Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ......

29
i Hal Hinkle Myles McGinley Travis Hargett Skye Dasche Carbon Farming with Timber Bamboo: A Superior Sequestration System Compared to Wood Why the time is now for the world to take advantage of nature’s fastest growing structural fiber

Transcript of Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ......

Page 1: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

i

HalHinkleMylesMcGinleyTravisHargettSkyeDasche

CarbonFarmingwithTimberBamboo:ASuperiorSequestrationSystemComparedtoWood

Whythetimeisnowfortheworldtotakeadvantageofnature’sfastestgrowingstructuralfiber

Page 2: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

i

ExecutiveSummary

Ourearthisontracktocrashthroughthe1.5°Cglobalwarmingbudgetsetfor2030andwilllikelyevenexceedthe2°Cworst-casebudget.Hugenegativechangeswillresultforhumanhealth,livelihoods,foodsecurity,watersupply,physicalsecurity,andglobaleconomicgrowth(IPCC2018).EverypathwaytheIPCChasproposedtofightclimatechangerequiresimmediateandsignificantcarbondioxideremoval(CDR)fromtheatmosphere,i.e.sequestration.Yetnearlynothingisbeingpursued,becausenearlynothingworksthatissensible,otherthanpossiblywood-basedforestsequestrationthroughafforestationandreforestation.Intheorythesecanwork,butonlywhentheharvestisturnedintolong-livedharvestedwoodproducts.Buteventhisistooslow,waytooslow.Webelievethattimberbamboo’sfastgrowthandshortannualharvestcyclecanspeedupforestsequestrationandturntimberbambooplantationsintoperpetualcarbonfarmsthatproduceanewstrongergradeofstructuralfiber.Andweneedboththecarbonremovalandthestructuralnow!Thevastmajorityofbamboo’scarboncaptureoccursinthefirst15years,decadesearlierthantrees.Timeisoftheessence;however,thetimingofmitigationeffortsisgenerallyignoredinpolicyandinpractice.

Toconfirmorrefuteourbeliefthattimberbambooisasuperiorsequestrationoptioncomparedtowood,webuiltadynamicmodelofbamboogrowth.Wethenconstructedamethodicaldecisionframeworktocomparetheannualcarbonflowsoftimberbambooandwood,includingrobustsensitivityanalysis,timevaluingthecarbonflowsandacomprehensivecomparisonmetriccalledtheCarbonBenefitMultiple(CBM).ThefinalCBMsshowedthattimberbamboowithregularharvestsofdurableproductssequestersbetween4.5and6timesthecarbonthatwooddoes.

Thetimeisnowfortheworldtotakeadvantageofnature’sfastestgrowingstructuralfiber.

Page 3: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

i

Table of Contents

1. AddressingClimateChangeThroughCarbonDioxideRemoval...............................................1

2. CarbonCapturethroughWoodandBambooAfforestation....................................................4

WoodAfforestation..........................................................................................................................4

BambooAfforestation/Reforestation..............................................................................................5

ClimateChangeMitigation(Sequestration)asanA/RDriver..........................................................6

3. ProjectingCarbonFlowsfromWoodandTimberBambooA/R...............................................7

Modelingforest/plantation-basedcarbonflows(CF1)....................................................................7

ModelingHarvestOccurrenceandHWPProduction(CF2)..............................................................8

ModelingHWPFinalDisposition,LandfillandMethane(CF3).......................................................10

CarbonFlowProjections(ExpectedCase)forEachSpecies-Location............................................12

4. RationalDecisionMakingBetweenWoodandTimberBambooAR–theCarbonBenefit

Multiple.................................................................................................................................13

AlternativeCases............................................................................................................................14

1.Expected,LowandHighCaseProjections.............................................................................14

2.TimeValuingCarbonFlows....................................................................................................15

3.WeightedScenarioAnalysis...................................................................................................16

4.TheBottomLine:TheCarbonBenefitMultiple.....................................................................16

Implications....................................................................................................................................18

5. ProductizingTimberBamboointoDurableCarbonStoringProducts....................................19

BamCore’sPrimeWallSystem.......................................................................................................19

BeyondWoodFraming-Concrete&Steel.......................................................................................20

FramingwithConcrete...................................................................................................................20

FramingwithSteel..........................................................................................................................21

6. AboutBamCore......................................................................................................................23

7. References.............................................................................................................................24

8. Appendix:InternationalForestationCommitments..............................................................26

Page 4: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

1

1. AddressingClimateChangeThroughCarbonDioxideRemovalMankindlargelyacceptstherealityofglobalclimatechange,butthestarkerrealityisthatcollectivelyweshowlittlelikelihoodofstayingwithinthe1.5oCoreventhe2oCcarbonbudgetsadoptedintheParisclimatetreatyin20151(IPCC,2018).Werecognizethatprivatesectortechnologicalinnovationismakingimportantmitigationcontributions(Bloomberg&Pope,2017).Still,thebroadgoalofcombining(1)thedevelopmentofmorerenewableenergysourceswith(2)improvedenergyefficiencywillnotbeenoughtopreventmankindfrompassingthepresumptivesafeharborbudgetofthe1.5oCincrease,orworse,theredlinebudgetof2oCglobaltemperatureincrease(New,etal.,2011),(Rogerlj,etal.,2016).ThiswastheconclusionreachedbytheUnitedNationIPCCintheirspecialstudyGlobalWarming1.5oC.“Allpathwaysthatlimitglobalwarmingto1.5oC…usecarbondioxideremoval(CDR).”Therefore,wemustalsoincludesignificantandnear-termcarbonsequestrationinthesolutionsetortheearth’sclimatesystemswillfacepowerfullyharmfulandirreversiblefeedbackcycles2.Asthesefeedbackcyclesactivateandclimatechangeaccelerates,manybelievethatlifeonearthcouldfacemoredrasticchangesthanwecanpreparefor.

Intheefforttounderstandandlimitclimatechange,littlefocusisgiventothetimingofmitigationoutcomes.EventhePariscarbonbudgetitselfisexpressedsimplyasatotalamountofCO₂(andothergreenhousegases)thatcanbereleasedintotheatmospherewithoutregardtodiscreteperiodictimingofthereleases.Butfightingclimatechangeisnotacontestthatwecanwinwithalate-in-the-gamereversal.Ifwedon’tgetaheadinthecontestearly,thelikelihoodofprevailingreducestonil.Better-suitedfirefightersshowinguponcethebuildingisinfullconflagrationcan’tsavethebuilding.Timeisoftheessencebecauseoftheirreversibleclimatefeedbackcycles.Yetintheabundantresearchandinthedevelopmentofplansandpoliciestomitigateclimatechange,ingeneralonlytheprojectedcumulativeamountofmitigationisconsidered,whilethetimingofthemitigationeventsishardlyeverformallyincorporated--conceptuallyoranalytically.Tomakesounddecisions,individuallyorcollectively,aboutactionsthatcanleadtosignificantcarbonsequestration,wemustdevelopbetterdecisiontoolsthatincorporatethediscretetimingofcarbonflows.AmongclimatechangeCDRopportunities,capturingatmosphericcarbonthroughafforestation/reforestation(“A/R”)3sequestrationprojectsisproven,safeandimmediatelyavailable.However,thesequestrationbenefitofA/Rislargelylimitedtotheinitialyearsofforestgrowth.Thisisbecause,onceaforestreachesmaturityitsnetcarbondioxideremovalslowsandmayapproachzeroasitscontinuedgrowthisoffsetbynaturalforestatrophy,whichcanresultinanearlybalancedcarbonfluxofthesystem.But,onceaforestismature,ifsomeofthecarbon-ladenfiberisharvestedfromtheforest’sstandingstockandstored(orsequestered)off-siteinharvestedwoodproducts(“HWP”)4,theforestcanresumenetcapturingofcarbonasitregrows.Harvestedwoodproductsrangefrompaperandpulpwithshortproducthalf-livestofurniturewithintermediatehalf-livesandtoconstructionmaterialsembeddedinbuildingswithverylonghalf-lives.5Onlywhenaforestisperiodicallyharvested,andtheharvestedproductputinuse,canaforest(orplantation)6stayinaperpetualcycleofregrowthtocontinuecapturingadditionalatmosphericcarbon.BystoringcarbonfromeachharvestintodurableHWP,aone-timeA/Rprojectcanbecomeaperpetualcarbonfarm.Byextension,thefasterormorefrequentlytheA/Rprojectisharvested,themorecarboncanbefarmedfromtheatmosphereandthemorecarboncanbestoredindurableHWP.ItispreciselythefastgrowthandshortharvestcycleoftimberbamboothatmakesittheidealcandidateforcarbonfarmingthroughA/Rprojects.However,asdiscussedbelow,globalclimatemitigationA/Rprogramsandpoliciesgenerallyignore

1OnOctober8,2018theUN’sIntergovernmentalPanelonClimateChange(IPCC),aftertwoyearsofwork,releasedtheSpecialReport:ClimateChangeof1.5oC.Thebroadconclusionwithhighconfidencewasthat“Globalwarmingislikelytoreach1.5oC”asearly2030.2Positivefeedbackcyclesinglobalclimatechangeacceleratetherateofclimatechangewhentheyareactivated,e.g.risingtemperaturesthatmelttheGreenlandandpolaricecovers,whichreducessolarreflectance,whichthenfurtherincreasestemperaturegains,orthethawingofthesub-articpermafrostthatreleasesCO2,whichfurtherwarmstheatmosphere,whichreleasesmoreCO2fromthepermafrost.3Afforestationandreforestation,whilefactuallydifferent,havenearlyidenticalcarbonfootprintsbythetimeawoodorbamboosystemismature.Accordingly,weusethetermsinterchangeably,notingthemsimplyas“A/R”.Amongclimatepolicyprofessionals,afforestationappliestolandthathasnothadaforestonitin50years,whilereforestationappliestolandthathasbeenconvertedtonon-forestusespriortoyear-end1989.4HarvestedWoodProductsareexplicitlyincludedintheUN’sFrameworkConventiononClimateChangeasacontributiontothemitigationresultsachievedthroughA/Rprojects.HWPsincludelumber,panels,paperandpaperboardaswellaswoodusedforfuel.Forthepurposesofthisanalysis,wedonotmakeadistinctionbetweenwood-orbamboo-basedHWP.5WedonotdiscussbiocharasanHWP,eventhoughitspresumptivehalf-lifeismanyhundredsofyearsbecausetheglobalmarketdemandforbiocharisrelativelysmall,thuslimitingitsroleasasubstituteproduct.6Characteristicdistinctionsbetweenforestsandplantationsaresmallforourpurposes.Forestsmaybenaturallyorculturallyestablishedbutwillhaveahigherdegreeofbiodiversity.Plantationswillbenaturallyestablishedandmanagedwithmorefocusontheimmediatelyproductivevalue.Themannerofharvestlikelyhasthebiggestimpactonthebiodiversitywithclear-cuttingsignificantlydisruptingbiodiversityandinter-cuttingimpactingbiodiversityfarless.

