1 01 2

]

Step 1:

(𝐴 + 2𝐡) = [βˆ’2 31 2

] + 2 [βˆ’1 01 2

]

= [βˆ’2 31 2

] + [βˆ’2 02 4

]

Step 2:

= [βˆ’2 βˆ’ 2 3 + 01 + 2 2 + 4

] = [βˆ’4 33 6

] [𝟏

𝟐 Mark]

Step 3:

(𝐴 + 2𝐡)’ = [βˆ’4 33 6

]β€²

= [βˆ’4 33 6

] [𝟏

𝟐 Mark]

Therefore, (𝐴 + 2𝐡)’ = [βˆ’4 33 6

]

Class-XII-Maths Matrices

45 Practice more on Matrices www.embibe.com

5. For the matrices 𝐴 and 𝐡, verify that (𝐴𝐡)β€² = 𝐡′𝐴′, where

(i) 𝐴 = [1βˆ’43

], 𝐡 = [βˆ’1 2 1] [3 marks]

(ii) 𝐴 = [012], 𝐡 = [1 5 7] [3 marks]

Solution:

(i) Given:

𝐴 = [1βˆ’43

] , 𝐡 = [βˆ’1 2 1]

Step 1:

So, 𝐴𝐡 = [1βˆ’43

] [βˆ’1 2 1]

= [1 Γ— (βˆ’1) 1 Γ— 2 1 Γ— 1βˆ’4 Γ— (βˆ’1) βˆ’4 Γ— 2 βˆ’4 Γ— 13 Γ— (βˆ’1) 3 Γ— 2 3 Γ— 1

] = [βˆ’1 2 14 βˆ’8 βˆ’4

βˆ’3 6 3]

Step 2:

𝐴𝐡′ = [βˆ’1 2 14 βˆ’8 βˆ’4

βˆ’3 6 3]

β€²

= [βˆ’1 4 βˆ’32 βˆ’8 61 βˆ’4 3

]

Therefore, 𝐴𝐡′ = [βˆ’1 4 βˆ’32 βˆ’8 61 βˆ’4 3

] …..(1) [𝟏

𝟐 Mark]

Step 3:

𝐡′ = [βˆ’1 2 1]β€² = [βˆ’121

]

𝐴′ = [1

βˆ’43

] = [1 βˆ’ 4 3] [𝟏

𝟐 Mark]

Step 4:

𝐡′𝐴′ = [βˆ’121

] [1 βˆ’ 4 3] = [βˆ’1 Γ— 1 βˆ’1 Γ— (βˆ’4) βˆ’1 Γ— 32 Γ— 1 2 Γ— (βˆ’4) 2 Γ— 31 Γ— 1 1 Γ— (βˆ’4) 1 Γ— 3

]

Class-XII-Maths Matrices

46 Practice more on Matrices www.embibe.com

= [βˆ’1 4 βˆ’32 βˆ’8 61 βˆ’4 3

]

Therefore, 𝐡′𝐴′ = [βˆ’1 4 βˆ’32 βˆ’8 61 βˆ’4 3

]β‹― (2)

From the equation (1] and [2], we get

(𝐴𝐡) = 𝐡′𝐴′

Hence proved.

(ii) Given:

𝐴 = [012], 𝐡 = [1 5 7]

Step 1:

So, AB=[012] = [1 5 7]

= [0 Γ— 1 0 Γ— 5 0 Γ— 71 Γ— 1 1 Γ— 5 1 Γ— 72 Γ— 1 2 Γ— 5 2 Γ— 7

] = [0 0 01 5 72 10 14

]

Step 2:

𝐴𝐡′ = [0 0 01 5 72 10 14

]

β€²

= [0 1 20 5 100 7 14

]

Therefore 𝐴𝐡′ = [0 1 20 5 100 7 14

] β‹― (1) [𝟏

𝟐 Mark]

Step 3:

𝐡′ = [1 5 7]β€² = [157] and 𝐴′ = [

012] = [0 1 2] [

𝟏

𝟐 Mark]

Step 4:

So, 𝐡′𝐴′ = [157] [0 1 2] = [

1 Γ— 0 1 Γ— 1 1 Γ— 25 Γ— 0 5 Γ— 1 5 Γ— 27 Γ— 0 7 Γ— 1 7 Γ— 2

]

Class-XII-Maths Matrices

47 Practice more on Matrices www.embibe.com

= [0 1 20 5 100 7 14

] β‹― (2)

From the equation (1) and (2), we get

(𝐴𝐡)’ = 𝐡′𝐴′

Hence proved

6. (i) If 𝐴 = [cos𝛼 sinπ›Όβˆ’sin𝛼 cos𝛼

] , then verify that 𝐴′𝐴 = 𝐼 [2 Marks]

(ii) If 𝐴 = [sin𝛼 cosπ›Όβˆ’ cos𝛼 sin𝛼

], then verify that 𝐴′𝐴 = 𝐼 [2 marks]

Solution:

(i) Given:

𝐴 = [π‘π‘œπ‘ π›Ό π‘ π‘–π‘›π›Όβˆ’π‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό

]

Step 1:

β‡’ 𝐴′ = [π‘π‘œπ‘ π›Ό βˆ’π‘ π‘–π‘›π›Όπ‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό

] [𝟏

𝟐 Mark]

Step 2:

Therefore 𝐴′𝐴 = [π‘π‘œπ‘ π›Ό βˆ’π‘ π‘–π‘›π›Όπ‘ οΏ½Μ‡οΏ½π›Ό π‘π‘œπ‘ π›Ό

] [π‘π‘œπ‘ π›Ό π‘ π‘–π‘›π›Όβˆ’π‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό

]

= βˆ’[π‘π‘œπ‘ 2𝛼 + 𝑠𝑖𝑛2𝛼 π‘π‘œπ‘ π›Ό 𝑠𝑖𝑛𝛼 βˆ’ 𝑠𝑖𝑛𝛼 π‘π‘œπ‘ π›Όπ‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό βˆ’ π‘π‘œπ‘ π›Ό 𝑠𝑖𝑛𝛼 𝑠𝑖𝑛2𝛼 + π‘π‘œπ‘ 2𝛼

]

Step 3:

= [1 00 1

] = 𝐼

∴ 𝐴′𝐴 = 𝐼 [𝟏

𝟐 Mark]

Hence proved.

Class-XII-Maths Matrices

48 Practice more on Matrices www.embibe.com

(ii) Given:

𝐴 = [𝑠𝑖𝑛𝛼 π‘π‘œπ‘ π›Όβˆ’π‘π‘œπ‘ π›Ό 𝑠𝑖𝑛𝛼

]

Step 1:

β‡’ 𝐴′ = [𝑠𝑖𝑛𝛼 βˆ’π‘π‘œπ‘ π›Όπ‘π‘œπ‘ π›Ό 𝑠𝑖𝑛𝛼

] [𝟏

𝟐 Mark]

Step 2:

Therefore 𝐴′𝐴 = [𝑠𝑖𝑛𝛼 βˆ’π‘π‘œπ‘ π›Όπ‘π‘œπ‘ π›Ό 𝑠𝑖𝑛𝛼

] [𝑠𝑖𝑛𝛼 π‘π‘œπ‘ π›Όβˆ’π‘π‘œπ‘ π›Ό 𝑠𝑖𝑛𝛼

]

= [𝑠𝑖𝑛2𝛼 + π‘π‘œπ‘ 2𝛼 𝑠𝑖𝑛𝛼 π‘π‘œπ‘ π›Ό βˆ’ π‘π‘œπ‘ π›Ό 𝑠𝑖𝑛𝛼

π‘π‘œπ‘ π›Ό 𝑠𝑖𝑛𝛼 βˆ’ 𝑠𝑖𝑛𝛼 π‘π‘œπ‘ π›Ό π‘π‘œπ‘ 2𝛼 + 𝑠𝑖𝑛2𝛼]

Step 3:

= [1 00 1

] = 𝐼

∴ 𝐴′𝐴 = 𝐼 [𝟏

𝟐 Mark]

Hence proved.

7. i) Show that the matrix 𝐴 = [1 βˆ’1 5

βˆ’1 2 15 1 3

] is a symmetric matrix. [2 Marks]

(ii) Show that the matrix 𝐴 = [0 1 βˆ’1

βˆ’1 0 11 βˆ’1 0

] is a skew symmetric matrix. [2 Marks]

Solution:

(i) Given:

𝐴 = [1 βˆ’1 5βˆ’1 2 15 1 3

]

Step 1:

β‡’ Aβ€² = [1 βˆ’1 5

βˆ’1 2 15 1 3

]

β€²

Class-XII-Maths Matrices

49 Practice more on Matrices www.embibe.com

= [1 βˆ’1 5

βˆ’1 2 15 1 3

]

Step 2:

∴ 𝐴′ = 𝐴

Hence, the matrix 𝐴 = [1 βˆ’1 5

βˆ’1 2 15 1 3

] is a symmetric matrix.

(ii) 𝐴 = [0 1 βˆ’1

βˆ’1 0 11 βˆ’1 0

]

Step 1:

β‡’ 𝐴′ = [0 1 βˆ’1

βˆ’1 0 11 βˆ’1 0

]

β€²

= [0 βˆ’1 11 0 βˆ’1

βˆ’1 1 0]

= βˆ’[0 1 βˆ’1

βˆ’1 0 11 βˆ’1 0

] = βˆ’π΄

Step 2:

β‡’ 𝐴′ = βˆ’π΄

Hence, the matrix A = [0 1 βˆ’1

βˆ’1 0 11 βˆ’1 0

] is a skew symmetric matrix.

8. For the matrix 𝐴 = [1 56 7

], verify that

(i) (𝐴 + 𝐴′) is a symmetric matrix [3 Marks]

(ii) (𝐴 βˆ’ 𝐴′) is a skew symmetric matrix [3 Marks]

(i) Given:

𝐴 = [1 56 7

]

Step 1:

Class-XII-Maths Matrices

50 Practice more on Matrices www.embibe.com

β‡’ 𝐴′ = [1 56 7

]β€²

= [1 65 7

]

Step 2:

Therefore, (𝐴 + 𝐴′) = [1 56 7

] + [1 65 7

] = [2 1111 14

]

Step 3:

(𝐴 + 𝐴′)β€² = [2 1111 14

]β€²

= [2 1111 14

]

β‡’ (𝐴 + Aβ€²)β€² = (𝐴 + 𝐴′)

Hence the matrix (𝐴 + 𝐴′) is a symmetric matrix.

