CAU2011-PPT-TreyWalters JimWilcox.pptx

34
Transient Hydraulic Analysis for CAESAR II Evaluation

Transcript of CAU2011-PPT-TreyWalters JimWilcox.pptx

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 1/34

Transient Hydraulic Analysis for 

CAESAR II Evaluation

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 2/34

What is Waterhammer?

Waterhammer is… 

sometimes called Hydraulic Transients

a transient phenomenon that occurs in a liquid piping

system when some event causes a departure fromsteady state

 A similar phenomenon happens in vapor lines

Usually the lower density means it is of lesser importance

the process the piping system experiences as itadjusts to the new conditions

a single or series of coupled pressure/velocity waves

that travel at close to the speed of sound through the

piping system

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 3/34

Waterhammer Causes

Waterhammer can be caused by many events

including

Valve closure or opening (in full or in part)

Pump speed change Trip or startup

Relief valve cracking open

Rapid tank pressurization

Periodic pressure or flow conditions

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 4/34

Waterhammer and Force

Imbalances

Waterhammer causes transient force

imbalances in piping systems

This is a result of fast moving pressure waves which

can create temporary force imbalances Elbow pairs are especially susceptible to force

imbalances due to the change in flow direction

Structural supports need to be able to handle

these forces

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 5/34

Waterhammer Video

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 6/34

Waterhammer Software

Waterhammer is a sufficiently complicated

process such that modeling software is usually

required

 AFT Impulse™ is a leading waterhammer software

 AFT Impulse has been commercially available since

1996

It has been used to model thousands of piping system

transients

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 7/34

Waterhammer Software (2)

Typically the issue of primary interest to the

engineering analyst is understanding transient

pressure extremes

This allows selection of pipe strength and design for equipment protection and general safety

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 8/34

Calculating Force Imbalances

Waterhammer software like AFT Impulse

calculates transient pressures and flows

This information can be used to predict transient

force imbalances

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 9/34

Traditional Force Calculation

Traditional force calculation uses only pressure

differences in the force imbalance

With hydropressure effects on pressure subtracted

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 10/34

Traditional Force Calculation

(2)

This works best when flow fully stops quickly,

with no in-line components

dP = − ρ c V

Where “c” is wavespeed also known as celerityOften this is referred to as “a” which is synonymous 

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 11/34

Traditional Force Calculation

(3)

Complexities of real systems quickly render 

hand-calculations useless.

How do pressures upstream & downstream of inline

components change and add or subtract? What if a valve only partially closes?

What about other forms of energy transmission?

Friction losses

Momentum changes Area changes

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 12/34

Traditional Force Calculation

(4)

Complexities of real systems quickly render 

hand-calculations useless.

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 13/34

Traditional Force Calculation:

Example

Consider the 1080 ft (330 m) system below

where the valve at J5 closes 90% over 2

seconds

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 14/34

Traditional Force Calculation:

Results

For the initial and final steady-state conditions

the force imbalance should be zero

Ignoring friction leads to non-zero steady-state results

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 15/34

Including Friction

Including all forces including fitting pressure

losses, friction & momentum improves force

calculations

 A = πD2/4

Force = PB x AForce = P A x A

Friction & pressure loss forces Other forces + PAA + PBA = 0

Momentum = m A ΔVX,A Momentum = mB ΔVX,B

ΣFfriction + PAA + PBA =

mAΔVX,A - mBΔVX,B

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 16/34

Including Friction and

Momentum: Results

Steady-state forces initially and finally are zero

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 17/34

Comparing Methods

Traditional

Friction and

momentum included

Max Min

13.5 (60.2) 1.3 (5.7)

0.2 (1.0) -9.6 (-42.8)

(k-lbf/kN) (k-lbf/kN)

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 18/34

Comparing Methods at First

Elbow Pair 

Traditional

Friction and

momentum included

Max Min

2.7 (11.9) 0.5 (2.4)

0.1 (0.3) -1.1 (-4.8)

(k-lbf/kN) (k-lbf/kN)

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 19/34

Traditional Method

Weaknesses

The use of traditional force imbalance

calculation methods can be highly inaccurate

Don’t know actual load magnitudes 

Directionality of max loads can also be incorrect Don’t know timing of the loads 

Ignores some loads

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 20/34

Limitations

Transient force imbalances are sensitive to the

difference in pressures at a given time

This means it is sensitive to the speed of the pressure

wave (wavespeed or celerity) When waterhammer pressures drop to vapor 

pressure then transient vaporization can occur 

This changes the wavespeed

This is difficult to model using modern methods

and hence force generation under cavitating

conditions is not reliable

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 21/34

AFT Impulse and CAESAR II

 AFT Impulse can output force imbalance data for 

direct import into CAESAR II

 AFT Impulse does not have 3-D coordinates and

user must match up AFT Impulse forces withCAESAR II model

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 22/34

AFT Impulse and CAESAR II (2)

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 23/34

3 Ways to Analyze this with

CAESAR II

Static Equivalent

Time-History Analysis

Spectral Analysis (CAESAR II –  AFT Impulse

method assumes this)

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 24/34

AFT Impulse Import

Tools > External Interfaces > AFT Impulse

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 25/34

AFT Impulse Import (2)

Tools > External Interfaces > AFT Impulse

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 26/34

AFT Impulse Import (3)

Tools > External Interfaces > AFT Impulse

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 27/34

AFT Impulse Import (4)

Tools > External Interfaces > AFT Impulse

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 28/34

AFT Impulse Import (5)

Open Dynamic Input, Input is almost complete

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 29/34

AFT Impulse Import (6)

Force Sets

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 30/34

AFT Impulse Import (7)

Spectrum Load Cases

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 31/34

AFT Impulse Import (8)

Static/Dynamic Combinations for Stress

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 32/34

AFT Impulse Import (9)

Review/Set Control Parameters & Run

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 33/34

3 Ways to Analyze this with

CAESAR II –  Here’s how… 

Static Equivalent

Time-History Analysis

Spectral Analysis (CAESAR II –  AFT Impulse

method assumes this)

7/28/2019 CAU2011-PPT-TreyWalters JimWilcox.pptx

http://slidepdf.com/reader/full/cau2011-ppt-treywalters-jimwilcoxpptx 34/34

Conclusions

It is important to model waterhammer events for 

proper system design and operation

 AFT Impulse can generate transient forces

which can be easily imported into CAESAR II Traditional force estimation techniques which

rely on pressure differences can be highly

inaccurate

Force imbalances in systems with transient

cavitation cannot be reliably predicted because

wavespeeds change