Page 5: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

2

timberbambooinfavorofwood-basedA/R.Thisishardlysurprising.Treeforestsandwoodproductsareexhaustivelyresearchedandanalyzedbothgenerallyandregardingtheirclimatemitigationpotential.Incontrast,thelimitedclimatemitigationresearchthathasbeenpublishedontimberbambooA/Rismodestinamountandrigor.Moreover,tomakeeffectivedecisionsbetweenwoodandtimberbamboo-basedA/Rstrategiesrequiresknowingmorethanjustthecarboncontentofthestandingstockofamatureforestorwhatportionsoftheharvestedfiberarestored,landfilled,burnedorotherwisedisposedof.AneffectivedecisionrequiresprojectingthetimingofeachdiscreteannualcarbonflowduringbothforestgrowthandHWPservicelifeforboththewoodforestandtimberbambooforestorstand.Forwood,theseannualcarbonflowsarereadilyavailablethroughmultiplesources.TheUNIPCChasevenpublishedguidelinesforcalculatingandprojectingthesecarbonflowsinitsGuidelinesforNationalGreenhouseGasInventories(IPCC,2006).However,fortimberbamboo,therearenoguidelinesforprojectingperiodiccarbonflows.Further,todatetherehavebeennomulti-speciesprojectionsoftimberbambooannualcarbonflowstoenableanycomprehensivecomparisonwithwood.Toremedytheabsenceofannualtimberbamboocarbonflowprojections,wehaveseparatelybuiltAGeneralizedModelofTimberBambooCarbonFlowsthatisco-publishedwiththispaper(Hinkle,etal.,2018).ThemodelhasbeencarefullybuiltfromtheavailablepublishedresearchbyextractingreportedannualgrowthdataforthreedistincttimberbamboospeciesthatarealreadyusedfordurableHWP.Theoutputsofthemodelarenetannualcarbonflowprojectionsthatcanbecompareddirectlywiththoseofvariouswoodforestsoverafull100-yearhorizon.Oncelongitudinalcarbonflowscanbeprojectedforbothwoodandtimberbamboo,arationalcomparisonmustobjectivelyweightearliersequestrationresultsgreaterthanlaterresults.Howeverobviousthismightbeconsideringouracceleratinginterruptionoftheclimatefeedbackcycles,objectivelytimeweightingthebenefitsofmitigationresultsisbroadlynotdone.Accordingly,toremedytheabsenceoftimevaluingmitigationbenefits,wehaveapplieddiscountratestotheprojectedannualcarbonflowsofbothwoodandtimberbamboo.Becausethisapproachofapplyingtimediscountratesisnovelinclimatemitigationdecisionmaking,wehaveappliedarangeofdiscountratestoreflectthreepossiblelevelsofconcernaboutclimatechange(Moderate,SeriousandExtreme).ToassureabalancedandrationalcomparisonoftimberbambooandwoodA/R,wethenconstructedLow,ExpectedandHighCasetimberbambooprojectionsacrossthethreeconcernlevels.Finally,thesecasesaresubsequentlyweightedacrossfourseparatescenarios,basedonoutcomelikelihoods.Mankind’sgoalmustbetochooseandestablishmaximalpotencyA/Rprojectsasquicklyaspossible.Bysimplelogic,maximumsequestrationpotencyresultswhenthegrowthcycleisshortandwhenthehalf-lifeofthecarbonstoredintheresultingHWPislong.SincetimberbambooA/Rprojectspossessbothattributes,itistemptingtoconcludethattimberbambooisasuperiorA/Rsolutioncomparedtowood.However,wearenotawareofanygeneralizedormulti-speciescomparisonbetweenwoodandtimberbambooA/Rthathasbeendevelopedtotestthishypothesis.Bydevelopingageneralizedgrowthmodelfortimberbamboo,wearenowabletomakeadirectcomparisonandtotestthathypothesis.ThepurposeofthispublicationistoanalyzethepotentialroleoftimberbambooinclimatemitigationA/Rprojectsincomparisontowood-basedA/Rprojects.Wedothisfromtheperspectiveofcommercialorrationaldecisionmakingwherethebenefitbeingmaximizedisneartermcaptureandlong-termstorageofatmosphericcarbondioxide.7Wepresentourresearchintotheradicalbenefitofcarbonfarmingwithtimberbamboointwopublications.Thepresentpublication,whichaddressespolicyanddecision-makingissues,andtheco-publishedpaper,whichaddressesdetailconstructionandprojectionsoftheGeneralizedModelofTimberBambooCarbonFlows.Thefollowingoutlinestheremainingsectionsofthepresentpublication.Section2:CarbonCaptureThroughWoodandBambooAfforestation.

First,wereviewthestateofexistingmultinationalwood-ortree-basedA/Radoptionprogramsandreportthreeobservations:First,thereisasignificantshortfallbetweenthebroadgoalsoftheprogramsandthespecificcommitmentsoftheparticipants.Second,thereisonlyfalteringprogressagainstthelimitedspecificcommitmentsthathavebeengiven.Andthird,thereisageneralindifferencetotimingconsiderationswhenimplementingtheschemes.Againstthisbackdrop,wearguethattimberbambooisastronglysuperiorA/Rsolution.Asnature’sfastestgrowingstructuralfiber,

7Theanalysisisnotconductedusingtheapproachofanyparticularcarbonsequestrationcertificationorcomplianceprogram(e.g.CertifiedDevelopmentMechanisms(CDMs)orVerifiedCarbonStorage(VCS)).

Page 6: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

3

timberbambooA/Rprograms,whencomparedtowood-basedA/Roptions,isfarmorepotentatgeneratingneartermcarbondioxideremoval.

Section3:ProjectingCarbonFlowsfromWoodandTimberBambooAfforestation/Reforestation.

Next,weintroduceamodelingframeworkthatallowsustoprojectandthencompareannualcarbonflowsfrombothwoodandtimberbambooA/Rprojects.

a. Forwood,weadoptthecomprehensivecarbonflowprojectionmodeldevelopedbytheUSForestService(“USFSmodel”;Smith,etal,2005),whichprojects100-year+carbonflowsfor5woodspeciesandplantinglocations.

b. Fortimberbamboo,nomodelisavailablethatprojectsanylongitudinalcarbonflows,yetlessforcomparable100-yearcarbonflows.Accordingly,wedevelopedAGeneralizedModelofTimberBambooCarbonFlowsthatprojects100-yearcarbonflowsacrossarangeoftimberbamboospecies(“BCmodel”;Hinkle,etal,2018).Themodelanditsdevelopmentarediscussedintheco-publishedpaperofthesamename.

Withthesetwoprojectionmodelscomplete,weillustrateandthenwecomparetheannualcarbonflowsfromwoodandtimberbambooA/Rprojects,includingallHWPcarbonflows(production,storage,anddisposition),butwithoutregardtotimevaluingthecarbonflows.BecausetheBCmodelisnecessarilymorespeculativethantheUSFSmodel,weconstructfourscenariosfortheBCmodeloutputstoallaytheriskofadominatingassumptiondrivingtheresultsfortimberbambooA/R.

Section4:RationalDecisionMakingbetweenWoodandTimberBambooA/R–TheCarbonBenefitMultiple.

Then,basedontheabovecarbonflowprojectionmodels,weestablisharationaldecisionframeworkthatevaluatestherelativecarbonsequestrationpotencyoftimberbambooversuswoodA/R.Theframeworkincludeselementscommonlyfoundincommercialorfinancialdecision-makingincludingtestingthesensitivitytospecificassumptions,timevaluingthebenefitflows,andweighingtheoutlookacrosspossiblescenarios.Toreachacomprehensivebutsingularbottomlineconclusion,wecreateasinglemetricoftherelativepotency,theCarbonBenefitMultiple.Totesttherobustnessofthedecisionbetweentimberbambooandwood,westresstesttheCarbonBenefitMultipleforthreecasesofprojectedbamboopotency,forthreelevelsofconcernaboutclimatechange(i.e.discountratesreflectingtimingurgency),acrossfourscenariosofcertaintyabouttheindividualmodelinputs.

Section5:ProductizingTimberBamboointoDurableCarbonStoringProducts.

Finally,basedontimberbambooA/R’shighlypositiveCarbonBenefitMultiplecomparedtowoodA/R,wediscusstheroleandimportanceoftheearlyandregularextractionofHWPtostorecapturedcarbonindurableproducts.Weexplainhowtheproductizationoftimberbamboointodurablebuildingproductswillhelpsupplymankind’sgrowingneedforanon-tree-basedfiberwhilealsodrivingperpetualcarbonfarmingthroughdemandformoretimberbambooA/Rinvestments.Wedemonstratehowsuperiorbamboo-basedbuildingproductscaneconomicallydrivetheestablishmentofagenerationoftimberbamboocarbonfarmsthat,inturn,candeliverbamboo’scarbonsequestrationbenefitswithoutgovernmentsubsidyormandates.

Page 7: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

4

4,033

150 350

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

TotalGlobalForests

Bonn2020 Bonn2030

Millionha

2.1GlobalForestCoverandBonnChallengeGoals

2. CarbonCapturethroughWoodandBambooAfforestation

WoodAfforestation.Inourpriorpublication,“BamCoreandGlobalWarming”,June2017,weconcludedthatamongtherangeofoptionsforcarbonsequestrationonlyafforestation8,anditsnear-equivalentreforestation,is“ready,capableofscaling,lowcost[with]fewcollateralnegatives”(Hinkle,etal.,2017).ThemultiplepotentialbenefitsofA/Rwererecognizedin2011whentheoriginal2020BonnChallengewasadoptedinBonn,Germanyin2011(Bonn,2018)9.TheChallengeisastructuredmulti-nationalcommitmentthatsettargetsforreforestationby2020.In2014,theNewYorkDeclarationonForestsaddedasecondtrancheoftargetsfor2030.Theadoptedgoalsare:

• 150millionhectaresofreforestation/restorationby2020and• 350millionhectaresofreforestation/restorationby2030.

Globally,totalforestcoverisapproximate4billionhectares(FAO,2010).Thus,successinthesegoalswouldadd4%and9%,respectively,tototalforestcover.(SeeFigure2.1.)

Todate,however,only40countriesandsevenotherpartieshavemadecommitmentsundertheBonnChallenge.(SeeAppendixOne.)Thepresentcommitmentstotalonly94millionhectaresby2020(63%ofthe2020goal)and168millionhectaresby2030(46%ofthe2030goal).(SeeFigure2.2)ThetotalBonnChallengegoalsandeventhepartialcommitmentsagainstthosegoalsmightseemlikeencouragingobjectives.Thatisuntiltheyareputinthecontextofcontinuingannualdeforestation.In2016,theearthexperiencedrecordnetdeforestationofnearly30millionhectares.Saiddifferently,ifthetotal168millionnominalcommitmentisachievedby2030,butdeforestationratescontinuenearthatof2016,attheendof2030,theearthwillstillhaveanetreductionof221millionhectaresofforestorabout10%oftheearth’sremainingforests.