(ii) Given:

𝐴 = [1 56 7

]

Step 1:

β‡’ 𝐴′ = [1 56 7

]β€²

= [1 65 7

]

Step 2:

(𝐴 βˆ’ 𝐴′) = [1 56 7

] βˆ’ [1 65 7

] = [0 βˆ’11 0

]

Step 3:

∴ (𝐴 βˆ’ 𝐴′)β€² = [0 βˆ’11 0

]β€²

= [0 1

βˆ’1 0] = βˆ’ [

0 βˆ’11 0

] = βˆ’(𝐴 βˆ’ 𝐴′)

β‡’ (𝐴 βˆ’ 𝐴′)β€² = βˆ’(𝐴 βˆ’ 𝐴′)

Hence the matrix (𝐴 βˆ’ 𝐴′) is a skew symmetric matrix.

9. Find 1

2(𝐴 + 𝐴′) and

1

2(𝐴 βˆ’ 𝐴′), when 𝐴 = [

0 π‘Ž π‘βˆ’π‘Ž 0 π‘βˆ’π‘ βˆ’π‘ 0

] [3 Marks]

Solution:

Class-XII-Maths Matrices

51 Practice more on Matrices www.embibe.com

Given that: 𝐴 = [0 π‘Ž 𝑏

βˆ’π‘Ž 0 π‘βˆ’π‘ βˆ’π‘ 0

]

Step 1:

β‡’ 𝐴′ = [0 π‘Ž 𝑏

βˆ’π‘Ž 0 π‘βˆ’π‘ βˆ’π‘ 0

]

β€²

= [0 βˆ’π‘Ž βˆ’π‘π‘Ž 0 βˆ’π‘π‘ 𝑐 0

]

Step 2:

So, 1

2(𝐴 + 𝐴′) =

1

2([

0 π‘Ž π‘βˆ’π‘Ž 0 π‘βˆ’π‘ βˆ’π‘ 0

] + [0 βˆ’π‘Ž βˆ’π‘π‘Ž 0 βˆ’π‘π‘ 𝑐 0

])

=1

2[0 0 00 0 00 0 0

] = [0 0 00 0 00 0 0

]

Step 3:

1

2(𝐴 βˆ’ 𝐴′) =

1

2([

0 π‘Ž π‘βˆ’π‘Ž 0 βˆ’π‘βˆ’π‘ βˆ’π‘ 0

] βˆ’ [0 βˆ’π‘Ž βˆ’π‘π‘Ž 0 βˆ’π‘π‘ 𝑐 0

])

=1

2[

0 2π‘Ž 2π‘βˆ’2π‘Ž 0 2π‘βˆ’2𝑏 βˆ’2𝑐 0

]=[0 π‘Ž 𝑏

βˆ’π‘Ž 0 π‘βˆ’π‘ 𝑐 0

]

Hence, the required matrix of 1

2(𝐴 + 𝐴′) is [

0 0 00 0 00 0 0

] and 1

2(𝐴 βˆ’ 𝐴′) is [

0 π‘Ž π‘βˆ’π‘Ž 0 π‘βˆ’π‘ 𝑐 0

]

10. Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

(i) [3 51 βˆ’1

] [4 Marks]

(ii) [6 βˆ’2 2βˆ’2 3 βˆ’12 βˆ’1 3

] [4 Marks]

(iii) [3 3 βˆ’1βˆ’2 βˆ’2 1βˆ’4 βˆ’5 2

] [4 Marks]

(iv) [1 5βˆ’1 2

] [4 Marks]

Class-XII-Maths Matrices

52 Practice more on Matrices www.embibe.com

Solution:

(i) Given: 𝐴 = [3 51 βˆ’1

]

Step 1:

𝐴 =1

2(𝐴 + 𝐴′) +

1

2(𝐴 βˆ’ 𝐴′)

Consider, 𝑃 =1

2(𝐴 + 𝐴′) and 𝑄 =

1

2(𝐴 βˆ’ 𝐴′) [

𝟏

𝟐 Mark]

Step 2:

We have 𝐴′ = [3 15 βˆ’1

] [𝟏

𝟐 Mark]

Step 3:

𝑃 =1

2(𝐴 + 𝐴′) =

1

2([

3 51 βˆ’1

] + [3 15 βˆ’1

])

=1

2[6 66 βˆ’2

] = [3 33 βˆ’1

] [𝟏

𝟐 Mark]

Step 4:

𝑃′ = [3 33 βˆ’1

] = 𝑃

β‡’ 𝑃 is a symmetric matrix. [𝟏

𝟐 Mark]

Step 5:

𝑄 =1

2(𝐴 βˆ’ 𝐴′) =

1

2([

3 51 βˆ’1

] βˆ’ [3 15 βˆ’1

])

=1

2[0 4βˆ’4 0

] = [0 2βˆ’2 0

] [𝟏

𝟐 Mark]

Step 6:

𝑄′ = [0 2βˆ’2 0

]β€²

= [0 βˆ’22 0

] = βˆ’ [0 2βˆ’2 0

] = βˆ’π‘„

β‡’ 𝑄 is a skew symmetric matrix [𝟏

𝟐 Mark]

Step 7:

Hence, 𝐴 = 𝑃 + 𝑄 = [3 33 βˆ’1

] + [0 2βˆ’2 0

]

𝐴 = [3 51 βˆ’1

]

Thus, A is a sum of symmetric and skew symmetric matrix.

Class-XII-Maths Matrices

53 Practice more on Matrices www.embibe.com

(ii) Given that: 𝐴 = [6 βˆ’2 2βˆ’2 3 βˆ’12 βˆ’1 3

]

Step 1:

𝐴′ = [6 βˆ’2 2

βˆ’2 3 βˆ’12 βˆ’1 3

] [𝟏

𝟐 Mark]

Step 2:

Therefore, 𝐴 =1

2(𝐴 + 𝐴′) +

1

2(𝐴 βˆ’ 𝐴′)

𝐿𝑒t, 𝑃 =1

2(𝐴 + 𝐴′) and 𝑄 =

1

2(𝐴 βˆ’ 𝐴′) [

𝟏

𝟐 Mark]

Step 3:

𝑃 =1

2(𝐴 + 𝐴′) =

1

2([

6 βˆ’2 2βˆ’2 3 βˆ’12 βˆ’1 3

] + [6 βˆ’2 2

βˆ’2 3 βˆ’12 βˆ’1 3

])

=1

2[12 βˆ’4 4βˆ’4 6 βˆ’24 βˆ’2 6

] = [6 βˆ’2 2βˆ’2 3 βˆ’12 βˆ’1 3

] [𝟏

𝟐 Mark]

Step 4:

𝑃′ = [6 βˆ’2 2

βˆ’2 3 βˆ’12 βˆ’1 3

]

β€²

= [6 βˆ’2 2

βˆ’2 3 βˆ’12 βˆ’1 3

] = 𝑃 [𝟏

𝟐 Mark]

β‡’ 𝑃 is a symmetric matrix

Step 5:

𝑄 =1

2(𝐴 βˆ’ 𝐴′) =

1

2([

6 βˆ’2 2βˆ’2 3 βˆ’12 βˆ’1 3

] βˆ’ [6 βˆ’2 2βˆ’2 3 βˆ’12 βˆ’1 3

])

=1

2[0 0 00 0 00 0 0

] = [0 0 00 0 00 0 0

] [𝟏

𝟐 Mark]

Step 6:

𝑄′ = [0 0 00 0 00 0 0

]

β€²

= [0 0 00 0 00 0 0

] = βˆ’ [0 0 00 0 00 0 0

] = βˆ’π‘„ [𝟏

𝟐 Mark]

β‡’ 𝑄 is a skew symmetric matrix.

Step 7:

Class-XII-Maths Matrices

54 Practice more on Matrices www.embibe.com

Hence, 𝐴 = 𝑃 + 𝑄 = [6 βˆ’2 2βˆ’2 3 βˆ’12 βˆ’1 3

] + [0 0 00 0 00 0 0

]

𝐴 = [6 βˆ’2 2βˆ’2 3 βˆ’12 βˆ’1 3

]

Thus, A is a sum of symmetric and skew symmetric matrix.

(iii) Given: 𝐴 = [3 3 βˆ’1βˆ’2 βˆ’2 1βˆ’4 βˆ’5 2

]

Step 1:

𝐴′ = [3 βˆ’2 βˆ’43 βˆ’2 βˆ’5

βˆ’1 1 2] [

𝟏

𝟐 Mark]

Step 2:

Therefore, A =1

2(𝐴 + 𝐴′) +

1

2(𝐴 βˆ’ 𝐴′)

Let, 𝑃 =1

2(𝐴 + 𝐴′) and 𝑄 =

1

2(𝐴 βˆ’ 𝐴′) [

𝟏

𝟐 Mark]

Step 3:

𝑃 =1

2(𝐴 + 𝐴′) =

1

2([

3 3 βˆ’1βˆ’2 βˆ’2 1βˆ’4 βˆ’5 2

] + [3 βˆ’2 βˆ’43 βˆ’2 βˆ’5βˆ’1 1 2

])

= βˆ’1

2[6 1 βˆ’51 βˆ’4 βˆ’4βˆ’5 βˆ’4 4

] =

[ 3

1

2βˆ’

5

21

2βˆ’2 βˆ’2

βˆ’5

2βˆ’2 2 ]

[𝟏

𝟐 Mark]

Step 4:

𝑃′ =

[ 3

1

2βˆ’

5

21

2βˆ’2 βˆ’2

βˆ’5

2βˆ’2 2 ]

β€²

=

[ 3

1

2βˆ’

5

21

2βˆ’2 βˆ’2

βˆ’5

2βˆ’2 2 ]

= 𝑃 [𝟏

𝟐 Mark]

β‡’ 𝑃 is a symmetric matrix.

