Cardiac pacemakers part ii

34
Cardiac Pace-Makers Pacemaker Malfunctions, Part II Salah Atta, MD Professor of Cardiology, Cardiology Department

Transcript of Cardiac pacemakers part ii

Page 1: Cardiac pacemakers part ii

Cardiac Pace-Makers 

Pacemaker Malfunctions, Part II

Salah Atta, MDProfessor of Cardiology,Cardiology Department

Page 2: Cardiac pacemakers part ii

Outlines• Understanding Pacemaker Cardiac Cycle.

• Pacemaker follow Up.

• Programmable parameters

• PM Rhythm strip interpretation.

• Pacemaker malfunctions and Pseudomalfunctions.

Page 3: Cardiac pacemakers part ii

Sequence of events in a PPM cardiac cycle

• Each cycle begins with Sensing• For Each sensing, the PM responds by two actions: pacing or inhibition is the 1st and starting a new timing interval is the 2nd.

• Each Interval ends by re-sensing in the same or the other chamber according to the type of PPM and so-on.

Page 4: Cardiac pacemakers part ii

Sequence of events in one cycle in a single chamber PM (VVI)

• Sensing: • If there is no detected intrinsic activity:  pacing will be delivered to RV, produce LBBB morphology QRS.

•  then a period equal to the programmed lower heart rate (pacing interval) is waited then resensing.

• If there is intrinsic activity detected, no pacing is delivered and the system waits for an interval called the  escape interval and re-sense and so on.

Page 5: Cardiac pacemakers part ii

Sequence of events in one cycle in a dual chamber PM

• Sensing in the atrium>> no sensed event >> atrial pacing and start a paced AV delay interval and an atrial pacing interval (Lower Rate).

• If an atrial event is sensed >> no atrial pacing and start a sensed AV delay interval and an atrial escape interval.

• At end of AV delay, sensing in the ventricle occurs>> no sensed ventricular event >> pacing in the ventricle >> start a V pacing interval according to programmed lower rate and a Post ventricular atrial refractory period (PVARP), after it atrial sensing starts again.

• On the contrary, if a sensed ventricular event >> no V pacing and start a new V escape interval (Lower Rate), at its end V sensing occurs again and a PVARP.

Sooo • Maximum Rate cycle length = A-V delay + PVARP.

Page 6: Cardiac pacemakers part ii

DDD pacing (atrial tracking)

Page 7: Cardiac pacemakers part ii

DDD Pacemaker

A DDD pacemaker puts in the part of the beat that’s missing in order 

to maintain AV synchrony

Page 8: Cardiac pacemakers part ii

Pacemaker Follow-up

• Aim– Verify appropriate pacemaker operation– Optimize pacemaker functions

– Respond to pt’s requirements

– To detect ERI or indications of lead repositioning.

• Interval– Immediate and 7 days Post.op.– Postoperative 1,3, 6,then every 6-12 month till near the elective replacement or the battery voltage is ↓ 2.7 volt, then more frequent follow ups.

Page 9: Cardiac pacemakers part ii
Page 10: Cardiac pacemakers part ii

Interrogate

Measure Impedance

Check Diagnostics

Measure Threshold

Follow-up Check

Check Sensing

Page 11: Cardiac pacemakers part ii

Electrical Characteristics

• Battery voltage/Current drain• Longevity.• Lead Impedance(s)• Lead pacing threshold(s)• Sensing threshold(s)• Magnet effect.• Programmable values.

Page 12: Cardiac pacemakers part ii

• Device longevity estimate appears on the initial interrogation.

• Based on remaining battery voltage / battery impedance and percent pacing

Pacemaker DiagnosticsDevice Longevity Estimate

Page 13: Cardiac pacemakers part ii

Lead Impedance Measurement

• Impedance measurementImpedance measurement : :

• Lead Maturity occurs in about 8 weeks.300 - 1000 ohms.... calculated / displayed300 - 1000 ohms.... calculated / displayed• Low Lead Impedance

– Partial lead/insulation break – Fluid/blood in header

• High Lead Impedance– Open Circuit e.g. lead not connected to device (Set

Screw)– Lead fracture

Page 14: Cardiac pacemakers part ii

An Insulation Break Around the Lead Wire Can Cause Impedance Values to

Fall• Insulation breaks expose

the wire to body fluids which have a low resistance and cause impedance values to fall

• Current drains through the insulation break into the body which depletes the battery