UndertheBonnChallenge,eachparticipantisfreetodetailitsreforestationandrestorationasfitsitslocalclimate,growingconditionsandeconomicexigencies.Unfortunately,manyparticipantshavebarelybeguntheirimplementationandmanyparticipantsstilllackthefundingtopursuetheiradoptedgoals.Interestingly,despitetherealitythatdifferenttreespecieswithdifferentgrowthratescanserveasthebasepopulationforreforestation,noparticipantreportsplansthatincorporatethespeedofreforestation.Itispossiblethatthedesiretopreserveorrestoreperceivedhistoricalbiodiversityisinhibitingtreespeciesselectionotherthanasisfoundinthelegacypopulation.Moreover,fastgrowingtimberbambooisnotexplicitlyincludedintheBonnChallenge.Regionally,Initiative20x20,adoptedinLima,Peruin2014,sets2020reforestationandconservationgoalsfor17LatinAmericanandCaribbeancountriesandthreeregionalauthorities.(SeeAppendixOne.)Unlikeotherregions,nearlyhalfofgreenhousegasemissionsinLatinAmericaandtheCaribbeanderivefromdeforestation,land-usechangeandagriculture.Thus,thepartiesinthisregionsoughtareforestation/conservationapproachthatmoreaptlyfitsthembutstillcountstowardstheirtargetsintheBonnChallengetotals.Presentlyabout50millionhectaresaretargeted(WRI,2018).(SeeFigure2.2.)Littleinformationisavailableonthespecificsofeachparticipant’splan,butnoparticipanthighlightsthespeedofforestgrowthorofcarboncapture.Moreover,eventhoughmanyoftheLatinAmericancountriesarenativehabitatsformultiplespeciesoffast-growingtimberbamboo,timberbambooisalsonotexplicitlyincludedintheInitiative20x20. 8Afforestation,strictlyspeaking,isthenetadditionofforestcovercomparedtothatwhichexiststoday.Inits2020BonnChallengeandInitiative2020forms,itisoperationalizedasanincreaseinforestcoverlargelythroughreforestationandrestorationofdeforestedanddegradeecosystems.9TheBonnChallengederivesfromtheEarthSummitin1992andwasadvancedbytheGermangovernmentandtheInternationalUnionforConservationofNature.TheIUCNiscomprisedof216statesandgovernmentagenciesandover1100Non-GovernmentOrganizations.

Page 8: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

5

94

168

533.7

56

182

0

50

100

150

200

250

300

350

400

Bonn2020 Bonn2030 Inioaove2020 INBAR

Millionha

2.2ReforestaoonCommitments

BambooWood

UncommittedGoals

CommittedGoals

BambooAfforestation/Reforestation.TheonlydirectinclusionoftimberbamboointoA/RmitigationplanshasbeenthroughmembersofINBAR,theInternationalNetworkforBambooandRattan.INBAR,whichcounts44-membernationsincludingCanada,butnottheUnitedStates,ispartNGOandpartdiplomaticanddevelopmentcampaignsponsoredbythePeople’sRepublicofChina.Ofthe44members,18haveexpressedplansforbamboo-basedreforestationtotaling3.7millionhectaresby2020,whichrepresentsanincreaseofabout10%ofthepresentstandingstalkofbambooforests.(SeeAppendixOne.)Ofthese3.7millionhectaresnearly2.2millionareinAfrica.AsurveyofINBARmembersrevealedthatmorethanhalfoftheINBARrespondentswereimpededintheireffortstopursuetimberbamboorestorationdueto(1)insufficientfinancialresources(94%),lackofknowledgeofbambooprocessingtechnologies(83%),andlackoftechnicalknowledgeofbamboospecies,nurseryestablishmentandplantationandmanagement(72%)(INBAR,2018).Obviously,totheextentthatthereismarketratecommercialdemandfortheharvested“wood”productsfromatimberbambooplantationthemostsignificantoftheseimpedimentslessenordisappear.In“BamCoreandGlobalWarming,”wecomparedtimberbambooafforestationwithtreeafforestation.Wenotedthattreeafforestationwasimmediatelyavailableandpossibleacrossawiderangeofhabitats,butthatitstotalcarboncapturewassmallerperland-areausedandwasslowerthantimberbamboosequestration.OuranalysisshowedthatwhenregularlyharvestingstandsofaLatinAmericantimberbamboospecies,Guaduaangustifolia,(byintercutting,notclearcutting)foruseindurablebuildingproductsthattimberbambooA/RsubstantiallyoutpacedthesequestrationachievedbythreeNorthAmericantreespeciesalsousedfordurablebuildingproducts.(SeeFigure2.3.)

Researchbyothershasreachedasimilarconclusion,includingthatAsiantimberbamboo(Moso),comparedtoseveralfast-growingAsianwoodspecies,isatleast2.5xmorepotentasasequestrationenginethanwood(Nath,etal.,2015)(INBAR,2010).Iftimeisoftheessenceinfightingclimatechangeandiftimberbambooisamorepotentsequestrationmediumthattrees,thenwhyhasn’ttherebeenabroaderadoptionofbambooA/R?Besidessomeoftheanswersreportedabove,wealsothinkthatthereisabroadlackofawarenessabouttheopportunityformankindtoharnessnature’sstrongestandfastestgrowingbotanicalfiber.Inpartthelackofawarenesscouldresultfromthefactthattodaybamboooccupiesonly33.1millionhectaresofglobalforestcoverorless

than1%(FAO2010)10.Moreover,bamboohabitatsarepredominantlyinthedevelopingworld,inthetropicsandsubtropics,whilemuchoftheclimatechangeresearchandpolicydirectivesderivefromthetemperateclimate,developednations.Asa

10TheareareportedinGlobalForestResourcesAssessment2010isonly31.1millionha,towhichwehaveadded2millionhasforIndonesiawhichwaseliminatedfromthe2010reportbutpresentinpriorreports.

0

250

500

750

1,000

1-5 6-10 11-15 16-20 21-25 26-30

CO₂Removed(MT)

FiveYearGrowthPeriods

2.3GrowthComparison:TimbervsBamboo

PonderosaPine So.YellowPine DouglasFir Guaduaangusofolia

Page 9: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

6

result,bamboosimplyhaslessresearch,fewerpublicationsanddiminishedresourcesfocusedonitsopportunisticexploitationcomparedtowood. ClimateChangeMitigation(Sequestration)asanA/RDriver.ThetwointernationalA/RinitiativesdiscussedabovederivetheirimpetusfromtheRiodeJaneiroEarthSummitof1992andaremoredirectedatsustainabledevelopment,biodiversityandecosystemrestoration,thantheyareatclimatechangeorcarbonsequestration.(UN,1992)IftheBonnChallengeandInitiative20x20areeffectiveasoriginallyconceived,atmosphericcarboncapturewillmostlybeacollateralbenefit.TheInternationalUnionforConservationofNature,asponsoroftheBonnChallenge,estimatedthatachievingthe2020goalwouldsequester270milliontonnesofatmosphericcarboncaptureperyear.Thiscontrastswiththe28to280billiontonsthattheIPCCrecentlyprojectedwillbeneededfromallsequestrationoptionslikeA/Rpriorto2100.(IPCC,2018)Thatis,evenifalltheBonnChallenge2020commitmentswerekeptaswoodA/Rprojectstheywouldonlybe1%oftheabsoluteminimumthatIPCCindicatesisneededfromsequestration.Specifically,relativetocombinedsequestrationresultsfromagricultural,forestryandland-use(“AFOLU”)projectsneedingtocaptureCO₂equivalents,theIPCCsuggestedthatweneed(IPCCC2018):

• Upto5billiontonnesperyearbyyear2030,• From1to11billiontonnesperyearbyyear2050,and• From1to5billiontonnesperyearby2100.

Incontextthatmeansthatthefailed2020commitmentsdon’tcoverevenoneyearofwhattheIPCCsuggestedisneededfromforestryandotherAFOLUsequestrationprojects. Inthe26yearssincetheEarthSummit,theneedtomitigateacceleratingclimatechangehasbecomeparamount.OurviewisthatimplementingA/Rschemesmustnowintentionallyanticipateandincorporatetheneedforneartermcarboncapture.Tothisendconsiderationoftimberbamboo,whichhassignificantsequestrationtimingadvantages,needstobeembraced,studiedandincluded.Regrettablythegreatergoodoftheearth,maynotsensiblyaccommodatebothareturntoprecisehistoricalbiodiversityandtheimminentneedforcarboncaptureandstorageinA/Rprojects. InthenextsectionwecomputeestimatesoftheabsolutevaluesofcarbonflowsfromtimberbambooandwoodA/R.Todothis,weemployarigorousmodeldevelopedbyateamofresearchersattheUSDepartmentofAgricultureForestService.Thecomparisonwillshowthesubstantiallygreatersequestrationpotentialoftimberbambooinabsolute,nottimediscounted,terms.Inthefinalsectionweevaluatetheabsolutecarbonflowsbytimeweightingthemtohighlightthecriticalityofearlyactioninfightingclimatechange.Oncetime-weighted,wecompleteasetofScenarioAnalysestotesttherobustnessofthetime-weightedconclusion.

Page 10: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

7

3. ProjectingCarbonFlowsfromWoodandTimberBambooA/RTheurgencytochoosethemostpotentandeffectiveA/RalternativetoachieveneartermCDRisclear.Butthetoolstocomparealternativeshavenotbeenavailable.CommercialwoodforestryiswellstudiedandhasadeeppublishedliteraturethathasproducedrobustmodelswithprojectionsoflongitudinalcarbonflowsfromwoodA/Rprojects,suchastheUSFSmodel.TheclimatepolicyandclimatesciencecommunitiesassumethatwoodA/RisareadyandcapableengineofCDR,buttheyhavenotaskedifitisourmostpotentA/Ralternative.TimberbambooA/RhasbeenoverlookedbymainstreamclimatescienceandthereexistsnoknowntimberbambooA/RmodelthatcanprojectlongitudinalcarbonflowsacrossmultiplespeciestocomparetowoodA/R.ToconstructthecomparisonoftimberbambooandwoodA/Ralternatives,webeginwiththeUSFSForestService’scarbonflowmodelforwoodA/RandthenbuildacarbonflowmodelfortimberbambooA/RthatcanbedirectlycomparedtothewoodresultsfromtheUSFSmodel.ThisnewlybuiltA/Rmodelfortimberbambooisco-publishedasAGeneralizedModelofTimberBambooCarbonFlows(Hinkle,etal.,2018).TheUSFSmodel“MethodsforCalculatingForestEcosystemandHarvestedCarbonwithStandardEstimatesforForestTypesoftheUnitedStates”isbuiltfromtenforestry-derivedcarbonpoolsconstructedundertheIPCCguidelinespublishedin2003(Smith,etal.,2005).TheUSFSmodelisintendedtoprovideopenaccessforanalysisof“otherharvestquantities,standagesandforesttypes,”whichallowsustodirectlycompareUSFSmodeledwood-basedcarbonflowswithBCmodeledtimberbamboo-basedcarbonflowsacrossmultiplespeciesandgrowinglocations.ThecalculationframeworkofboththeUSFSandtheBCmodelsincorporatesallthreesetsofcarbonflowsthatareattributedtoanA/Rproject.(SeeFigure3.1.)Becausebambooisagrass,timberbamboogrowsverydifferentlythanwood,generatingverydifferentforest-basedcarbonflows(CF1).Thisgrowthanddevelopment-baseddifferencethendrivesearlierbutregularpartialharvestsandstorageintoHWP(CF2).WhenassumedHWPistakenoutofservice,thedispositionofcarbonflowsisthesame,exceptfortheearliertimingofbambooHWP(CF3).Inpresentingtheresultsinthissection,weuseinputstothemodelsthatweexpecttobethemostlikely.ThepresentedresultsarethereforetheExpectedorBaseCaseresults.InSection4,wewillalsopresentLowandHighCasestoreflectanunderstandingofthesensitivitytovariousinputsandthenconstructedScenarioAnalysistoreflectweightingsofthevariouscases.ModelingForest/Plantation-basedCarbonFlows(CF1). Fortimberbamboo,asdescribedintheBCmodel,weusedavailableannualgrowthdataforthreespecies(Guaduaangustifolia,DendrocalamusasperandBambusabambos)andbuiltageneralizedmodeloftimberbambooA/Rcarbonflows.Themodelwasthencross-fittedtoanadditionalfivelocationsforthethreespeciesforatotalofeightspecies-locationsprojections.Byfittingthemodelofonespeciestomultiplelocationswearebroodinglythereliabilityandapplicabilityofthegeneralizedcarbonflowprojections.Forwood,wechosethreespeciesfromtheUSFSmodel:Douglasfir,thelargestgrowingcommercialtimberspeciesinNorthAmerica,Loblolley,thefastestgrowingandmostwidelyplantedcommercialspeciesinNorthAmericaandPonderosaPine,acommonlyplantedandwidelyusedspecies.Usingthesethreespecies,weextractedwood-basedcarbonflowsfromtheUSFSmodelforatotalofsevenspecies-locations.