Step 5:

Class-XII-Maths Matrices

55 Practice more on Matrices www.embibe.com

𝑄 =1

2(𝐴 βˆ’ 𝐴′) =

1

2([

3 3 βˆ’1βˆ’2 βˆ’2 1βˆ’4 βˆ’5 2

] βˆ’ [3 βˆ’2 βˆ’43 βˆ’2 βˆ’5βˆ’1 1 2

]) [𝟏

𝟐 Mark]

=1

2[0 5 3βˆ’5 0 6βˆ’3 βˆ’6 0

] =

[ 0

5

2

3

2

βˆ’5

20 3

βˆ’3

2βˆ’3 0]

Step 6:

𝑄′ =

[ 0

5

2

3

2

βˆ’5

20 3

βˆ’3

2βˆ’3 0]

β€²

=

[ 0 βˆ’

5

2βˆ’

3

25

30 βˆ’3

3

23 0 ]

= βˆ’

[ 0 βˆ’

5

2βˆ’

3

25

20 βˆ’3

3

23 0 ]

= βˆ’π‘„

β‡’ 𝑄 is a skew symmetric matrix. [𝟏

𝟐 Mark]

Step 7:

Hence, 𝐴 = 𝑃 + 𝑄 =

[ 3

1

2βˆ’

5

21

2βˆ’2 βˆ’2

βˆ’5

2βˆ’2 2 ]

+

[

βˆ’

05

2

3

25

20 3

βˆ’3

2βˆ’3 0]

𝐴 = [3 3 βˆ’1βˆ’2 βˆ’2 1βˆ’4 βˆ’5 2

]

Thus, A is a sum of symmetric and skew symmetric matrix.

(iv) Given that: 𝐴 = [1 5βˆ’1 2

]

Step 1:

𝐴′ = [1 βˆ’15 2

] [𝟏

𝟐 Mark]

Step 2:

Therefore, 𝐴 = βˆ’1

2(𝐴 + 𝐴′) +

1

2(𝐴 βˆ’ 𝐴′)

Let, 𝑃 =1

2(𝐴 + 𝐴′) and 𝑄 =

1

2(𝐴 βˆ’ 𝐴′) [

𝟏

𝟐 Mark]

Class-XII-Maths Matrices

56 Practice more on Matrices www.embibe.com

Step 3:

𝑃 =1

2(𝐴 + 𝐴′)

=1

2([

1 5βˆ’1 2

] + [1 βˆ’15 2

])

=1

2[2 44 4

] = [1 22 2

] [𝟏

𝟐 Mark]

Step 4:

𝑃′ = [1 22 2

] = [1 22 2

] = 𝑃

β‡’ 𝑃 is a symmetric matrix [𝟏

𝟐 Mark]

Step 5:

𝑄 =1

2(𝐴 βˆ’ 𝐴′)

=1

2([

1 5βˆ’1 2

] βˆ’ [1 βˆ’15 2

])

=1

2[0 6βˆ’6 0

] = [0 3βˆ’3 0

] [𝟏

𝟐 Mark]

Step 6:

𝑄′ = [0 3βˆ’3 0

]β€²

= [0 βˆ’33 0

] = βˆ’[0 3βˆ’3 0

] = βˆ’π‘„

β‡’ 𝑄 is a skew symmetric matrix [𝟏

𝟐 Mark]

Step 7:

Hence, 𝐴 = 𝑃 + 𝑄 = [1 22 2

] + [0 3βˆ’3 0

]

𝐴 = [1 5βˆ’1 2

]

Thus, A is a sum of symmetric and skew symmetric matrix.

11. If 𝐴, 𝐡 are symmetric matrices of same order, then 𝐴𝐡 βˆ’ 𝐡𝐴 is a [2 Marks]

(A) Skew symmetric matrix

(B) Symmetric matrix

Class-XII-Maths Matrices

57 Practice more on Matrices www.embibe.com

(C) Zero matrix

(D) Identity matrix

Solution:

Given:

A and B are symmetric matrices of same order

Step 1:

Let, (𝐴𝐡 βˆ’ 𝐡𝐴)β€² = (𝐴𝐡)β€² βˆ’ (𝐡𝐴)β€² [∡ (𝑋 ‐ π‘Œ)β€² = 𝑋′ βˆ’ π‘Œβ€²] [𝟏

𝟐

Mark]

Step 2:

= 𝐡′𝐴′ βˆ’ 𝐴′𝐡′ [∡ (π‘‹π‘Œ)’ = π‘Œβ€²π‘‹β€²] [𝟏

𝟐 Mark]

Step 3:

= 𝐡𝐴 βˆ’ AB [∡Given: 𝐴′ = 𝐴, 𝐡′ = 𝐡] [𝟏

𝟐

Mark]

Step 4:

= βˆ’(𝐴𝐡 βˆ’ 𝐡𝐴)

β‡’ (𝐴𝐡 βˆ’ 𝐡𝐴)β€² = βˆ’(𝐴𝐡 βˆ’ 𝐡𝐴)

Therefore, the matrix (AB β€” BA) is a skew symmetric matrix

Hence, the option (A) is correct. [𝟏

𝟐 Mark]

12. If 𝐴 = [cos𝛼 βˆ’ sin𝛼sin𝛼 cos𝛼

], and 𝐴 + 𝐴′ = 𝐼, then the value of 𝛼 is [2 marks]

(A) πœ‹

6

(B) πœ‹

3

(C) πœ‹

(D) 3πœ‹

2

Solution:

Class-XII-Maths Matrices

58 Practice more on Matrices www.embibe.com

(B)

Given that: 𝐴 + 𝐴′ = 𝐼

𝐴 = [cos𝛼 βˆ’ sin𝛼sin𝛼 cos𝛼

]

Step 1:

𝐴′ = [cos𝛼 sinπ›Όβˆ’sin𝛼 cos𝛼

] [𝟏

𝟐 Mark]

Step 2:

β‡’ [π‘π‘œπ‘ π›Ό βˆ’π‘ π‘–π‘›π›Όπ‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό

] + [π‘π‘œπ‘ π›Ό π‘ π‘–π‘›π›Όβˆ’π‘ π‘–π‘›π›Ό π‘π‘œπ‘ π›Ό

] = [1 00 1

]

β‡’ [2π‘π‘œπ‘ π›Ό 00 2π‘π‘œπ‘ π›Ό

] = [1 00 1

] [𝟏

𝟐 Mark]

Step 3:

β‡’ 2 cos 𝛼 = 1

β‡’ cos 𝛼 =1

2

cos 𝛼 = cos 600 [∡ cos 600 =1

2] [

𝟏

𝟐 Mark]

Step 4:

On comparing angles, we get

𝛼 = 60Β°

𝛼 = 60Β° Γ—πœ‹

180Β°

β‡’ 𝛼 =πœ‹

3

Hence, option (B) is correct. [𝟏

𝟐 Mark]

EXERCISE 3.4

Using elementary transformations, find the inverse of each of the matrices, if it exists in Exercises 1 to 17.

1. [1 βˆ’12 3

] [3 Marks]

Class-XII-Maths Matrices

59 Practice more on Matrices www.embibe.com

Solution:

Let 𝐴 = [1 βˆ’12 3

],

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

].

β‡’ [1 βˆ’12 3

] = [1 00 1

]𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 βˆ’10 5

] = [1 0βˆ’2 1

] 𝐴 [applying 𝑅2 ⟢ 𝑅2 βˆ’ 2𝑅1] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 βˆ’10 1

] = [1 0

βˆ’2

5

1

5

] 𝐴 [applying 𝑅2 ⟢1

5𝑅2] [

𝟏

𝟐 Mark]

Step 4:

β‡’ [1 00 1

] = [

3

5

1

5

βˆ’2

5

1

5

] 𝐴 [applying 𝑅1 β†’ 𝑅1 + 𝑅2] [𝟏

𝟐 Mark]

Step 5:

I = [

3

5

1

5

βˆ’2

5

1

5

] 𝐴 [𝟏

𝟐 Mark]

Step 6:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [

3

5

1

5

βˆ’2

5

1

5

] [𝟏

𝟐 Mark]

2. [2 11 1

] [2 Marks]

Solution:

Let, 𝐴 = [2 11 1

],

Class-XII-Maths Matrices

60 Practice more on Matrices www.embibe.com

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

]

β‡’ [2 11 1

] [1 00 1

] 𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 00 1

] = [1 βˆ’10 1

]𝐴 [applying 𝑅1 β†’ 𝑅1 βˆ’ 𝑅2] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 00 1

] = [1 βˆ’1βˆ’1 2

]𝐴 [applying 𝑅2 β†’ 𝑅2 βˆ’ 𝑅1] [𝟏

𝟐 Mark]

Step 4:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [1 βˆ’1

βˆ’1 2] [

𝟏

𝟐 Mark]

3. [1 32 7

]

Solution:

Let, 𝐴 = [1 32 7

],

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

]

β‡’ [1 32 7

] = [1 00 1

] 𝐴

β‡’ [1 30 1

] = [1 0βˆ’2 1

]𝐴 [applying 𝑅2 β†’ 𝑅2 βˆ’ 2𝑅1]

β‡’ [1 00 1

] = [7 βˆ’3βˆ’2 1

]𝐴 [applying 𝑅1 β†’ 𝑅1 βˆ’ 3𝑅2]

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [7 βˆ’3βˆ’2 1

]

Class-XII-Maths Matrices

61 Practice more on Matrices www.embibe.com

4. [2 35 7

] [3 Marks]

Solution:

Let, 𝐴 = [2 35 7

],

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

]

β‡’ [2 35 7

] = [1 00 1

] 𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 25 7

] = [3 βˆ’10 1

]𝐴 [applying 𝑅1 β†’ 3𝑅1 βˆ’ 𝑅2] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 20 βˆ’3

] = [3 βˆ’1

βˆ’15 6]𝐴 [applying 𝑅2 β†’ 𝑅2 βˆ’ 5𝑅1] [

𝟏

𝟐 Mark]

Step 4:

β‡’ [1 20 1

] = [3 βˆ’15 βˆ’2

]𝐴 [applying 𝑅2 β†’ βˆ’1

3𝑅2] [

𝟏

𝟐 Mark]

Step 5:

β‡’ [1 00 1

] = [βˆ’7 35 βˆ’2

]𝐴 [applying 𝑅1 β†’ 𝑅1 βˆ’ 2𝑅2] [𝟏

𝟐 Mark]

Step 6:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [βˆ’7 35 βˆ’2

] [𝟏

𝟐 Mark]

5. [2 17 4

] [3 Marks]

Solution:

Let, 𝐴 = [2 17 4

],

Step 1:

Class-XII-Maths Matrices

62 Practice more on Matrices www.embibe.com

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

]

β‡’ [2 17 4

] = [1 00 1

] 𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 07 4

] = [4 βˆ’10 1

]𝐴 [applying 𝑅1 β†’ 4𝑅1 βˆ’ 𝑅2] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 00 4