• An insulation break can cause impedance values to fall below 300 ohms

Page 15: Cardiac pacemakers part ii

A Wire Fracture Within the Insulating Sheath May Cause Impedance Values

to Rise• Impedance values across a break in the wire will increase

• Current flow may be too low to be effective

• Impedance values may exceed 3,000 ohms

Page 16: Cardiac pacemakers part ii

Sensing and capture tests

• Check sensed P wave…

• Check sensed R wave…

• Pacing threshold test using either amplitude or pulse width

Page 17: Cardiac pacemakers part ii

Setting sensitivity is like creating a wall that blocks out signals. You build thewall to a certain height defined in mV. If you build a wall that is 5 mV tall, the only

signals that the device can “see” are those that are taller than 5 mV.

Sensitivity is adjusted at least one half to one third of the sensed threshold: it is an order to the PM to get inhibited by any sensed electrogram above the programmed value e.g 1.5 mv and to ignore it if it is less than this.

Page 18: Cardiac pacemakers part ii

Ventricular Pacing Threshold TestSensing and Capture testing should be performed to insure adequate safety margins are programmed

Page 19: Cardiac pacemakers part ii

19

Pacing threshold: the least amount of current (mAmps) needed to evoke capture and get an impulse (<1 mAmp)

Accordingly the pacing output by the PM is adjusted at at least double this value (too high threshold means too much electericity and rapid Battery depletion.

Page 20: Cardiac pacemakers part ii

20

Programmabilityand programmable values

Capacity to noninvasively alter one of several aspects of the function of a pacer

Desirable since pacer requirements for a person change over time

Page 21: Cardiac pacemakers part ii

Programmable Parameters in VVI

• Minimum or lower heart rate (Pacing interval) (Maximum length of time the Pacemaker will wait for intrinsic activity).

• Pacing output, lead polarity.• Sensitivity• Rate responsiveness if VVIR• Hysteresis (a longer escape interval than the

pacing interval to allow intrinsic activity even if a bit slower) so: Hysteresis= escape interval- pacing interval.

Page 22: Cardiac pacemakers part ii

VVI with Hysteresis

Page 23: Cardiac pacemakers part ii

Programmable Parameters in DDD

• Mode of pacing.• Minimum or lower heart rate (Pacing interval).• Maximum heart rate.• Pacing threshold. • Sensitivity.• Rate responsiveness if DDDR.• A-V delay.• Refractory periods to avoid conflicts.• Mode switch.

Page 24: Cardiac pacemakers part ii

Refractory Periods• Refractory period =

a programmable interval occurring after the delivery of a pacing impulse or after a sensed intrinsic complex, during which the pacemaker can sense signals but chooses to ignore them

Page 25: Cardiac pacemakers part ii

Atrial Refractory Period

AV delay PVARP

TARP

Page 26: Cardiac pacemakers part ii

AVD PVARP

VRP

Atrial Channel

Ventricular Channel

DDD Mode: Refractory Periods

Page 27: Cardiac pacemakers part ii

Dual Chamber Pacing behaviour

• Maximum Rate / Maximum Tracking Rate

The fastest rate that the Ventricular channel can track intrinsic P-waves

Page 28: Cardiac pacemakers part ii

Pacemaker Wenckebach

Page 29: Cardiac pacemakers part ii

Beyond Maximum Heart Rate

Page 30: Cardiac pacemakers part ii

Mode Switchingfrom DDD to DDI or VVI

Page 31: Cardiac pacemakers part ii

Permanent Pacemakers Follow Up

Rhythm Strip Interpretation

• Look for presence of an underlying rhythm

• Look closely for the presence of a pacer spike

• Look for the presence of P waves (intrinsic or paced) and their rate and relationship to the QRS complexes

• Examine QRS complexes to determine if they are paced or intrinsic

Page 32: Cardiac pacemakers part ii

Permanent Pacemakers

Rhythm Strip Interpretation• If ventricular pacing, note whether each

beat is preceded by a P wave (paced or intrinsic) and whether the AV(PR) interval is constant before the ventricular paced beats

• Observe for fusion beats

• Are there pauses or spikes not followed by P or QRS.

Page 33: Cardiac pacemakers part ii

Permanent Pacemakers

Rhythm Strip Interpretation• Unacceptable f indings denoting Malfunction:

-Any spike not followed by P or QRS.

-Any pause longer than Minimal pacing

interval (considering Hysteresis).

-Absent pacing if with slower heart rate than

the programmed or

-Spikes at unexpected sites.

Page 34: Cardiac pacemakers part ii

Thank you