Page 11: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

8

Figure3.2belowshowstheaccumulatedcarbonduringthegrowthperiodsforthethreetimberbamboospeciesaveragedacrosstheeightlocationsandthethreecommercialwoodspeciesaveragedacrossthesevenlocations.Noticehowmuchfasterthetimberbambooplantationcanaccumulatesequesteredcarbonperhectare.Bytheninthyear,allthreespeciesofbamboohaveaccumulatedmorethan100tonnesofC/ha.Incontrast,Loblolley,thefastestgrowingcommercialspeciesdoesn’taccumulate100tonnes/hectareuntilyear18,whichistwiceaslongastheslowestofthethreetimberbamboospecies.The

largestgrowingwoodspeciesdoesn’taccumulatethe100tonnes/hauntilyear27,whichisthreetimeslongerthantheslowestofthethreetimberbamboospecies.Andthethirdcommercialwoodspecies,PonderosaPine,hasn’treachedthe100tonnes/hamarkbyyear75whentheplantationispresumedtobeharvested.Immediately,theseforestorplantationlevelcomparisonspointtotimberbambooasembodyingapotenttimingbenefitcomparedtowoodinA/Rprojects.Tomodelthecarbonflowscomingfromgrowthandaccumulationinthecommercialplantation,weusetheUSFSmodelasconfiguredforeachspecies-location,butwithoutharvesteventsorHWPproduction.Tomodelthecarbonflowscomingfromthebambooplantations,butwithoutharvesteventsorHWPproduction,theBCmodelincorporatesatotalof42variables.Ourintentistomanagealltheknowngrowthandaccumulationdynamicsthathavebeenobservedinbothnaturalandcommercialbambooplantingswhilefocusingoncommercialplantings.Amongthe42growthandaccumulationinputsseparatelymodeledare:

• Annualgrowthandaccumulationofbiomass(andthuscarbon)aboveandbelowgroundseparately,• Distributionofgrowthandaccumulationofbiomassbyplantorgan,• Groundlitterdevelopmentlagandprevalence,• Ageoffirstharvestablebiomassfromplantingandageofculmwhenfirstharvested• Gregariousormastfloweringbypercentage,includingpre-emptiveharvestabilityandlagtoreplant• Postmaturitygrowthandaccumulationratesandcapsfrommaximumaccumulationduring“equilibrium”

ModelingHarvestOccurrenceandHWPProduction(CF2).Harvestcyclesforwoodareasprojectedinthesevenselectedharvestlocationsandrangefrom25to75years.IntheUSFSmodeleachofthesevenlocationshasadifferentallocationofthespecificHWPproducedbasedonhistoricaldataavailabletotheUSFS.However,toachievecomparabilitywithbamboo,weconstrainbothwoodandtimberbambootoonlytwoHWPoptions--paperandorientedstrandboardOSB.These

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

C/HA(MT)

YEARS

3.2Avg.CumulaoveCarbonGrowthinBambooandWoodSpeciesPre-Harvest

Loblolley DouglasFir PonderosaPine B.Bambos Guadua D.Asper

2030:BonnChallenge–350milha

2050:IPCCTarget–1.5°C

Wood Bamboo

Page 12: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

9

5,933

1,7951,6701,161

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

C/HA(MT)

3.3HarvestEfficiency:Bamboovs.Wood

TotalCarbonCaptured

CarbonEmisedDuringHarvestandProducoon

twoHWPhavemaximallydifferentservicehalf-lives.ThisallowsustovarytherelativeportionofpaperandOSBtotestimpactofHWPhalf-lifeoncarbonflowsandtoisolatetheprojectedCDRfromlocationspecificHWPhistoriesforwood.Harvestcyclesforbambooacrosstheeightlocationsarealwaysannual,startingbetweensixandnineyearsafterinitialplantingandgrowingtoasteadystateuponthestandreachingfinalmaturity,allofwhichisspeciesdependent.Asexplainedabove,bothtimberbambooandwoodstands(forestsorplantations)exhibitdecliningannualnetbiomassaccumulationoncetheyentertheirmaturephase.OnlyiffiberisharvestedandstoredindurableHarvestedWoodProducts,canaforestorcommercialplantationcontinuetocapturesignificantamountsofcarbonintheregeneratedbiomass.TherearethreesignificantdifferencesbetweentimberbambooandwoodrelativetotheharvestoccurrenceandanyresultingHWPproduction.

(1) Commercialsoftwoodsareharvestedinmuchlongercyclesrangingfromseldomlessthan25yearstooftenmorethan75years.Incontrast,onceabamboostandreachesinitialmaturitybetweensevenand10years,matureculmsthataretwoyearsoroldercanbeharvestedfrompaperandpulp,whileculmsthreeyearsoroldercanbeharvestedformoredurableHWPproduction,suchasbuildingmaterials.

(2) Commercialsoftwoodsaremostfrequentlyharvestedbyclear-cuttingorverysignificantpartialcutting.Admittedclearcuttingaccountsfor40%ofallUSforestryharvestsand90%ofallCanadianforestryharvests.InNorthAmerica,approximately2.6millionhectaresareclearcutannually.(Masek,etal.,2011)Partialandselectivecuttingmaystillbefollowedbyaclear-cutting.Incontrast,timberbambooisneverclear-cut.Onceabamboostandismature,itisusuallyintercutannuallyorbienniallywhenstructurallymatureculmsareharvestedindividuallyfromclumpsofculms.Thisallowstherhizometocontinuepushingupnewshootstoreplacetheharvestedculm.Fortrees,successfulcompetitionforsunlightisamaindeterminantofgrowthsinceclearcuttingallowsalltreesinagivenareatobereplantedwithoutanycompetingcanopy.Incontrast,bamboo,likeallgrasses,regeneratesanewplantfromthesameundergroundrhizomethathasalreadyaccumulatedtherequirednutrientstopushthenextshootuptoafullheightculm.

(3) TheefficiencythatharvestedsoftwoodsareturnedintoHWPislowcomparedtotimberbamboo.Thisisanimportantdifferencebetweenwoodandtimberbamboothatisdifficulttooverstate.Thelowertheconversionefficiencythehigherthecarbonemissionsattimeofharvest.

Forwood,theUSFSmodeldirectlyincorporatesthesethreeelementsforeachofthespeciesandforesttypescovered.FortimberbambootheBCmodelincorporatestheseelements.TheUSFSmodelincludestwostagesofconversionefficiency.Thefirststageoccursinthefieldatthetimeofharvest.Thatis,whatportionofthefelledtreeisconvertedtoroundwoodthatistakentothemillversuswhatportionsareleftonthegroundtodecayorotherwiseemitcarbon.ThesecondstageisthewastethatisproducedduringtheproductionoftheHWP.ByrestrictingourHWPoptionstoparallelrelativeamountsofpaperandOSB,weavoidconfoundingfactorsfromspecificHWPproductionallowingustofocusonthecorewoodversustimberbamboocomparison.

ThegeneralperceptionisthatwoodefficientlycapturesandstoresCO₂whenharvestedandconvertedtoHWP.WhilewoodA/Riscriticalasanearth-wideCDRmechanism,itsharvestandHWPconversionefficiencyarefarfromthegeneralperception.Itisalsofarfromtheprojectionsoftimberbamboo.Figure3.3showsthegrossandnetcaptureandemissionforharvestingwoodandtimberbambooplantationsinourBaseCase.

WoodBamboo

Efficiency=72%

Efficiency=33%

Page 13: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

10

0%

20%

40%

60%

80%

100%

1 12 23 34 45 56 67 78 89 100

Disposi\on

Years

3.4SummaryCarbonDisposioonofOSBandPaperProducts

CarboninProductsinLandfill

CarboninProductsinUse

CarbonEmissionsasCO₂Equivalents(CO₂andCH₄)

TomodelthecarbonflowscomingfromwoodharvestandHWPproduction,weusetheUSFSmodelasconfiguredforeachofthesevenspecies-locationsbutconstrainHWPtopaperandOSBasdiscussedabove.TomodelthecarbonflowscomingfromtimberbambooharvestandHWPproductionandemissionwaste,theBCmodelspecifies:

• Thevintageoftheculmsbeingharvestedannually,• Theportionsoftheculmandabovegroundbiomassthatwillbeproductizedversusemittedaswaste,• Atransitburdentotransporttimberbamboorawmaterialfromharvestlocationsinthetropics,and• Theproportionofmastfloweringasappropriatebyspecies,andwhenoccurringtheportionofculms

harvestablefollowedbyaconfigurableplantinglag.ModelingHWPFinalDisposition,LandfillandMethane(CF3).BecauseweconstrainHWPtoonlypaperandOSBinthesameproportionsforbothtimberbambooandwood,themodelingofHWPcarbonflowsisidenticalforwoodandtimberbamboo.TheBCmodelandtheUSFSmodelbothusetheUSFShalf-lifefunctionsforHWPservicelifeandtheendoflifeallocationsbetweenemissionsandlandfilldeposition.Fortheportioninlandfills,however,weupdatetheemissionprojectionsbasedonresearchthatbecameavailablefollowingthepublicationoftheUSFSmodel.TheUSFSmodel,aspublished,usedsimplisticassumptionsfor:(1)theportionofHWPthatwasdegradableinlandfills,(2)whenthedegradationinitiatesand(3)howlongthedegradationoccursbeforereachingthenon-degradableresidualstate.MorecurrentresearchallowedustomakeprojectionsthattreatedeachofthesethreeinputsindependentlyforpaperversusOSB.(Ximenes,etal.,2015)Inaddition,theUSFSmodelassumedalllandfillemissionswereCO₂,resultingfromcommonlyobservedaerobicdigestioninlandfills.However,methane,afarmorepowerfulgreenhousegasthanCO₂,isknowntobeemittedfromlandfillsasaresultofanaerobicfermentation.ThepresumedpotencyofmethaneisafunctionoftheframeworkanalyzedandisnotcurrentlyresolvedinIPCCInventoryGuidelinesorintheclimatescienceliterature.MethanepotencyismostfrequentlystatedintermsofCO₂equivalents.TheCO₂equivalentofmethanerangesfromonemoleculeofmethaneequalingonemoleculeofCO₂to72moleculesofCO₂.GiventhislargerangeandthefactthattimberbambooisproducingHWPthatendsupinlandfillfarsoonerthanwoodHWPdoes,wefeltitcriticaltotesttheimpactofpossiblemethaneemissionsresultingfromHWPlandfillaccumulations.TheresultofsensitivityanalysisonmethanetoCO₂equivalentswasrevealingbutgenerallydidnotdiminishtheconclusionbelowabouttheoverallperformanceoftimberbamboocomparedtowoodA/Rprojects.Figure3.4showsthedispositionofcarbonacrosstheentirecradle-to-graveoftimberbambooandwoodprojectsforourBaseCaseScenario.Carbonflowsthroughtheproductecosystemasanin-useproductbeforebeingdiscardedtoeitheralandfillorburnedandimmediatelyemittedasCO₂.