] = [4 βˆ’1

βˆ’28 8]𝐴 [applying 𝑅2 β†’ 𝑅2 βˆ’ 7𝑅1] [

𝟏

𝟐 Mark]

Step 4:

β‡’ [1 00 1

] = [4 βˆ’1

βˆ’7 2]𝐴 [applying 𝑅2 β†’

1

4𝑅2] [

𝟏

𝟐 Mark]

Step 5:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [4 βˆ’1

βˆ’7 2]1`

6. [2 51 3

] [3 marks]

Solution:

Let, 𝐴 = [2 51 3

],

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

]

β‡’ [2 51 3

] = [1 00 1

] 𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 21 3

] = [1 βˆ’10 1

]𝐴 [applying 𝑅1 β†’ 𝑅1 βˆ’ 𝑅2] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 20 1

] = [1 βˆ’1

βˆ’1 2]𝐴 [applying 𝑅2 β†’ 𝑅2 βˆ’ 𝑅1] [

𝟏

𝟐 Mark]

Class-XII-Maths Matrices

63 Practice more on Matrices www.embibe.com

Step 4:

β‡’ [1 00 1

] = [3 βˆ’5

βˆ’1 2]𝐴 [applying 𝑅1 β†’ 𝑅1 βˆ’ 2𝑅2] [

𝟏

𝟐 Mark]

Step 5:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [3 βˆ’5

βˆ’1 2]

7. [3 15 2

] [3 Marks]

Solution:

Let, 𝐴 = [3 15 2

],

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

].

β‡’ [3 15 2

] = [1 00 1

] 𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 05 2

] = [2 βˆ’10 1

]𝐴 [Applying 𝑅1 β†’ 2𝑅1 βˆ’ 𝑅2] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 00 2

] = [2 βˆ’1

βˆ’10 6]𝐴 [Applying 𝑅2 β†’ 2𝑅2 βˆ’ 5𝑅1] [

𝟏

𝟐 Mark]

Step 4:

β‡’ [1 00 2

] = [2 βˆ’1

βˆ’5 3]𝐴 [Applying 𝑅2 β†’

1

2𝑅2] [

𝟏

𝟐 Mark]

Step 5:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [2 βˆ’1

βˆ’5 3]

Class-XII-Maths Matrices

64 Practice more on Matrices www.embibe.com

8. [4 53 4

] [3 Marks]

Solution:

Let, 𝐴 = [4 53 4

],

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

].

β‡’ [4 53 4

] = [1 00 1

] 𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 13 4

] = [1 βˆ’10 1

]𝐴 [applying 𝑅1 β†’ 𝑅1 βˆ’ 𝑅2] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 10 1

] = [1 βˆ’1

βˆ’3 4]𝐴 [applying 𝑅2 β†’ 𝑅2 βˆ’ 3𝑅1] [

𝟏

𝟐 Mark]

Step 4:

β‡’ [1 00 1

] = [4 βˆ’5

βˆ’3 4]𝐴 [applying R1 β†’ 𝑅1 βˆ’ R2] [

𝟏

𝟐 Mark]

Step 5:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [4 βˆ’5

βˆ’3 4]

9. [3 102 7

] [3 Marks]

Solution:

Let, 𝐴 = [3 102 7

],

Class-XII-Maths Matrices

65 Practice more on Matrices www.embibe.com

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

].

β‡’ [3 102 7

] = [1 00 1

] 𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 32 7

] = [1 βˆ’10 1

]𝐴 [applying 𝑅1 β†’ 𝑅1 βˆ’ 𝑅2] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 30 1

] = [1 βˆ’1

βˆ’2 3]𝐴 [applying 𝑅2 β†’ 𝑅2 βˆ’ 2𝑅1] [

𝟏

𝟐 Mark]

Step 4:

β‡’ [1 00 1

] = [7 βˆ’10

βˆ’2 3]𝐴 [applying 𝑅1 β†’ 𝑅1 βˆ’ 3𝑅2] [

𝟏

𝟐 Mark]

Step 5:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [7 βˆ’10

βˆ’2 3]

10. [3 βˆ’1βˆ’4 2

] [3 Marks]

Solution:

Let, 𝐴 = [3 βˆ’1βˆ’4 2

],

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

].

β‡’ [3 βˆ’1

βˆ’4 2] = [

1 00 1

] 𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 1

βˆ’4 2] = [

3 20 1

]𝐴 [applying 𝑅1 β†’ 3𝑅1 + 2𝑅2] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 10 6

] = [3 212 9

] 𝐴 [applying 𝑅2 β†’ 𝑅2 + 4𝑅1] [𝟏

𝟐 Mark]

Class-XII-Maths Matrices

66 Practice more on Matrices www.embibe.com

Step 4:

β‡’ [1 10 1

] = [3 2

23

2

] 𝐴 [applying 𝑅2 β†’1

6𝑅2] [

𝟏

𝟐 Mark]

Step 5:

β‡’ [1 00 1

] = [1

1

2

23

2

] 𝐴 [applying 𝑅1 β†’ 𝑅1 βˆ’ 𝑅2] [𝟏

𝟐 Mark]

Step 6:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [1

1

2

23

2

]

11. [2 βˆ’61 βˆ’2

] [3 Marks]

Solution:

Let, 𝐴 = [2 βˆ’61 βˆ’2

],

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

].

β‡’ [2 βˆ’61 βˆ’2

] = [1 00 1

]𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 βˆ’41 βˆ’2

] = [1 βˆ’10 1

]𝐴 [applying R1 β†’ 𝑅1-R2] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 βˆ’40 2

] = [1 βˆ’1

βˆ’1 2]𝐴 [applying R2 β†’ 𝑅2-R1] [

𝟏

𝟐 Mark]

Step 4:

β‡’ [1 βˆ’40 1

] = [1 βˆ’1

βˆ’1

21 ]𝐴 [applying 𝑅2 β†’

1

2𝑅2] [

𝟏

𝟐 Mark]

Step 5:

Class-XII-Maths Matrices

67 Practice more on Matrices www.embibe.com

β‡’ [1 00 1

] = [βˆ’1 3

βˆ’1

21]𝐴 [applyingR1 β†’ 𝑅1-4R2] [

𝟏

𝟐 Mark]

Step 6:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [βˆ’1 3

βˆ’1

21]

12. [6 βˆ’3βˆ’2 1

] [2 Marks]

Solution:

Let, 𝐴 = [6 βˆ’3βˆ’2 1

],

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

].

β‡’ [6 βˆ’3

βˆ’2 1] = [

1 00 1

] 𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [6 βˆ’30 0

] = [1 03 1

]𝐴 [applying 𝑅2 β†’ 𝑅2 + 3𝑅1] [𝟏

𝟐 Mark]

Step 3:

Since, on left hand side of the matrix all the elements of second row is zero.

Hence, π΄βˆ’1 does not exist.

13. [2 βˆ’3βˆ’1 2

] [3 marks]

Class-XII-Maths Matrices

68 Practice more on Matrices www.embibe.com

Solution:

Let, 𝐴 = [2 βˆ’3βˆ’1 2

],

Step 1:

We know that, 𝐴 = 𝐼𝐴 where 𝐼 = [1 00 1

].

β‡’ [2 βˆ’3

βˆ’1 2] = [

1 00 1

] 𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 βˆ’1

βˆ’1 2] = [

1 10 1

] 𝐴 [applying 𝑅1 β†’ 𝑅1 + 𝑅2] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 βˆ’10 1

] = [1 11 2

]𝐴 [applying 𝑅2 β†’ 𝑅2 + 𝑅1] [𝟏

𝟐 Mark]

Step 4:

β‡’ [1 00 1

] = [2 31 2

] 𝐴 [applying 𝑅1 β†’ 𝑅1 + 𝑅2] [𝟏

𝟐 Mark]

Step 5:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [2 31 2

]

14. [2 14 2

] [2 marks]

Solution:

Let 𝐴 = [2 14 2

],

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 00 1

].

β‡’ [2 14 2

] = [1 00 1

] 𝐴 [𝟏

𝟐 Mark]

Step 2:

Class-XII-Maths Matrices

69 Practice more on Matrices www.embibe.com

β‡’ [2 10 0

] = [1 0

βˆ’2 1]𝐴 [ applying 𝑅2 β†’ 𝑅2 βˆ’ 2𝑅1] [

𝟏

𝟐 Mark]

Step 3:

Since, on left hand side of the matrix all the elements of second row is zero.

Hence π΄βˆ’1 does not exist.

15. [2 βˆ’3 32 2 33 βˆ’2 2

] [5 Marks]

Solution:

Let, 𝐴 = [2 βˆ’3 32 2 33 βˆ’2 2

],

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 0 00 1 00 0 1

].

β‡’ [2 βˆ’3 32 2 33 βˆ’2 2

] = [1 0 00 1 00 0 1

]𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 1 42 2 33 βˆ’2 2

] = [1 1 βˆ’10 1 00 0 1

]𝐴 [applying 𝑅1 β†’ 𝑅1 + 𝑅2 βˆ’ 𝑅3] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 1 40 0 βˆ’53 βˆ’2 2

] = [1 1 βˆ’1

βˆ’2 βˆ’1 20 0 1

]𝐴 [applying 𝑅2 β†’ 𝑅2 βˆ’ 2𝑅1] [𝟏

𝟐 Mark]

Step 4:

β‡’ [1 1 40 0 βˆ’50 βˆ’5 βˆ’10

] = [1 1 βˆ’1

βˆ’2 βˆ’1 2βˆ’3 βˆ’3 4

]𝐴 [applying 𝑅3 β†’ 𝑅3 βˆ’ 3𝑅1] [𝟏

𝟐 Mark]

Step 5:

β‡’ [1 1 40 βˆ’5 βˆ’100 0 βˆ’5

] = [1 1 βˆ’1

βˆ’3 βˆ’3 4βˆ’2 βˆ’1 2

]𝐴 [applying 𝑅2 ↔ 𝑅3] [𝟏

𝟐 Mark]

Step 6:

Class-XII-Maths Matrices

70 Practice more on Matrices www.embibe.com

β‡’ [1 1 40 1 20 0 1

] = [

1 1 βˆ’13

5

3

5βˆ’

4

52

5

1

5βˆ’