Oncecarboninadiscardedproductentersalandfill,itwillbegintheaerobicdegradationprocess,emittingcarbondioxidebasedonaspecifieddecayfunctionoritwillremainintactiftheHWPisnon-degradable.BecausethesameproportionsofpaperandOSBareusedforbothtimberbambooandwood,oncetheHWPisinlandfillthehalf-lifefunctionsareidenticalforresidualandemissionproportionsforbothtimberbambooandwood.Figure3.5Aand3.5Bdescribethedispositionofcarbonin,andemittedfrom,alandfillforbothOSBandPaperproduct,respectively.NoticeonlyasmallfractionofOSBdegrades.In

Page 14: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

11

realityverylittle(3%)ofwoodproductsandonly(26%)ofpaperproductsdegradeinlandfills(Micales&Skog,1996).Forfurtherdiscussion,pleaserefertotheGeneralizedModel.

TomodelthecarbonflowsduringHWPservicelifeandlandfilldegradation,weusetheUSFSmodelasconfiguredforeachofthesevenspecies-locationsbutconstrainHWPtopaperandOSBasdiscussedabove.TomodelthecarbonflowscomingfromtimberbambooharvestandHWPproductionandemissionwaste,theBCmodelspecifies:

• TheportionsofpaperandOSBthatarediscardedtolandfillsversusemittedfollowingusebybeingburned,• TheportionsofpaperandOSBthataredegradableversusthefinalinertlandfillresiduals,• Theseparatehalf-lifeassumptionsforthedegradableportionsofpaperandOSB,• Theseparatelagperiodsbeforedegradationbegins,• TheportionsofthedegradableportionsthatwillbeemittedasCO₂versusmethane,and• TheCO₂equivalentlevelforthemethaneemittedportion.

0%

20%

40%

60%

80%

100%

1 12 23 34 45 56 67 78 89 100

Disposi\on

Years

3.5BCarbonDisposioonofPaperProductsinLandfill

CarboninProductsinLandfill

CO₂LandfillEmissionsCH₄LandfillEmissions(1:1CO₂equivalent)

0%

20%

40%

60%

80%

100%

1 12 23 34 45 56 67 78 89 100

Disposi\on

Years

3.5ACarbonDisposioonofOSBProductsinLandfill

CarboninProductsinLandfill

CO₂LandfillEmissionsCH₄LandfillEmissions(1:1carbonequivalent)

Page 15: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

12

-165

-110

-55

0

55

1 12 23 34 45 56 67 78 89 100

C/HA(MT)

YEARS

3.6BAnnualWoodCarbonFlows

LoblollySE LoblollySC PonderosaPinePWE PonderosaPineRMSDouglasFirPWE DouglasFirPWW DouglasFirRMN

CarbonFlowProjections(ExpectedCase)forEachSpecies-Location.ThefinaloutputoftheUSFSandBCmodelsisannualnetcarbonflows.Recognizingthatnumerousinputsarerequiredforbothmodels,wepresentonlytheExpectedorBaseCaseprojectioninthissection,andsubsequentlypresentadditionalLowandHighCasesinSection4.Thenetcarbonflowscanbepresentedvisuallyinthreeways:thenetannualflows,theaccumulationoftheannualflowsorasapresentvaluesummary(seeCarbonBenefitMultiple,Section4).InFigures3.6A&Bwepresentthenetannualcarbonflowsseparatelyfortimberbambooandwood.TheeightindependentcurvesinFigure3.6Aand3.7AandthesevenindependentcurvesinFigure3.6Band3.7Bdepictthenetannualcarbonflowprojectionsforeachofthespecies-locationsfortimberbambooandwood,respectively.ForthetimberbambooannualcarbonflowprojectionsshowninFigure3.6A,theprotrudingpositiveprojectionsshowthecarboncaptureduringearlyperiodinitialgrowthouttoaboutyear16.Sincethesethreespeciesarenotknowntomastflower,therearenoobservablenegativeflowsintheprojections(thoughmastfloweringiscapturedintheLowCase,seebelow).11

ForthewoodannualcarbonflowprojectionsshowninFigure3.6B,therearenoearlypositiveprotrudingprojectionsbecauseoftheslowergrowthofthewood.Thelargenegative(downward)protrudingprojectionsforwooddepictthesignificantnetcarbonemissionsthatoccuratthetimeofharvestforwood.

11 Mast flowering or gregarious flowering, which has been observed in some bamboo species and not others, is the infrequent simultaneous flowering of a species across a large geographic area, following which the flowering members of the species die. Species known to mass flower do in long cycles ranging from 30 to over 100 years. (See Hinkle 2018 for more discussion.)

-165

-110

-55

0

55

1 12 23 34 45 56 67 78 89 100

C/HA(MT)

YEARS

3.6AAnnualBambooCarbonFlows

D.Asper D.Asper D.Asper Guadua Guadua Guadua B.Bambos B.Bambos

Page 16: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

13

InFigures3.7A&Bwepresenttheaccumulationoftheabovenetannualflows.TheeightindependentcurvesinFigure3.7AandthesevenindependentcurvesinFigure3.7Bdepicttheaccumulationofnetannualcarbonflowsforeachofthespecies-locationpairingsfortimberbambooandwood,respectively.FortimberbambooshowninFigure3.7A,theaccumulationbeginsearlyandiscontinuousduetothepresenceofregularHWPandtheabsenceofanymastfloweringintheExpectedCase(noneofthesethreespecieshavedocumentedmastflowering).Foramorecompletediscussionoftheprevalenceofmastfloweringseetheco-publishedpaper.Noticethatthesixoftheeightspecies-locationsexceeda200MT/habenchmarkbyyear12.

Forwood,showninFigure3.7B,theaccumulationofcapturedcarbontakesfarlongerandremainsalowerlevelthanfortimberbamboo.Theprecipitousdeclinesincumulativecarboncapturearetheresultofemissionsthatoccuratharvestthatsubstantiallyoffsettheotherwisecumulativecarboncapture.Noticethatnoneofthesevenspecies-locationsforwoodreachthe200MT/habenchmarkuntilyear45(orapproximately2065,whenCDRisoffarlessvalue)andthenonlythesamespecies-locationexceeds200MT/haagainanother45yearslater.

0

200

400

600

800

1,000

1 12 23 34 45 56 67 78 89 100

C/HA(MT)

YEARS

3.7ACumulaoveBambooCarbonFlows

D.Asper D.Asper D.Asper Guadua Guadua Guadua B.Bambos B.Bambos

200MTBenchmark

0

200

400

600

800

1,000

1 12 23 34 45 56 67 78 89 100

C/HA(MT)

YEARS

3.7BCumulaoveWoodCarbonFlows

LoblollySE LoblollySC PonderosaPinePWE PonderosaPineRMSDouglasFirPWE DouglasFirPWW DouglasFirRMN

200MTBenchmark

Page 17: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

14

4. RationalDecisionMakingBetweenWoodandTimberBambooAR–theCarbonBenefitMultiple

AssumingthecarbonflowmodelspresentedaboveproducerealisticprojectionstocomparemultiplespeciesoftimberbambooandwoodA/Ralternatives,inordertocompletearationaldecisionbetweenthealternatives,weneedtoconstructaframeworkthatcanincorporatethefollowing:

1. AlternativecasesthatarehigherandlowerthanthebaseorExpectedcase,tostresstestthespecificinputs, 2. Timevaluesofprojectednetcarbonflowstoweighearliercarboncapturemoresignificantly,accordinglytoadecision

maker’slevelofconcernaboutclimatechange, 3. ArangeofcompoundscenariosthatincludeallthreeBase,LowandHighCases,butinvariousweightingstoreflecta

fullerrangeofpossiblefutureoutcomesthanjusttheExpectedcase,and 4. Asinglepoint,bottom-line,metricthatscalestherelativebenefitoftimberbambooversusA/Rprojects.

Inthebodyofthissection,weintroduceeachoftheseelementsinthedecisionframework.Together,theyallowustoreacharobustandrationaldecisionbetweentheabilityoftimberbambooandwoodA/Rintheirrespectiveabilitytodeliverneartermcaptureandlong-termstorageofatmosphericcarbondioxide.AdiscussionoftheimplicationsofthedecisioncloseSection4.AlternativeCases1. Expected, Low and High Case Projections. Forourtimberbamboocarbonflowprojections(BCmodel)wehavesetthevariousinputstolevelsthatbestfitourcurrentunderstandingandexpectations.WecallthistheExpectedCaseorBaseCase.But,becausetheBCmodelisnovel,wealsoconstructedtwooutlyingcaseswhereinputsareadjustedtoincreaseanddecreasetheCDRcomparedtotheBaseCaseprojection.WecallthesetheLowandHighCaseprojections.Figure4.1detailsprincipalinputsfortheBaseCaseandchangesfromthebasecasefortheLowandHighCases.Theco-publishedpaperdetailseachoftheseandadditionalinputsandhowtheyareadjustedacrossthethreecases.

4.1PrincipalInputsforLow,Expected(Base)andHighCaseBambooCarbonFlowProjectionsPrincipalInputs Low Base HighMastflowering Emit100%ofstandingCarbon

Stockatspecifiedintervalsafterplanting.Guaduaat60years,D.asperandB.Bambos

at40and82yearsrespectively.

Nomastflowering Nomastflowering

%ofmaturecarbonharvested

30%(↓50%) 60% 85%(↑41%)

%ofharvestedcarbonproductizedoremittedinfield

70%,30%(↓13%) 80%,20% 90%,10%(↑13%)

%ofcarboninharvestedculmsturnedintoOSB,Paper,oremittedduringproduction

70%,15%,15%(↓18%) 85%,10%,5% 95%,5%,0%(↑12%)

%ofnon-culmabovegroundcarbonturnedintoOSB,paper,oremittedduringproduction

0%,50%,50%(↓38%) 0%,80%,20% 0%,90%,10%(↑13%)

Equilibriumgrowthratescalar(%ofthegrowthrateinthefinalyearoftheinitialgrowthperiod)

30%(↓53%) 64% 64%(↑0%)

Page 18: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

15

0%

10%

20%

30%

40%

50%

60%

1 12 23 34 45 56 67 78 89 100

DiscountRate

Year

4.2DiscountRatesbyDifferentConcernLevels

2. Time Valuing Carbon Flows.Agreatmanyoflife’sdecisionsreflectthehighervalueofnear-termbenefitsandthelowervalueofmoredistantbenefits.Generally,thisdisproportionatetemporalvaluationreflectshavinghigherusefulnessorconfidenceinneartermbenefitsandlowerusefulnessorconfidenceinmoredistantbenefits.Surprisingly,decisionmakingbetweenclimatemitigationalternativestypicallydoesnotembracethisimpactoftime.“MostLCAstudies[includingcarbonflowsandfootprints]arebasedonastaticcalculation,wherelifecyclebalancesarecalculatedincludingsummationofallflowsthatoccurduringthestudytimehorizon,regardlessofwhentheyoccur.VeryfewLCAstudiesusingtimedependentapproacharereportedintheliterature.”(Glasare&Haglund,2016)Advancedclimatemodelsimplicitlyincorporateatimingrecognitionwhencomparingalternativescenarios,buttimediscountedvaluesareoddlynotusedintargeteddecisionmakingbetweentwospecificalternatives.Moreover,climatemodelsarehighlycomplex,andlittleunderstoodby“informed”policymakersandthebillionsofindividualsmakingdecisionsdailythatincrementallyimpactourcollectivecarbonfootprints:smallandlarge.PresentValues.Toincorporatetimevalue,eachannualnetcarbonflow(captureoremission)isreducedbyapercentagediscountrate,compoundedforthenumberofyearstheflowisinthefuture.Thesumofallthediscountedcarbonflowsresultsinapresentperiodvalueofalltheforwardflows.Thepresentvalueofdifferentlytimedcarbonflowalternativescanthenberationallycomparedastraditionallyhappensinfinanceandcorporatecapitalinvestmentdecisionmaking.DiscountRates.Thechoiceofthediscountrateappliedtothefuturecarbonflowsisobviouslyimportant.Discountratesinfinancevarybymarketcycleandperceivedriskoftheanticipatedmonetaryflows.Broadly,higherdiscountsratesareusedtoreflectgreaterperceivedriskorlevelsofconcernaboutfutureevents.Relativetoclimatechange,ifyouconsidertheriskmoderate,youwouldspecifylowerdiscountrates,perhapsrangingfrom5-10%.Ifyouconsiderthelevelof

concernseriousbutnotlifethreatening,youwouldspecifyhigherdiscountrates,perhapsbetween15and25%.Andifyouconsiderthelevelofconcernextremeandpossiblyexistentialforhumanity,youwouldspecifyaseverediscountrate,perhaps50%ormore.Notethough,thespecifieddiscountratedoesnotneedtobeafixedpercentagefortheentiretimehorizon.Itcanchangewithtimetoemphasizethesignificanceofearlierorlateroutcomes.Ifyouthinkthatimmediateactionisvitalanddistantactionisfutile,thenyouwouldspecifydiscountratesthatstepsteeplywithtime.Alargestepfunctionisconsistentwithconcernabouttheacceleratingandharmfulfeedbackcyclespresentinclimatedynamics,namely,meltingthepolaricecapsandtheGreenlandicecoverorthawingthepermafrostsoilinthenorthernhemisphere. Inourmodeling,weconstructthreepresentvaluescenariostoreflectthelevelofconcernofthedecisionmakeraboutclimatechange.Foreachlevelofconcern,thediscountratesincreasewithtime(SeeFigure4.2above.)

ExtremeConcern(highdiscountrates)

SeriousConcern(mediumdiscountrates)

ModerateConcern(Lowdiscountrates)

Page 19: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

16

3. Weighted Scenario Analysis.Whenadecisionmakerisnotcertainthatasingleorparticularfutureprojectionwillactuallyoccur,itissensibletocombinearangeofthepossibleprojectionsorcasesbyweightingtheirrespectivelikelihoods.12

Infinancethisiscalledscenarioanalysis–awaytosensitizeresultsnotonlyonasingleassumedinputbutonacombinationofinputs,whichmightotherwiseoperateindependentlyofeachother.Differentweightingscanbeappliedtoreflectthedecisionmaker’sexpectationanduncertainty.Equalprobabilitiesassignedtoeachscenariosuggestspureuncertaintyaboutwhichprojectioncasemightoccur.Weightingtheoutliersasymmetricallyimpliesanidentifiedbiasacrosstheprojections.TocompletetheScenarioAnalysis,weconstructedfourscenarios,oneforcompleteuncertainty,oneforuncertaintybutadegreeofconfidenceintheBaseCaseScenario,onethatbiasestowardhighertimberbambooCDRandonethatbiasesagainsttimberbamboo,whilewoodprojectionsremainconstant.(SeeFigure4.3.)4. The Bottom Line: The Carbon Benefit Multiple.Thecorequestionweareaskingis:DoessubstitutingtimberbambooA/Ropportunitiesproducesuperiorcarboncaptureandstorage(CDR)comparedtowoodA/R?Toanswerthisquestion,wedevelopedtheabovemodelinganddecisionframeworkthat:

1. Generatesfullycomparablelongitudinalcarbonflowprojectionsfortimberbamboothatcanbecomparedtowoodprojectionsforforestgrowth,harvestandHWPproduction,andforfinaldisposition,

2. Combinesmultiplespeciesfrommultiplelocationsforbothtimberbambooandwood,toavoidcherrypickingwinnersandlosers,

3. ProjectsthetimberbamboocarbonflowsacrossExpected,LowandHighCases,4. Timevaluesthefulllongitudinal,multi-speciesnetcarbonflowsacrossModerate,SeriousorExtremelevelsof

concernforclimatechangebyusingdifferenttimediscountrates,5. Constructsandweightscompoundscenariostorepresentdifferentdegreesofconfidenceorbiasinthe

projections.Yet,intheend,policyanddecisionmakersfamouslyrequiresimplebottomlinecomparisonsbetweenalternatives,asin,“Canwejustgettothebottomline,please.”Thisfinalbottom-linecomparisonisreflectedinourCarbonBenefitMultiple(CBM),whichexpressesaratioofthemulti-species,time-weighted,andscenario-weightedcarbonflowprojectionsfortimberbambooA/RcomparedtothesameforwoodA/R.Themultiplesimplydividestheresultsof1-5abovefortimberbamboo,by1-5aboveforwood.Whentheratioisgreaterthanone,timberbambooA/RismorepotentatdeliveringCDRthanwoodA/Ris.Whentheratioislessthanone,woodA/RismorepotentatdeliveringCDRthanbambooA/Ris.Forexample,iftheCBMis1.15,thentimberbambooA/Ris15%morepotentdeliveringtimeweightedCDRthanwoodA/Ris.IftheCBMis2.75thentimberbambooA/Risgenerating175%moreCDRthanwoodA/R.UsingonlytheBaseCaseforillustrativepurposes,Figure4.4showshowtheCarbonBenefitMultipleisderivedbycomparingtheCDRfortimberbambooacrosseachofthefourconcernlevels.Inabsoluteterms,noticehowlargetheCarbonBenefitMultipleisfortimberbamboocomparedtowoodacrossallpossibleconcernlevels(timevaluing)fortheBaseorExpectedCase.

12Intheextremecaseofmultiplescenarios,theweightedscenarioanalysiscanbecomeaMonteCarlosimulation,whichisacommonoptionpricingmethodologyinfinance.

33%

17% 15%

60%

33%

66%

25% 25%33%

17%

60%

15%

0%

20%

40%

60%

80%

100%

A.CompleteUncertainty B.SomeUncertainty C.BambooOverperforms D.BambooUnderperforms

Likelihood

4.3ScenarioProbabilityWeighongsbyCase

Low Base High Low Base High Low Base HighLow Base High

Page 20: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

17

555

143101 72

112

27 18 12

4.9CBM

5.4CBM5.6CBM

5.9CBM

4.0

4.5

5.0

5.5

6.0

0

200

400

600

Zero Modest Serious Extreme

CBMC/HA(MT)

4.4BaseCase:CarbonBenefitMulople

TheseresultssuggestthattimberbambooA/RsystemscanbefiveormoretimesaspotentaswoodA/Rsystems,whenbothsystemsareundergoingHWPextraction.WhencomparingtheBaseCaseresultsforthethreelevelsofconcern,noticethefollowingobservations:(1)inthe“Zero”timevaluingcomparison,timberbambooA/RhasaCBMof4.9xthatofwood,(2)inthe“Modest“to“Extreme”comparisons,theoveralleffectoftimevaluingistosignificantlylowertheCDRofbothtimberbambooandwoodbyaboutthree-quarters,(3)acrossthethree“Modest”to“Extreme”levelsofconcern,theCBMrisesinfavoroftimberbambooasthelevelofconcernaboutclimatechange(usinghigherdiscountrates)increases.ThislastobservationreflectsthatprevalenceofneartermcarbonflowsfromtimberbambooA/RcomparedtowoodA/R.

WhendevelopingandtestingtheGeneralizedModelofTimberBambooCarbonFlows,wedidnotanticipatethattimberbambooA/RwouldoutperformwoodA/Rsosignificantly.Accordingly,whenwesawtimberbamboo’srelativelydominatingresults,weaddedtheScenarioAnalysistothedecisionframeworktomakesurethecomparisonwascompletedacrossaverywiderangeofinputs.Figure4.5showsthecompletedCBMprojectionsforthefourscenarios,whichweightoutvariouslikelihoodsfortheLow,ExpectedandHighCases.

ThefigurepresentseachweightedScenarioresultwiththethreeLevelsofConcern(timevaluing).TheScenarioresultsagainshowtimberbambooA/RisrobustlysuperiortowoodA/RforallScenariosA-D,generallyproducingfivetimesthetime-valuedCDR/hectareofland,whenHWPextractionisincludedforbothA/Rsystems.ThisremainsthefindingeveninD.BambooUnderperformsScenario,whererepeatedmastfloweringisassumedtooccurforallthreespecies.Asexpected,withineachofthetripletsforallScenarios,thegreatertheLevelofConcern(highertimevalue)thegreatertheCBMfortimberbamboo.BecauseofthecriticalimportanceofHWPinA/Rsystems,wenextdiscussourcompany’sproductcontributiontoHWPthatcanhelpturnbambooplantationsinperpetualcarbonfarms.

5.35.3

5.6

5.1

5.55.6

5.8

5.4

5.85.9 6.0

5.8

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

A.CompleteUncertainty B.SomeUncertainty C.BambooOutperforms D.BambooUnderperforms

CBM

4.5CBMComparisonBetweenScenarios

Moderate

Serious

Extreme

Page 21: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

18

ImplicationsWecompletedourworktoestablisharobustframeworktoanswerthecorequestion:DoessubstitutingtimberbambooA/Ropportunitiesproducesuperiorcarboncaptureandstorage(CDR)comparedtowoodA/R?Wedidnotexpecttheresultstonecessarilyfavortimberbambooandcertainlydidnotexpectthemagnitudenorrobustnesstobeaswehavenowreportedabove.Moreover,thepotencyoftimberbamboo’sCDRissogreatthatthecarefulconstructionofourdecisionframeworkdoesnotalterthisbasicconclusion.ThisisseenwhencomparingtheCBMcalculatedontheundiscountedBaseCasecarbonflowsinFigure4.4withallthefinalCBMsinallScenariosAtoDinFigure4.5.Ineverycase,timberbambooA/RwithregularharvestintodurableHWPprovides4.5xto6xtheamountofcarbondioxideremovalthatasimilarwoodA/Rprojectdoes.Earliercommentersfamiliarwithbamboo’sfastgrowthhavepointedtotimberbambooasasuperiorsequestrationsystemcomparedtowood.Buttheseassertionshavebeensinglepointcomparisonsnotsubjectedtosensitivityanalysis,nottimevaluedandnotgeneralizable.Throughourworkwehavebuiltamodelthatcancompareannualcarbonflowsoftimberbambooandwoodwithinacomprehensivedecision-orientedframeworktoreachA/Rdecisionsthatreliablydeliverthebenefitofnear-termcaptureandlong-termstorageofatmosphericcarbon.Critically,theseresultsdependontheregularextractionofHarvestedWoodProductsandtheirplacementintolong-termstorage,likethebuiltenvironment.Accordingly,wenextaddresstheuseoftimberbamboointhebuilt-environment.