2

5

] 𝐴 [applying 𝑅2 β†’ βˆ’1

5𝑅2, 𝑅3 β†’ βˆ’

1

5𝑅3] [

𝟏

𝟐 Mark]

Step 7:

β‡’ [1 1 40 1 00 0 1

] = [

1 1 βˆ’1

βˆ’1

5

1

50

2

5

1

5βˆ’

2

5

]𝐴 [applying 𝑅2 β†’ 𝑅2 βˆ’ 2𝑅3] [𝟏

𝟐 Mark]

Step 8:

β‡’ [1 0 40 1 00 0 1

] =

[

6

5

4

5βˆ’1

βˆ’1

5

1

50

2

5

1

5βˆ’

2

5]

𝐴 [applying 𝑅1 β†’ 𝑅1 βˆ’ 𝑅2] [𝟏

𝟐 Mark]

Step 9:

β‡’ [1 0 00 1 00 0 1

] =

[ βˆ’

2

5 0

3

5

βˆ’1

5

1

50

2

5

1

5βˆ’

2

5]

𝐴 [applying R1 β†’ 𝑅1 βˆ’ 4R3] [𝟏

𝟐 Mark]

Step 10:

∴ I = Aβˆ’1A

Hence,π΄βˆ’1 =

[ βˆ’

2

50

3

5

βˆ’1

5

1

50

2

5

1

5βˆ’

2

5]

[𝟏

𝟐 Mark]

16. [1 3 βˆ’2

βˆ’3 0 βˆ’52 5 0

] [5 Marks]

Solution:

Let, 𝐴 = [1 3 βˆ’2

βˆ’3 0 βˆ’52 5 0

],

Class-XII-Maths Matrices

71 Practice more on Matrices www.embibe.com

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 0 00 1 00 0 1

]

β‡’ [1 3 βˆ’2

βˆ’3 0 βˆ’52 5 0

] = [1 0 00 1 00 0 1

]𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 3 βˆ’20 9 βˆ’112 5 0

] = [1 0 03 1 00 0 1

]𝐴 [applying 𝑅2 β†’ 𝑅2 + 3𝑅1] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 3 βˆ’20 9 βˆ’110 βˆ’1 4

] = [1 0 03 1 0

βˆ’2 0 1]𝐴 [applying R3 β†’ 𝑅3-2R1] [

𝟏

𝟐 Mark]

Step 4:

β‡’ [1 3 βˆ’20 9 βˆ’110 0 25

] = [1 0 03 1 0

βˆ’15 1 9]𝐴 [applying R3 β†’ 9R3+R2] [

𝟏

𝟐 Mark]

Step 5:

β‡’ [1 3 βˆ’20 9 βˆ’110 0 1

] = [

1 0 03 1 0

βˆ’3

5

1

25

9

25

] 𝐴 [applying 𝑅3 β†’1

25𝑅3] [

𝟏

𝟐 Mark]

Step 6:

β‡’ [1 3 βˆ’20 9 00 0 1

] = [

1 0 0

βˆ’18

5

36

25

99

25

βˆ’3

5

1

25

9

25

] 𝐴 [applying 𝑅2 β†’ 𝑅2 + 11𝑅3] [𝟏

𝟐 Mark]

Step 7:

β‡’ [1 3 βˆ’20 1 00 0 1

] = [

1 0 0

βˆ’2

5

4

25

11

25

βˆ’3

5

1

25

9

25

]𝐴 [applying 𝑅2 β†’1

9𝑅2] [

𝟏

𝟐 Mark]

Step 8:

β‡’ [1 3 00 1 00 0 1

] =

[ βˆ’

1

5

2

25

18

25

βˆ’2

5

4

25

11

25

βˆ’3

5

1

25

9

25]

𝐴 [applying R1 β†’ 𝑅1+2R3] [𝟏

𝟐 Mark]

Step 9:

Class-XII-Maths Matrices

72 Practice more on Matrices www.embibe.com

β‡’ [1 0 00 1 00 0 1

] =

[ 1 βˆ’

2

5βˆ’

3

5

βˆ’2

5

4

25

11

25

βˆ’3

5

1

25

9

25 ]

𝐴 [applying R1 β†’ 𝑅1-3R2] [𝟏

𝟐 Mark]

Step 10:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 =

[ 1 βˆ’

2

5βˆ’

3

5

βˆ’2

5

4

25

11

25

βˆ’3

5

1

25

9

25 ]

[𝟏

𝟐 Mark]

17. [2 0 βˆ’15 1 00 1 3

] [5 Marks]

Solution:

Let 𝐴 = [2 0 βˆ’15 1 00 1 3

],

Step 1:

We know that, 𝐴 = 𝐼𝐴, where 𝐼 = [1 0 00 1 00 0 1

].

β‡’ [2 0 βˆ’15 1 00 1 3

] = [1 0 00 1 00 0 1

]𝐴 [𝟏

𝟐 Mark]

Step 2:

β‡’ [1 βˆ’1 βˆ’35 1 00 1 3

] = [3 βˆ’1 00 1 00 0 1

]𝐴 [applying R1 β†’ 3R1-R2] [𝟏

𝟐 Mark]

Step 3:

β‡’ [1 βˆ’1 βˆ’30 6 150 1 3

] = [3 βˆ’1 0

βˆ’15 6 00 0 1

]𝐴 [applyingR2 β†’ 𝑅2-5R1] [𝟏

𝟐 Mark]

Step 4:

Class-XII-Maths Matrices

73 Practice more on Matrices www.embibe.com

β‡’ [1 βˆ’1 βˆ’30 6 150 0 3

] = [3 βˆ’1 0

βˆ’15 6 015 βˆ’6 6

]𝐴 [applyingR3 β†’ 6R3-R2] [𝟏

𝟐 Mark]

Step 5:

β‡’ [1 βˆ’1 βˆ’30 6 150 0 1

] = [3 βˆ’1 0

βˆ’15 6 05 βˆ’2 2

]𝐴 [applying 𝑅3 β†’1

3𝑅3] [

𝟏

𝟐 Mark]

Step 6:

β‡’ [1 βˆ’1 βˆ’30 6 00 0 1

] = [3 βˆ’1 0

βˆ’90 36 βˆ’305 βˆ’2 2

]𝐴 [applying R2 β†’ 𝑅2-15R3] [𝟏

𝟐 Mark]

Step 7:

β‡’ [1 βˆ’1 βˆ’30 1 00 0 1

] = [3 βˆ’1 0

βˆ’15 6 βˆ’55 βˆ’2 2

]𝐴 [applying 𝑅2 β†’1

6𝑅2] [

𝟏

𝟐 Mark]

Step 8:

β‡’ [1 βˆ’1 00 1 00 0 1

] = [18 βˆ’7 6

βˆ’15 6 βˆ’55 βˆ’2 2

]𝐴 [applying R1 β†’ 𝑅1+3R3] [𝟏

𝟐 Mark]

Step 9:

β‡’ [1 0 00 1 00 0 1

] = [3 βˆ’1 1

βˆ’15 6 βˆ’55 βˆ’2 2

]𝐴 [applying R1 β†’ 𝑅1+R2] [𝟏

𝟐 Mark]

Step 10:

∴ I = Aβˆ’1A

Hence, π΄βˆ’1 = [3 βˆ’1 1

βˆ’15 6 βˆ’55 βˆ’2 2

] [𝟏

𝟐 Mark]

18. Matrices 𝐴 and 𝐡 will be inverse of each other only if [2 Marks]

(A) 𝐴𝐡 = 𝐡𝐴

(B) 𝐴𝐡 = 𝐡𝐴 = 0

(C) 𝐴𝐡 = 0, 𝐡𝐴 = 𝐼

Class-XII-Maths Matrices

74 Practice more on Matrices www.embibe.com

(D) 𝐴𝐡 = 𝐡𝐴 = 𝐼

Solution:

Given:

A and B will be inverse of each other.

π΄βˆ’1 = 𝐡 and π΅βˆ’1 = 𝐴

Step 1:

We know that,

π΄π΄βˆ’1 = 𝐼 [∡ Aβˆ’1 = B]

𝐴𝐡 = 𝐼

Step 2:

π΅π΅βˆ’1 = 𝐼 [∡ Bβˆ’1 = A]

𝐡𝐴 = 𝐼

So, 𝐴𝐡 = 𝐡𝐴 = 𝐼.

Hence, option (D) is correct.

Miscellaneous Exercise on Chapter 3

1. Let 𝐴 = [0 10 0

], show that (π‘ŽπΌ + 𝑏𝐴)𝑛 = π‘Žπ‘›πΌ + π‘›π‘Žπ‘›βˆ’1𝑏𝐴, where 𝐼 is the identity matrix

of order 2 and 𝑛 ∈ 𝑁. [5 marks]

Solution:

Given: 𝐴 = [0 10 0

]

To Prove:

(π‘ŽπΌ + 𝑏𝐴)𝑛 = π‘Žπ‘›πΌ + π‘›π‘Žπ‘›βˆ’1𝑏𝐴

Proof: The proof is by mathematical induction [𝟏

𝟐 Mark]

Step 1:

Consider, 𝑃(𝑛): (π‘Žπ‘™ + 𝑏𝐴)𝑛 = π‘Žπ‘›πΌ + π‘›π‘Žπ‘›βˆ’1𝑏𝐴 [𝟏

𝟐 Mark]

Class-XII-Maths Matrices

75 Practice more on Matrices www.embibe.com

Step 2:

∴ P(1): (π‘ŽπΌ + 𝑏𝐴)1 = π‘ŽπΌ + 𝑏𝐴

Hence, the result is true for 𝑛 = 1. [𝟏

𝟐 Mark]

Step 3:

Let the result be true for 𝑛 = π‘˜,

So, 𝑃(π‘˜): (π‘Žπ‘™ + 𝑏𝐴)π‘˜ = π‘Žπ‘˜πΌ + π‘›π‘Žπ‘˜βˆ’1𝑏𝐴 [𝟏

𝟐 Mark]

Step 4:

We must prove that it is true for 𝑛 = π‘˜ + 1 also.