Page 22: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

19

5.ProductizingTimberBamboointoDurableCarbonStoringProducts.Timberbamboo’snaturalregenerationadvantageoverwoodhaslongbeenknown.However,asexplainedinSections3and4,theabilitytoturnanA/RprojectintoaperpetualcarbonfarmrequiresregularpartialharvestingandmanufacturingofHWPwithlongservicelives.Byitsfastgrowthandearlyandregularharvests,timberbamboodoesthis.Byextension,todriveanewindustryofcommerciallyviableperpetualcarbonfarmsrequiressubstantialdemandforlong-livedbamboo-basedHWP.Withthatdemand,bambooplantationswillbecomecommerciallyattractiveandgainincrementalA/Rinvestments(whereappropriate),thusbecomingperpetualcarbonfarmswhileprovidingvaluableHWP.TheUNFCCChasincorporatedHWP“contributions”intothereportingofnationalGHGinventories.Andmanyscientistshavealreadyhighlightedtheimportanceoflong-livedHWPtoachievingA/Rsequestration.OnestudyreportedthatHWPcontributionsintheUSalreadyequaledabout20%ofallforestcarboncaptureand“couldbeincreasedby…increasingthefractionofwoodusedintheUnitedStatesthatisstoredinlong-livedproducts.”(IPCC,2006)Thebuiltenvironmentwithitslongservicelivesandenormoussizeprovidesthemostpotentcarbonstorageoptionforbamboo-basedHWP.Todate,eventhoughbambooflooringhasbecomepopularinmanydevelopedcountries,itsimpactremainsmicroscopic.Evenwhencombiningbambooflooringanddecorativepanels,bamboo-basedHWPimportedintotheUSannually(nearlyallfromChina)remainslessthan304million.(INBAR,2015)Besidesbeingasmallmarket,flooringandpanelingaresubjecttotastedrivendesigndecisionsandtheynearlyalwayshaveasubstantiallyshorterservicelifethanthestructuralshellofthebuilding.Thus,USdemandfor(mostlyChinese)flooringanddecorativepanelingisnottheenginetohelpdrivetimberbambooA/R.Incontrasttothelimitedsizedflooringmarket,theoverallUSconstructionmarketisinexcessof$1trillion.BamCore’smissionistodevelophighvalue,durableproductsforthelargestsegmentoftheoverallconstructionmarket,low-risestructuralframing,whichexceeds$100billionannuallyintheUS.AcrosstheUSandCanada,low-risebuildingaccountsforabout90%ofthebuiltenvironment.Woodtimberbasedstructuralframing,inturn,accountsforover90%ofalllow-riseframing.WhenHWPisusedinstructuralframing,asopposedtodecorativepanelsorflooring,thestructuralandoperatingperformanceandnotdesignpreferencecandrivethespecificationdecisiontowardsuperiorperformingtimberbamboo.Moreover,onceincorporatedintothebuilding’sstructure,thebamboo-basedcomponentsenjoythelongestpossibleservicelife.Typicalestimatesoftheservicelifeoflow-risebuildingsintheUSrangefrom50to75yearsormore.WhileourfocushereistodemonstratethepotencywithwhichtimberbambooHWPcandrivecarbonfarmingandcarbonsequestration,thatbenefitalonewillnotdrivelarge-scalesubstitutionfromwoodtobamboobuildingandframingproducts.Todrivelarge-scalesubstitutionrequiresthatbamboo-basedproductsbecompletelycostcompetitivewithwoodwhilealsoofferingarangeofadditionalbenefits,beyondjustthecarbonfootprintbenefit.BamCore’sPrimeWallSystem.BamCore’srecentlylaunchedPrimeWallSystemisbothcostcompetitiveandoffersawiderangeofadditionalbenefits,beyondthecarbonfootprint.Bydesigninghigh-performanceloadandshear-bearingpanels,BamCorewasabletointroduceahollow-wallsystemthateliminatesthemostofthecross-cavityandverticalstudsinthelow-riseconstructionmarket.Whenusingthebamboo-basedpanelsinahollow-walldesign,severaladditionalbenefitsandattributesbecomeevident.Acrossnearlyeveryperformancecategory,BamCore’sPrimeWalloffersasuperiorproduct. Figure5.1illustratesthesuperiorperformancethatiscapturedinBamCore’sPrimeWallSystemforfivequantifiableattributeswhencomparedtoconventionalbuildingproducts. Basedonitstimberbamboocore,thePrimeWallprovidesmorecompressivestrengththanaconventional2x6Douglasfirwall.Forthermalperformance,thewallassemblythermalresistance(“R”)ratingsubstantiallyexceedsaconventional2x6wallthathasstandardbattinsulationinbothcoldandwarmclimatesettings.Airleakage,whichalsoimpactthermalperformance,issubstantiallylessforthePrimeWallinbothlowandhigh-pressuresettings.TheFlameSpreadratingisnearlyClassAandsignificantlyexceedsDouglasfirandOSB.AndthemoldriskinherentinnewconstructionissubstatiallylesswhenPrimeWallisusedincomparisontoaconventionalwall.

Page 23: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

20

Inadditiontotheaboveattributes,thePrimeWallprovidesanextremelyhighlevelofsoundisolationcomparedtoaconventionalwallsystem.ItenjoysaLevel1ratingfromtheNationalInstituteofJusticeforresistancetosmallhandguns.ThePrimeWallSystemalsosavessubstantialconstructionlaborandlowersjobsitewaste.Withthisbroadcollectionofperformanceattributes,whenownerssubstitutethe

BamCorePrimeWallforaconventionalwallfortheirbuilding,buildingownersnotonlyimprovetheirindividualcarbonfootprintsignificantlycomparedtoconventionalwoodframing,buttheyalsobenefitfromimprovedattributesforeachofthesefeatures.Thecombinationofthermal,airleakageandmoldriskattributeswillimmediatelydrivesuperioroperatingperformance,thusloweringoperatingcosts.PassivScience,abuildingperformanceengineeringfirm,completeda12NorthAmerican-citysimulationoftheperformanceofBamCore’sPrimeWall.Thissimulationshowedthatsingle-familyhomeownerscouldsaveanaverageof$1850annuallyor$32,500presentvaluedfor30yearsinlowerheatingandcoolingbills.Thus,buildingsconstructedwithBamCorePrimeWallswillenjoybothloweredembodiedenergyandoperatingenergy,resultinginanunmatchedlowcombinedcarbonfootprintwithgreateroperatingperformance.Moreover,thespeedandaccuracywheninstallingthecustomizedfactorypre-fabricatedwallsystemlowerstheconstructioncostinputoftotalcosts.Ofcourse,anybamboo-basedbuildingproduct,BamCoreorotherwise,thatissubstitutedforwoodwilllowertheembodiedenergyandconstructioncarbonfootprint.However,asstatedabove,todriveadoptionintheconstructionmarket,loweringtheembodiedcarbonfootprintaloneisnotsufficient.Byprovidingfasterandeasierconstructionandbycapturingoperatingadvantages,theadoptiondecisionbecomesfareasier.BeyondWoodFraming-Concrete&Steel.ThemainconclusionfromouranalysisinSection4isthatbysubstitutingtimberbambooforwoodinlong-livedHWPframingproducts,wecandriveanewgenerationofpotentcarbonfarmsasbambooA/Rprojectsgrow.Butthisbamboo-for-woodsubstitutionisreadilyobviousonlyinthoseeconomieswherewood-basedframingdominates,namelyNorthAmerica.IntheUSandCanadianresidentialbuildingmarket,woodframingcommandsabout95%ofthemarket(USCensus,2017).Elsewhereintheworld,concreteandothercementitiousmaterialsare“themostcommonconstructionmaterialadoptedforresidentialconstruction”(Dodoo,2009)innon-ruralmarkets.Inasmallpercentageofinstances,framingisevencompletedwithsteelstuds.Inbothcases,abundantresearcharguesforthecarboncaptureandperformancesuperiorityofwoodcomparedconcreteandsteel.Belowweillustratethebenefitsofwoodcomparedtoconcreteandsteel.GiventhesuperiorityofBamCore’sPrimeWalltoconventionalwoodframing,comparedtoconcreteandsteelthecarbonandoperatingperformanceadvantagesoftheBamCorePrimeWallareevengreaterstill.FramingwithConcrete.Globally,themanufacturingofcementcontributesabout5%ofglobalGHGemissions.Themanufacturingprocessreleasesnearlyequalamountsofcarbondioxidefromthethermalinputrequirements(cementkilnsoperateatnearly1500oC)andfromcalcination,thechemicalreactiontheproducescementandCO₂fromlimestone.(Dodoo,etal.,2014)Dozensofpublishedresearcharticlesnearlyuniformlydecrycement’sinordinatelyhigh-embodiedenergywhenusedasabuildingwallsystemwherewoodiseasilyabetteroption.Concrete,whichcontains12%to15%cement,doesn’ttypicallyofferasufficientlysuperioroperatingperformancetoovercomethishigh-embodiedenergy.“Comparedtowoodconstruction,concreteconstruction[results]insignificantlyhigherconsumptionofenergy(+38%),emissionsofgreenhousegases(+80%),emissionstoair(+46%),andgenerationofsolidwastes(+164%).”(Bowyer,etal.,2008)

Page 24: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

21

40

62

76

94

0

25

50

75

100

BamCorePrimeWall

Wood SheetMetal Concrete

Carbon(MT)

Mateial

5.2EmbodiedEnergyinAverageResidenoalHomeThemainthermalperformancebenefitcitedforconcreteframingisitsmuchhigherthermalmasscomparedtowoodframing.Thermalmasscanhelpsaveoperatingenergy,butonlyinlimitedinstances.Typicallyforthermalmasstolowerenergycostsitrequiresverycarefuldesignandplacementaswellaslesscommonlocalclimateconsiderations.Itisdifficulttoachievethermalbenefitsfromthermalmassincolderclimateswithoutelongatedeast-westfloorplans.Overall,researchersfromOakRidgeNationalLaboratoriesconcludedthathighthermalmassconcretewallsmostlyperformbetterinwarmerclimatesandnotincolderclimatesbuteveninwarmerclimatesanticipateddiurnaltemperatureswingsmustencompassthehumancomfortzoneandwhentheydon’tsignificantenergycanberequiredtore-establishtherequiredtemperatures(Kosny,etal.,2001).Overall,multiplestudieshavefoundthatwood-framedbuildingshavelowernetcarbonemissionsthanconcreteafterconsideringhigherembodiedenergy,comparablenominaloperatingperformanceandthermalmass((Koch,1992),(Borjesson&Gustavsson,2000)(Pingoud&Perala,2000)(Gustavsson,etal.,2006)).Astheclimatechangefocusbeginstobearonthebuiltenvironment,policymakersandcommercialdecisionmakerswillraisethebarforconcretewalledstructurescomparedtowood.Manyofthelocations,whereconcretestructureshavebeenhistoricallypreferred,areinorneartonaturalhabitatsfortimberbamboo.Therisingavailabilityofengineeredbamboobuildingproducts,likeBamCore’sPrimeWallSystems,providesanopportunitytoshiftdirectlyfromhighembodiedenergyconcretetotimberbamboo.Theresultwillbeextremelycompellingcarboncapturingbenefitswithoutanylossoffunctionorperformance.FramingwithSteel.Thecomparisonofsteeltowood-basedbuildingmaterialsisevenmorefrightfulthanforconcrete.Thecarbonfootprinttoproducesteelframingproductsisabout20timesthatofwood(Lippke,etal.,2004).EachtonneofsteelmadereleasestwotonnesofCO₂.Atypicalhouseusingsteelframinghasreleasedabout3.5tonnesofcarbonintotheatmosphere,whilewoodframingstoresover3.1tonnesofcarbon.Moreover,theinternalcarbonefficiencyofproducingwoodframingisquitehigh.Whenincorporatingtheenergycoststoharvest,millandmanufacture,woodframingproductsstoreupto15timesmorecarbonthantheamountofcarbonreleasedinitsproduction(Ferguson,etal.,1996).Onceinoperation,steelisalsoanotoriouslypowerfulthermalbridge,thusrequiringadditionalinsulationmaterialsandneededlabortoreachacomparablethermalperformancetostandardwoodframing.Resourceconservationisthemainenvironmentalargumentforsteelinframingbuildings,sincesteelis100%recyclable.However,whentheobjectiveweighsclimatechangemitigationtheconclusionisclear:steeldoesn’twork.Anyeffectiveresponsetoclimatechangereliesdirectlyontimelymitigationresults,waitinguntiltheendofaservicelifetoaccruethebenefitofsteel’sperfectrecyclabilitycompletelydefeatsthetimingimperativethatwenowfacefightingclimatechange.Moreover,notfactoreddirectlyintotheclimatemitigationoutcomesisthefactthatsteelproductionproducestentimestheamountofSO₂,threetimestheamountofparticulatesandnearly40timestheamountoftaintedwatereffluents(Lawson,1996).Whilesteelframingconstitutesonly1-2%ofthelow-riseframingmarket,steelframingmembersarefrequentlyincludedinotherwisewoodframedbuildingsbecausewooddoesn’tpossesstherequisitetensileorcompressivestrengthtoeasilyspanlongdistancesorserveasmomentframes.Sincebambooenjoysfarhighertensilestrengthandcompressivestrengththanwood,properlyengineeredtimberbamboocanhelptosupplantthiscommonuseofsteelinlow-riseframing.BamCore’sPrimeWallSystemhasbeenengineeredtoeliminatetheneedforadditionalsteelmomentframes,incertaindesigns.Thus,thegeneralsubstitutionofBamCorePrimeWallsfortraditionalwoodframing,canalsoeliminatetheneedforhighcarbonfootprintandSO₂pollutingsteel.

Page 25: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

22

Mankind’sprevailingclimatecrisisisindireneedofsolutions.Ifimplementedsuccessfully,timberbamboo-basedA/Rprojectscanbepowerfulperpetualcarbonfarmswithfargreatersequestrationpotencycomparedtowood.Inordertobesuccessful,however,theremustbeawaytoproductizeharvestedbamboointoproductswithlongusefullivesthatwillstorethefiberoutsidetheatmospohere.BamCore’sbuildingproductscanbeasignificantdriverofthissolution.Ourbamboo-basedPrimeWallsystemisnotonlygreener,butitsattributesalsoperformfarbetterthantraditionalwoodframingacrossallcategories.Thetimeisnowfortheworldtotakeadvantageofnature’sfastestgrowingstructuralfiber.

Page 26: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

23

AboutBamCore

Page 27: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

24

ReferencesBloomberg,M.&Pope,C.,2017.ClimateofHope:HowCities,Businesses,andCitizensCanSavethePlanet.1ed.NewYorkCity:St.Martins.

Bonn, 2018. Bonn Challenge. [Online] Available at: www.bonnchallenge.org

Borjesson, P. & Gustavsson, L., 2000. Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives.. Energy Policy, Volume 28, pp. 575-588.

Bowyer, J. et al., 2008. How does it compare to wood, steel?, Minneapolis: Dovetail Partners, Inc.

Dodoo, A., Gustavsson, L. & Sathre, R., 2014. Lifecylce carbon implications of conventional and low-energy multi-storey timber building systems. Energy and Buildings, pp. 194-210.

FAO, 2010. Global Forest Resources Assessment 2010, Rome: FAO.

Ferguson, I. et al., 1996. Environmental Properties of Timber, Victoria: Forest and Wood Products Research and Development Corporation.

Glasare, G. & Haglund, P., 2016. Climate impacts of wood vs. non-wood buildings, Stockholm: The Swedish Association of Local Authorities and Regions.

Gustavsson, L., Pingoud, K. & Roger, S., 2006. Carbon dioxide balance of wood substitution: comparing concrete and wood-framed buildings, Ostersund: S.N.

Hinkle, W., Hargett, T. & Bailon, W., 2017. BamCore and Global Warming, Windsor: BamCore.

Hinkle, W., McGinley, M., Hargett, T. & Dascher, S., 2018. A Generalized Model of Timber Bamboo Carbon Flows, Windsor: BamCore.

INBAR, 2010. Bamboo and Climate Change Mitigation : A comparative analysis of carbon sequestration, Bejing: INBAR.

INBAR, 2015. Trade Overview 2015: Bamboo and Rattan Products in the International Market, Bejing: INBAR.

INBAR, 2018. Updates on INBAR BONN Challenge Committments, Bejing: INBAR.

IPCC, 2006. Guidlines for National Greenhouse Gas Inventories, Geneva: IPCC.

IPCC, 2018. Global Warming of 1.5 C, Incheon: Intergovernmental Panel on Climate Change.

Koch, P., 1992. Wood versus nonwood materials in U.S. residential construction: Some energy-related global implications. Forest Products Journal, 42(5), pp. 31-42.

Kosny, J. et al., 2001. Thermal Mass- Energy Savings Potential in Residential Buildings, Oak Ridge: Oak Ridge National Laboratory.

Lawson, B., 1996. Building materials, energy, and the environment: Towards ecologically sustainable development. , Red Hill: Royal Australian Institute of Architects.

Lippke, B., Perez-Garcia, J., Bowyer, J. & Wilson, J., 2004. CORRIM: Life-Cycle Environmental Performance of Renewable Building Materials. Forest Products, 54(6).

Page 28: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

25

Lobovikov, M., Paudel, S., Piazza, M. & Wu, J., 2005. World Bamboo Resources: A thematic study prepared in the framework of Global Forest Resources Assessment 2005, Rome: FAO.

Masek, J. G. et al., 2011. Recent rates of forest harvest and conversion in North America. Journal of Geophysical Research, Volume 116.

Micales, J. & K.E. , S., 1996. The Decompostion of Forest Products in Landfilles , Madison: USFS.

Nath, A. J., Lal , R. & Kumar Das, A., 2015. Managine Woody bamboos for carbon farming and carbon trading. Global Ecology and Conservation, Volume 3, pp. 654-663.

New, M., Livereman, D., Schroder, H. & Anderson, K., 2011. Four Degrees and beyond: the potential for a global temperatur increase of four degrees and it implications. Philosophical Transactions of The Royal Society, pp. 6-19.

Pingoud, K. & Perala, A., 2000. Studies on greenhouse impacts of wood construction. 1. Scenario analysis of potential wood utilization in Finnish new construction in 1990 and 1994. 2. Inventory of carbon stock of wood products in the Finnish building stock in 1980, 1990, and 1995., Espoo: Technical Research Center of Finland.

Rogerlj, J. et al., 2016. Paris Agreement climate proposals need a boost to keep warming well below 2 C. Perspective, pp. 631-639.

Smith, J. E., Heath, L., Skog, K. & Birdsey, R., 2005. Methods for Calculating Forest Ecosystem and Harvested Carbon w. Standard Estimates for Forest Types of the U.S., Washington, DC: USFS.

UN, 1992. NON-LEGALLY BINDING AUTHORITATIVE STATEMENT OF PRINCIPLES FOR A GLOBAL CONSENSUS ON THE MANAGEMENT, CONSERVATION AND SUSTAINABLE DEVELOPMENT OF ALL TYPES OF FORESTS, Rio de Janeiro: United Nations Conference on Environment and Development.

WRI, 2018. Iniative 20x20. [Online] Available at: www.iniative20x20.org

Ximenes, F., Bjordal, C., Cowie, A. & Barlaz, M., 2015. The decay of wood in landfills in contrasting climates in Australia. Waste Management, Volume 41, pp. 101-110.

Page 29: Carbon Farming with Timber Bamboo FINAL2 · 2020-03-10 · Carbon Farming with Timber Bamboo: ... And we need both the carbon removal and the structural now! The vast majority of

26

Appendix:InternationalForestationCommitments

BonnCommitments BambooReforestationProjects(INBAR)2020 2030 Total Since2014 Planned(2018-2020)

LatinAmerica&Caribbean

Argentina 1,000,000 1,000,000 1,000,000BelizeBosquesModelo 1,600,000Brazil 12,000,000 12,000,000 22,000,000Brazil'sAtlanticForestRestorationPact 1,000,000 1,000,000Chile 500,000 500,000 500,000Colombia 1,000,000 1,000,000 1,000,000ConservacionPatagonica 1,000,000CostaRica 1,000,000 1,000,000 1,000,000CubaDominicanRepublic 89,000Ecuador 500,000 500,000 500,000ElSalvador 1,000,000 1,000,000 1,000,000Guatemala 1,200,000 1,200,000 1,200,000GuatemalaPrivateNaturalReserves 40,000 40,000Honduras 1,000,000 1,000,000 1,000,000Jamaica 2 20,000Mexico 8,470,000 8,470,000 8,470,000Mexico(Campeche) 350,000 350,000Mexico(Chiapas) 180,000 180,000Mexico(QuintanaRoo) 400,000 400,000Mexico(Yucatan) 300,000 300,000Nicaragua 2,700,000 2,700,000 2,800,000Panama 1,000,000 1,000,000 1,000,000ParaguayPeru 3,200,000 3,200,000 3,200,000 2,660 1,000SurinameUruguay 2,500,000

Total 23,610,000 13,230,000 36,840,000 49,859,000 2,662 21,000

NorthAmericaAmericanBirdConservancy 100,000UnitedStates 15,000,000 15,000,000

Total 15,000,000 15,000,000 100,000Asia

AsiaPulpandPaper 1,000,000 1,000,000Armenia 260,000Bangladesh 750,000 750,000 730 8,340Benin 200,000 300,000 500,000Georgia 10,000China 1,000,000India 13,000,000 8,000,000 21,000,000 100,000 200,000IndonesiaKazakhstan 1,500,000Kygyzstan 320,000Malaysia 1,000Mongolia 600,000 600,000Nepal 1,500Pakistan 100,000 100,000Pakistan(KPK) 350,000 250,000 600,000Phillipines 6,257 225,746SriLanka 200,000 200,000 1,000 15,000Tajikistan 70,000Uzbekistan 500,000Vietnam 95,000

Total 16,200,000 11,210,000 27,410,000 109,487 1,545,086

AfricaBurundi 2,000,000 2,000,000 300 345Cameroon 12,060,000 12,060,000CentralAfricanRepublic 1,000,000 2,500,000 3,500,000Chad 5,000,000 5,000,000Côted'Ivoire 5,000,000 5,000,000DemocraticRepublicofCongo 8,000,000 8,000,000Ethiopia 15,000,000 15,000,000 500,000Ghana 2,000,000 2,000,000 14,100 46,000Guinea 2,000,000 2,000,000Kenya 5,100,000 5,100,000 200Liberia 1,000,000 1,000,000Madagascar 2,500,000 1,500,000 4,000,000 150 1,600,000Malawi 2,000,000 2,500,000 4,500,000Mozambique 1,000,000 1,000,000 120 1,600Niger 3,200,000 3,200,000Nigeria 4,000,000 4,000,000 36,000RepublicofCongo 2,000,000 2,000,000Rwanda 2,000,000 2,000,000 100 300Tanzania 90 5,000

Uganda 2,500,000 2,500,000 60 3,000

Total 39,200,000 44,660,000 83,860,000 14,920 2,192,445Totals

TotalCommitment 94,010,000 69,100,000 163,110,000 49,959,000 127,069 3,758,531TotalGoal 150,000,000 350,000,000 500,000,000 5,000,000 5,000,000%Commitment 63% 20% 33% 3% 75%NumberofParties 33 26 47 18 14 19

Country/Party Initiative20x20