(i.e.) 𝑃(π‘˜ + 1): (π‘Žπ‘™ + 𝑏𝐴)π‘˜+1 = π‘Žπ‘˜+1𝐼 + (π‘˜ + 1)π‘Žπ‘˜π‘π΄ [𝟏

𝟐 Mark]

Step 5:

By taking LHS, we get

LHS= (π‘ŽπΌ + 𝑏𝐴)π‘˜+1

= (π‘ŽπΌ + 𝑏𝐴)π‘˜(π‘ŽπΌ + 𝑏𝐴) [𝟏

𝟐 Mark]

Step 6:

= (π‘Žπ‘˜πΌ + π‘›π‘Žπ‘˜βˆ’1𝑏𝐴)(π‘ŽπΌ + 𝑏𝐴) [∡ (π‘ŽπΌ + 𝑏𝐴)π‘˜+1 = π‘Žπ‘˜πΌ + π‘›π‘Žπ‘˜βˆ’1𝑏𝐴]

[𝟏

𝟐 Mark]

Step 7:

= π‘Žπ‘˜+1𝐼2 + π‘Žπ‘˜πΌπ‘π΄ + π‘›π‘Žπ‘˜πΌπ‘π΄ + π‘›π‘Žπ‘˜βˆ’1𝑏2𝐴2 [𝟏

𝟐 Mark]

Step 8:

= π‘Žπ‘˜+1𝐼 + (π‘˜ + 1)π‘Žπ‘˜π‘π΄ [∡ 𝐴2 = 𝐴 β‹… 𝐴 = [0 10 0

] [0 10 0

] = [0 00 0

] = 0]

𝐿𝐻𝑆 = 𝑅𝐻𝑆

Therefore, the result is true for 𝑛 = π‘˜ + 1.

Hence, by the Principle of Mathematical Induction, (π‘ŽπΌ + 𝑏𝐴)𝑛 = π‘Žπ‘›πΌ + π‘›π‘Žπ‘›βˆ’1𝑏𝐴 is true for all-natural numbers 𝑛.

Class-XII-Maths Matrices

76 Practice more on Matrices www.embibe.com

2. If 𝐴 = [1 1 11 1 11 1 1

], prove that 𝐴𝑛 = [3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

], 𝑛 ∈ 𝑁. [5 Marks]

Solution:

Given:

𝐴 = [1 1 11 1 11 1 1

]

To Prove:

𝐴𝑛 = [3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

], 𝑛 ∈ 𝑁

Proof: The proof is by mathematical induction. [𝟏

𝟐 Mark]

Step 1:

Consider, 𝑝(𝑛): 𝐴𝑛 = [3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

], [𝟏

𝟐 Mark]

Step 2:

Therefore, 𝑃(1): 𝐴1 = [30 30 30

30 30 30

30 30 30

] = [1 1 11 1 11 1 1

] = 𝐴

Hence, the result is true for 𝑛 = 1. [𝟏

𝟐 Mark]

Step 3:

Let the result is true for 𝑛 = π‘˜,

So, 𝑃(π‘˜): π΄π‘˜ = [3π‘˜βˆ’1 3π‘˜βˆ’1 3π‘˜βˆ’1

3π‘˜βˆ’1 3π‘˜βˆ’1 3π‘˜βˆ’1

3π‘˜βˆ’1 3π‘˜βˆ’1 3π‘˜βˆ’1

] [𝟏

𝟐 Mark]

Step 4:

Now,

We have to prove that it is true for 𝑛 = π‘˜ + 1 also.

(i.e.) 𝑃(π‘˜ + 1) : π΄π‘˜+1 = [3π‘˜ 3π‘˜ 3π‘˜

3π‘˜ 3π‘˜ 3π‘˜

3π‘˜ 3π‘˜ 3π‘˜

] [𝟏

𝟐 Mark]

Step 5:

By taking LHS, we get

Class-XII-Maths Matrices

77 Practice more on Matrices www.embibe.com

= π΄π‘˜+1 = π΄π‘˜π΄

= [3π‘˜βˆ’1 3π‘˜βˆ’1 3π‘˜βˆ’1

3π‘˜βˆ’1 3π‘˜βˆ’1 3π‘˜βˆ’1

3π‘˜βˆ’1 3π‘˜βˆ’1 3π‘˜βˆ’1

] [1 1 11 1 11 1 1

] [𝟏

𝟐 Mark]

Step 6:

= [3π‘˜βˆ’1 + 3π‘˜βˆ’1 + 3π‘˜βˆ’1 3π‘˜βˆ’1 + 3π‘˜βˆ’1 + 3π‘˜βˆ’1 3π‘˜βˆ’1 + 3π‘˜βˆ’1 + 3π‘˜βˆ’1

3π‘˜βˆ’1 + 3π‘˜βˆ’1 + 3π‘˜βˆ’1 3π‘˜βˆ’1 + 3π‘˜βˆ’1 + 3π‘˜βˆ’1 3π‘˜βˆ’1 + 3π‘˜βˆ’1 + 3π‘˜βˆ’1

3π‘˜βˆ’1 + 3π‘˜βˆ’1 + 3π‘˜βˆ’1 3π‘˜βˆ’1 + 3π‘˜βˆ’1 + 3π‘˜βˆ’1 3π‘˜βˆ’1 + 3π‘˜βˆ’1 + 3π‘˜βˆ’1

] [𝟏

𝟐 Mark]

Step 7:

= [3. 3π‘˜βˆ’1 3. 3π‘˜βˆ’1 3. 3π‘˜βˆ’1

3. 3π‘˜βˆ’1 3. 3π‘˜βˆ’1 3. 3π‘˜βˆ’1

3. 3π‘˜βˆ’1 3. 3π‘˜βˆ’1 3. 3π‘˜βˆ’1

] [𝟏

𝟐 Mark]

Step 8:

= [3π‘˜ 3π‘˜ 3π‘˜

3π‘˜ 3π‘˜ 3π‘˜

3π‘˜ 3π‘˜ 3π‘˜

]

𝐿𝐻𝑆 = 𝑅𝐻𝑆

Therefore, the result is true for 𝑛 = π‘˜ + 1.

Hence, by the Principle of Mathematical Induction, 𝐴𝑛 = [3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

3π‘›βˆ’1 3π‘›βˆ’1 3π‘›βˆ’1

] is true

for all natural numbers 𝑛.

3. If 𝐴 = [3 βˆ’41 βˆ’1

], then prove that 𝐴𝑛 = [1 + 2𝑛 βˆ’4𝑛𝑛 1 βˆ’ 2𝑛

], where 𝑛 is any positive

integer. [5 Marks]

Solution:

Given:

𝐴 = [3 βˆ’41 βˆ’1

]

To Prove:

Class-XII-Maths Matrices

78 Practice more on Matrices www.embibe.com

𝐴𝑛 = [1 + 2𝑛 βˆ’4𝑛𝑛 1 βˆ’ 2𝑛

],

Proof: The proof is by mathematical induction. [𝟏

𝟐 Mark]

Step 1:

Consider, 𝑃(𝑛) : 𝐴𝑛 = [1 + 2𝑛 βˆ’4𝑛

𝑛 1 βˆ’ 2𝑛] [

𝟏

𝟐 Mark]

Step 2:

Therefore, 𝑃(1) : 𝐴1 = [1 + 2(1) βˆ’4(1)

1 1 βˆ’ 2(1)] = [

3 βˆ’41 βˆ’1

] = 𝐴

Hence, the result is true for 𝑛 = 1. [𝟏

𝟐 Mark]

Step 3:

Let the result is true for 𝑛 = π‘˜, therefore,

𝑃(π‘˜) : π΄π‘˜ = [1 + 2π‘˜ βˆ’4π‘˜

π‘˜ 1 βˆ’ 2π‘˜] [

𝟏

𝟐 Mark]

Step 4:

We have to prove that it is true for 𝑛 = π‘˜ + 1 also.

(i.e.) 𝑃(π‘˜ + 1) : π΄π‘˜+1 = [1 + 2(π‘˜ + 1) βˆ’4(π‘˜ + 1)

π‘˜ + 1 1 βˆ’ 2(π‘˜ + 1)] [

𝟏

𝟐 Mark]

Step 5:

By taking LHS, we get

LHS= π΄π‘˜+1 = π΄π‘˜π΄

= [1 + 2π‘˜ βˆ’4π‘˜

π‘˜ 1 βˆ’ 2π‘˜] [

3 βˆ’41 βˆ’1

] [𝟏

𝟐 Mark]

Step 6:

= [3 + 6π‘˜ βˆ’ 4π‘˜ βˆ’4 βˆ’ 8π‘˜ + 4π‘˜3π‘˜ + 1 βˆ’ 2π‘˜ βˆ’4π‘˜ βˆ’ 1 + 2π‘˜

] [𝟏

𝟐 Mark]

Step 7:

= [1 + (2π‘˜ + 2) βˆ’4π‘˜ βˆ’ 4

π‘˜ + 1 1 βˆ’ (2π‘˜ + 2)] [

𝟏

𝟐 Mark]

Step 8:

= [1 + 2(π‘˜ + 1) βˆ’4(π‘˜ + 1)

π‘˜ + 1 1 βˆ’ 2(π‘˜ + 1)] =RHS

𝐿𝐻𝑆 = 𝑅𝐻𝑆

Therefore, the result is true for 𝑛 = π‘˜ + 1.

Class-XII-Maths Matrices

79 Practice more on Matrices www.embibe.com

Hence, by the Principle of Mathematical Induction, 𝐴𝑛 = [1 + 2𝑛 βˆ’4𝑛

𝑛 1 βˆ’ 2𝑛] is true for

any positive integer numbers 𝑛.

4. If 𝐴 and 𝐡 are symmetric matrices, prove that 𝐴𝐡 βˆ’ 𝐡𝐴 is a skew symmetric matrix. [2 Marks]

Solution:

Given: 𝐴 and 𝐡 are symmetric matrices

∴ 𝐴′ = 𝐴 and 𝐡′ = 𝐡

Step 1:

Now,

(𝐴𝐡 βˆ’ 𝐡𝐴)β€² = (𝐴𝐡)β€² βˆ’ (𝐡𝐴)β€² [∡ (𝑋 ‐ π‘Œ)β€² = 𝑋′ βˆ’ π‘Œβ€²] [𝟏

𝟐 Mark]

Step 2:

= 𝐡′𝐴′ βˆ’ 𝐴′𝐡′ [∡ (𝐴𝐡)β€² = 𝐡′𝐴′] [𝟏

𝟐 Mark]

Step 3:

= 𝐡𝐴 βˆ’ 𝐴𝐡 [Given 𝐴′ = 𝐴,𝐡′ = 𝐡] [𝟏

𝟐 Mark]

Step 4:

= βˆ’(𝐴𝐡 βˆ’ 𝐡𝐴)

β‡’ (𝐴𝐡 βˆ’ 𝐡𝐴)β€² = βˆ’(𝐴𝐡 βˆ’ 𝐡𝐴), [𝟏

𝟐 Mark]

Therefore, 𝐴𝐡‐𝐡𝐴 is a skew symmetric matrix.

Hence proved.

5. Show that the matrix 𝐡′𝐴𝐡 is symmetric or skew symmetric according as 𝐴 is symmetric or skew symmetric. [πŸ’ Marks]

Class-XII-Maths Matrices

80 Practice more on Matrices www.embibe.com

Solution:

Step 1:

If 𝐴 is a symmetric matrix, then Aβ€² = 𝐴

Now, (𝐡′𝐴𝐡)β€² = (𝐴𝐡)β€²(𝐡′)β€² [∡ (𝐴𝐡)β€² = 𝐡′𝐴′] [𝟏

𝟐 Mark]

Step 2:

= (𝐴𝐡)′𝐡 [∡ (𝐡′)β€² = 𝐡] [𝟏

𝟐 Mark]

Step 3:

= 𝐡′𝐴′𝐡 [∡ (𝐴𝐡)β€² = 𝐡′𝐴′] [𝟏

𝟐 Mark]

Step 4:

= 𝐡′𝐴𝐡 [Given Aβ€² = 𝐴]

β‡’ (𝐡′𝐴𝐡)β€² = B′𝐴𝐡,

Therefore, the matrix 𝐡′𝐴𝐡 is also symmetric matrix. [𝟏

𝟐 Mark]

Step 5:

If 𝐴 is skew symmetric matrix, then 𝐴′ = βˆ’π΄

Here, (𝐡′𝐴𝐡)β€² = (𝐴𝐡)β€²(𝐡′)β€² [∡ (𝐴𝐡)β€² = 𝐡′𝐴′] [𝟏

𝟐 Mark]

Step 6:

= (𝐴𝐡)′𝐡 [∡ (𝐡′)β€² = B] [𝟏

𝟐 Mark]

Step 7:

= Bβ€²Aβ€²B [∡ (𝐴𝐡)β€² = 𝐡′𝐴′] [𝟏

𝟐 Mark]

Step 8:

= βˆ’π΅β€²π΄π΅ [∡ Given 𝐴′ = βˆ’π΄]

β‡’ (𝐡′𝐴𝐡)β€² = βˆ’B′𝐴B,

Hence, the matrix 𝐡′𝐴𝐡 is also a skew‐symmetric matrix. [𝟏

𝟐 Mark]

Class-XII-Maths Matrices

81 Practice more on Matrices www.embibe.com

6. Find the values of π‘₯, 𝑦, 𝑧 if the matrix 𝐴 = [0 2𝑦 𝑧π‘₯ 𝑦 βˆ’π‘§π‘₯ βˆ’π‘¦ 𝑧

] satisfy the equation 𝐴′𝐴 = 𝐼.

[4 Marks]

Solution:

Given:

𝐴 = [0 2𝑦 𝑧π‘₯ 𝑦 βˆ’π‘§π‘₯ βˆ’π‘¦ 𝑧

]

𝐴′𝐴 = 𝐼

Step 1:

β‡’ [0 2𝑦 𝑧π‘₯ 𝑦 βˆ’π‘§π‘₯ βˆ’π‘¦ 𝑧

] [0 π‘₯ π‘₯2𝑦 𝑦 βˆ’π‘¦π‘§ βˆ’π‘§ 𝑧

] = [1 0 00 1 00 0 1

] [𝟏

𝟐 Mark]

Step 2:

β‡’ [

0 + 4𝑦2 + 𝑧2 0 + 2𝑦2 βˆ’ 𝑧2 0 βˆ’ 2𝑦2 + 𝑧2

0 + 2𝑦2 βˆ’ 𝑧2 π‘₯2 + 𝑦2 + 𝑧2 π‘₯2 βˆ’ 𝑦2 βˆ’ 𝑧2

0 βˆ’ 2𝑦2 + 𝑧2 π‘₯2 βˆ’ 𝑦2 βˆ’ 𝑧2 π‘₯2 + 𝑦2 + 𝑧2

] = [1 0 00 1 00 0 1

]

Step 3:

If two matrices are equal, then their corresponding elements are also equal.

So, on comparing the corresponding elements, we get

4𝑦2 + 𝑧2 = 1

2𝑦2 βˆ’ 𝑧2 = 0

π‘₯2 + 𝑦2 + 𝑧2 = 1

Step 4:

On solving we get π‘₯ = Β±1

√2, 𝑦 = Β±

1

√6 and 𝑧 = Β±

1

√3 [1

𝟏

𝟐 Marks]

Hence, the values of π‘₯ = Β±1

√2, 𝑦 = Β±

1

√6 and 𝑧 = Β±

1

√3

Class-XII-Maths Matrices

82 Practice more on Matrices www.embibe.com

7. For what values of π‘₯: [1 2 1] [1 2 02 0 11 0 2

] [02π‘₯] = 𝑂? [3 Marks]

Solution:

Given that:[1 2 1] [1 2 02 0 11 0 2

] [02π‘₯] = 𝑂

Step 1:

β‡’ [1 + 4 + 1 2 + 0 + 0 0 + 2 + 2] [02π‘₯] = 𝑂

Step 2:

β‡’ [6 2 4] [02π‘₯] = 𝑂 [

𝟏

𝟐 Mark]

Step 3:

[6(0) + 2(2) + 4(π‘₯)] = 0

β‡’ [0 + 4 + 4π‘₯] = [0] [𝟏

𝟐 Mark]

Step 4:

β‡’ 4 + 4π‘₯ = 0 [𝟏

𝟐 Mark]

Step 5:

Upon solving the above obtained equation, we get:

β‡’ π‘₯ = βˆ’1

Hence, the required value of π‘₯ is βˆ’ 1 [𝟏

𝟐 Mark]

8. If 𝐴 = [3 1βˆ’1 2

], show that 𝐴2 βˆ’ 5𝐴 + 7𝐼 = 0. [3 Marks]

Solution:

Given:

Class-XII-Maths Matrices

83 Practice more on Matrices www.embibe.com

𝐴 = [3 1βˆ’1 2

]

Step 1:

By taking LHS= 𝐴2 βˆ’ 5𝐴 + 7𝐼

= [3 1βˆ’1 2

] [3 1βˆ’1 2

] βˆ’ 5 [3 1βˆ’1 2

] + 7 [1 00 1

]

Step 2:

= [9 βˆ’ 1 3 + 2

βˆ’3 βˆ’ 2 βˆ’1 + 4] βˆ’ [

15 5βˆ’5 10

] + [7 00 7

]

= [8 5

βˆ’5 3] βˆ’ [

15 5βˆ’5 10

] + [7 00 7

]

Step 3:

= [8 βˆ’ 15 + 7 5 βˆ’ 5 + 0βˆ’5 + 5 + 0 3 βˆ’ 10 + 7

]

= [0 00 0

] = 𝑂

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

𝐴2 βˆ’ 5𝐴 + 7𝐼 = 0

Hence it is proved.

9. Find π‘₯, if [π‘₯ βˆ’ 5 βˆ’ 1] [1 0 20 2 12 0 3

] [π‘₯41] = 0 [3 marks]

Solution:

Given: [π‘₯ βˆ’ 5 βˆ’ 1] [1 0 20 2 12 0 3

] [π‘₯41] = 0

Step 1:

[π‘₯ βˆ’ 5 βˆ’ 1] [1 0 20 2 12 0 3

] [π‘₯41] = 0

β‡’ [π‘₯ + 0 βˆ’ 2 0 βˆ’ 10 + 0 2π‘₯ βˆ’ 5 βˆ’ 3] [π‘₯41] = 𝑂

Class-XII-Maths Matrices

84 Practice more on Matrices www.embibe.com

β‡’ [π‘₯ βˆ’ 2 βˆ’ 10 2π‘₯ βˆ’ 8] [π‘₯41] = 𝑂

Step 2:

β‡’ [π‘₯2 βˆ’ 2π‘₯ βˆ’ 40 + 2π‘₯ βˆ’ 8] = [0]

Step 3:

β‡’ π‘₯2 = 48

β‡’ π‘₯ = Β±4√3

Hence, the required value of π‘₯ is Β± 4√3

10. A manufacturer produces three products π‘₯, 𝑦, 𝑧 which he sells in two markets. Annual sales are indicated below:

Market Products

I 10,000 2,000 18,000

II 6,000 20,000 8,000

(a) If unit sale prices of π‘₯, 𝑦 and 𝑧 are β‚Ή 2.50, β‚Ή 1.50 and β‚Ή 1.00, respectively, find the total revenue in each market with the help of matrix algebra. [3 Marks]

(b) If the unit costs of the above three commodities are β‚Ή 2.00, β‚Ή 1.00 and 50 paise respectively. Find the gross profit. [3 Marks]

Solution:

(a) Step 1:

If unit sale prices of π‘₯, 𝑦 and 𝑧 are β‚Ή2.50, β‚Ή1.50 and β‚Ή1.00, then

Products Selling price

Market I

Market II

π‘₯ 𝑦 𝑧

[10000 2000 180006000 20000 8000

]

[β‚Ή2.50β‚Ή1.50β‚Ή1.00

]

Step 2:

Class-XII-Maths Matrices

85 Practice more on Matrices www.embibe.com

Total revenue of each market = Total product Γ— Unit selling price

= [10000 2000 180006000 20000 8000

] [β‚Ή2.50β‚Ή1.50β‚Ή1.00

]

Step 3:

= [β‚Ή25000 + β‚Ή3000 + β‚Ή18000β‚Ή15000 + β‚Ή30000 + β‚Ή8000

] = [β‚Ή46000β‚Ή53000

]

Thus, the revenue of market I is β‚Ή46,000 and that of the market II is β‚Ή53,000.

(b) Step 1:

If the unit costs of the three commodities are β‚Ή2.00, β‚Ή1.00 and 50 paise, then

Products Selling price

Market I

Market II

π‘₯ 𝑦 𝑧

[10000 2000 180006000 20000 8000

]

[β‚Ή2.50β‚Ή1.50β‚Ή0.00

]

Step 2:

Gross profit from each market = Total product Γ— Unit selling price

= [10000 2000 180006000 20000 8000

] [β‚Ή2.50β‚Ή1.50β‚Ή1.00

]

= [β‚Ή20000 + β‚Ή2000 + β‚Ή9000β‚Ή12000 + β‚Ή20000 + β‚Ή4000

] = [β‚Ή31000β‚Ή36000

]

Step 3:

Hence, the total revenue from market I is β‚Ή46,000 and that of the market II is β‚Ή31,000.

Therefore, the gross profit of market I=Revenue – Cost

= β‚Ή46000 βˆ’ β‚Ή31000 = β‚Ή15000

Therefore, the gross profit of market II = β‚Ή53000 βˆ’ β‚Ή36000 = β‚Ή17000

Class-XII-Maths Matrices

86 Practice more on Matrices www.embibe.com

Hence, the total gross profit from market I is β‚Ή15,000 and that of the market II is β‚Ή17,000.

11. ind the matrix 𝑋 so that 𝑋 [1 2 34 5 6

] = [βˆ’7 βˆ’8 βˆ’92 4 6

] [5 Marks]

Solution:

Given:

𝑋 [1 2 34 5 6

]2Γ—3

= [βˆ’7 βˆ’8 βˆ’92 4 6

]2Γ—3

Step 1:

Let, 𝑋 = [π‘Ž 𝑏𝑐 𝑑

] [𝟏

𝟐 Mark]

Step 2:

Therefore, 𝑋 [1 2 34 5 6

] = [βˆ’7 βˆ’8 βˆ’92 4 6

]

β‡’ [π‘Ž 𝑏𝑐 𝑑

] [1 2 34 5 6

] = [βˆ’7 βˆ’8 βˆ’92 4 6

] [𝟏

𝟐 Mark]

Step 3:

β‡’ [π‘Ž + 4𝑏 2π‘Ž + 5𝑏 3π‘Ž + 6𝑏𝑐 + 4𝑑 2𝑐 + 5𝑑 3𝑐 + 6𝑑

] = [βˆ’7 βˆ’8 βˆ’92 4 6

]

Step 4:

If two matrices are equal, then their corresponding elements are also equal.

So, on comparing the corresponding elements, we get

π‘Ž + 4𝑏 = βˆ’7 [𝟏

𝟐 Mark]

2π‘Ž + 5𝑏 = βˆ’8 [𝟏

𝟐 Mark]

𝑐 + 4𝑑 = 2 [𝟏

𝟐 Mark]

2𝑐 + 5𝑑 = 4 [𝟏

𝟐 Mark]

Step 5:

Class-XII-Maths Matrices

87 Practice more on Matrices www.embibe.com

On solving, we get π‘Ž = 1, 𝑏 = βˆ’2, 𝑐 = 2 and 𝑑 = 0

Hence, 𝑋 = [1 βˆ’22 0

]

12. 𝐴 and 𝐡 are square matrices of the same order such that 𝐴𝐡 = 𝐡𝐴, then prove by induction that 𝐴𝐡𝑛 = 𝐡𝑛𝐴. Further, prove that (𝐴𝐡)𝑛 = 𝐴𝑛𝐡𝑛 for all 𝑛 ∈ 𝑁. Choose the correct answer in the following questions: [5 marks]

Solution:

Given:

𝐴𝐡 = 𝐡𝐴

To prove:

𝐴𝐡𝑛 = 𝐡𝑛𝐴 and

(𝐴𝐡)𝑛 = 𝐴𝑛𝐡𝑛 for all 𝑛 ∈ 𝑁

Proof: The proof is by mathematical induction.

Step 1:

Consider, 𝑃(𝑛): 𝐴𝐡𝑛 = 𝐡𝑛𝐴, [𝟏

𝟐 Mark]

Step 2:

Therefore, 𝑃(1): 𝐴𝐡 = 𝐡𝐴

Hence the result is true for 𝑛 = 1. [𝟏

𝟐 Mark]

Step 3:

Let it be true for 𝑛 = π‘˜,

so, 𝑃(π‘˜): π΄π΅π‘˜ = π΅π‘˜π΄ [𝟏

𝟐 Mark]

Step 4:

Now we have to prove that it is true for 𝑛 = π‘˜ + 1 also.

(i.e.) 𝑃(π‘˜ + 1): π΄π΅π‘˜+1 = Bk+1𝐴 [𝟏

𝟐 Mark]

Step 5:

By taking LHS, we get

Class-XII-Maths Matrices

88 Practice more on Matrices www.embibe.com

LHS= π΄π΅π‘˜+1

= π΄π΅π‘˜π΅

= π΅π‘˜π΄π΅ [∡ π΄π΅π‘˜ = π΅π‘˜π΄]

= π΅π‘˜π΅π΄ [∡ 𝐴𝐡 = 𝐡𝐴]

= π΅π‘˜+1𝐴 =RHS

Hence, the result is true for 𝑛 = π‘˜ + 1, [𝟏

𝟐 Mark]

Therefore, by the Principle of Mathematical Induction 𝐴𝐡𝑛 = 𝐡𝑛𝐴 is true for all natural numbers 𝑛.

Step 6:

If (𝐴𝐡)𝑛 = 𝐴𝑛𝐡𝑛

Now,

Consider 𝑃(𝑛): (𝐴𝐡)n = 𝐴𝑛𝐡𝑛 therefore, 𝑃(1): (𝐴𝐡)1 = 𝐴1𝐡1

Hence the result is true for 𝑛 = 1. [𝟏

𝟐 Mark]

Step 7:

Let it is true for 𝑛 = π‘˜,

so, 𝑃(π‘˜): (𝐴𝐡)π‘˜ = π΄π‘˜π΅π‘˜ [𝟏

𝟐 Mark]

Step 8:

Now we have to prove that it is true for 𝑛 = π‘˜ + 1 also.

(i.e.) 𝑃(π‘˜ + 1): (𝐴𝐡)π‘˜+1 = π΄π‘˜+1π΅π‘˜+1 [𝟏

𝟐 Mark]

Step 9:

By taking LHS, we get

LHS = (𝐴𝐡)π‘˜+1

= (𝐴𝐡)k𝐴𝐡

= π΄π‘˜π΅π‘˜π΄π΅ [∡ (𝐴𝐡)k = π΄π‘˜π΅π‘˜] [𝟏

𝟐 Mark]

Step 10:

= π΄π‘˜π΄π΅π‘˜π΅ [∡ 𝐴𝐡 = 𝐡𝐴]

= π΄π‘˜+1π΅π‘˜+1 =RHS

Hence, the result is true for 𝑛 = π‘˜ + 1.

Class-XII-Maths Matrices

89 Practice more on Matrices www.embibe.com

Therefore, by the Principle of Mathematical Induction (𝐴𝐡)𝑛 = 𝐴𝑛𝐡𝑛 is true for all

natural numbers 𝑛. [𝟏

𝟐 Mark]

13. If 𝐴 = [𝛼 𝛽𝛾 βˆ’π›Ό

] is such that 𝐴2 = 𝐼, then [2 Marks]

(A) 1 + 𝛼2 + 𝛽𝛾 = 0

(B) 1 βˆ’ 𝛼2 + 𝛽𝛾 = 0

(C) 1 βˆ’ 𝛼2 βˆ’ 𝛽𝛾 = 0

(D) 1 + 𝛼2 βˆ’ 𝛽𝛾 = 0

Solution:

Given that: 𝐴2 = 𝐼

Step 1:

β‡’ [𝛼 𝛽𝛾 βˆ’π›Ό

] [𝛼 𝛽𝛾 βˆ’π›Ό

] = [1 00 1

]

β‡’ [𝛼2 + 𝛽𝛾 𝛼𝛽 βˆ’ 𝛽𝛼

𝛼𝛾 βˆ’ 𝛼𝛾 𝛽𝛾 + 𝛼2 ] = [1 00 1

]

Step 2:

If two matrices are equal, then their corresponding elements are also equal.

So, on comparing the corresponding elements, we get

𝛼2 + 𝛽𝛾 = 1

1 βˆ’ 𝛼2 βˆ’ 𝛽𝛾 = 0

Hence the option (C) is correct.

14. If the matrix 𝐴 is both symmetric and skew symmetric, then [2 Marks]

(A) 𝐴 is a diagonal matrix

Class-XII-Maths Matrices

90 Practice more on Matrices www.embibe.com

(B) 𝐴 is a zero matrix

(C) 𝐴 is a square matrix

(D) None of these

Solution:

Given:

Matrix 𝐴 is both symmetric and skew symmetric

Step 1:

We know that only a zero matrix is always both symmetric and skew symmetric.

Proof:

∴ 𝐴′ = 𝐴 and 𝐴′ = βˆ’π΄

Step 2:

On comparing both the equations, we get

β‡’ 𝐴 = βˆ’π΄

𝐴 + 𝐴 = 𝑂

2𝐴 = 𝑂

𝐴 = 𝑂

Hence, the option (B) is correct.

15. If 𝐴 is square matrix such that 𝐴2 = 𝐴, then (𝐼 + 𝐴)3 βˆ’ 7 𝐴 is equal to [2 Marks]

(A) 𝐴

(B) 𝐼 βˆ’ 𝐴

(C) 𝐼

(D) 3𝐴

Solution:

Given:

Class-XII-Maths Matrices

91 Practice more on Matrices www.embibe.com

𝐴2 = 𝐴

Step 1:

(𝐼 + 𝐴)3 βˆ’ 7𝐴

= 𝐼3 + 𝐴3 + 3𝐼2𝐴 + 3𝐼𝐴2 βˆ’ 7𝐴 [𝟏

𝟐 Mark]

Step 2:

= βˆ’πΌ + 𝐴2𝐴 + 31𝐴 + 31𝐴2 βˆ’ 7𝐴 [∡ 𝐼3 = 𝐼2 = 𝐼] [𝟏

𝟐 Mark]

Step 3:

= 𝐼 + 𝐴𝐴 + 3𝐴 + 3𝐼𝐴 βˆ’ 7𝐴 [∡ 𝐴2 = 𝐴] [𝟏

𝟐 Mark]

Step 4:

= 𝐼 + 𝐴 + 3𝐴 + 3𝐴 βˆ’ 7𝐴

= 𝐼 + 7𝐴 βˆ’ 7𝐴

= 𝐼 [∡ 𝐼𝐴 = 𝐴] [𝟏

𝟐 Mark]

Hence, the option (C) is correct