Carbon Dioxide Removal From Coal-Fired Power Plants

download Carbon Dioxide Removal From Coal-Fired Power Plants

of 13

Transcript of Carbon Dioxide Removal From Coal-Fired Power Plants

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    1/13

    C RBON DIOXIDE REMOV L FROM CO L FIRED POWER PL NTS

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    2/13

    N R Y NVIRONM NT

    VOLUMEl

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    3/13

    Carbon Dioxide Removal

    from Coal-Fired Power

    Plants

    by

    Chris Hendriks

    Department o Science Technology and Society

    University

    o

    Utrecht

    Utrecht The Netherlands

    SPRINGER SCIENCE BUSINESS MEDIA, B.V.

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    4/13

    A C.I.P. Catalogue record for this book is available from the Library of

    Congress

    ISBN 978-94-010-4133-1 ISBN 978-94-011-0301-5 eBook)

    OI

    10.1007/978-94-011-0301-5

    Printed

    n

    acid-free paper

    Ali Rights Reserved

    1994 Springer Science+Business Media Dordrecht

    Originally published by Kluwer Academic Publishers in

    1994

    Softcover reprint

    o

    the hardcover 1st edition 1994

    No

    part of

    the

    material protected by this copyright notice may be reproduced or

    utilized in any

    form

    or by any means electronic or mechanica1

    including photocopying, recording or

    by any

    information storage

    and

    retrieval

    system. w ithout written permission

    from the

    copyright owner.

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    5/13

    ont nts

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    6/13

    Abbreviations

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

    I.

    Introduction

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1

    1.1. Greenhouse

    gas

    emissions and climate change . . . . . . . . . . . . 3

    1.1.1. Emissions and concentrations of greenhouse gases 3

    1.1.2.

    Impact

    of increasing greenhouse gases concentration 4

    1.2. Options to reduce carbon dioxide emissions 5

    1.2.1. Carbon dioxide removal 8

    1.3. Scope of

    the thesis

    10

    1.4. Outline of

    the thesis.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    11

    1.4.1.

    General

    evaluation

    method.

    . . . . . . . . . . . . . . . . . . . .

    12

    1.4.2. Some notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    II . Simulation and optimization of

    carbon

    dioxide recovery

    from

    the

    flue

    gases

    of

    a coal-fired power plant

    using

    amines

    14

    Abstract

    19

    2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    2.2. The chemical absorption

    process.

    . . . . . . . . . . . . . . . . . . . . . 22

    2.2.1. General process description. . . . . . . . . . . . . . . . . . . . .

    22

    2.2.2. Types of absorbent 23

    2.2.3. Effects of flue gas contaminants 24

    2.3. Simulation of the scrubber in ASPEN

    PLUS

    . . . . . . . . . . . . . . . 25

    2.3.1. ASPEN

    PLUS for flow

    sheet

    simulation 26

    2.3.2. Simulation of

    the

    performance for

    the

    base-case design

    26

    2.3.3. Optimization of the scrubber . . . . . . . . . . . . . . . . . . . . 29

    2.3.4. Design and results 32

    2.3.5.

    Discussion.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    2.4. Integration of the scrubber

    in

    the power plant 35

    2.4.1. Power loss caused by steam extraction 36

    2.4.2. Power saved by avoiding preheating boiler feed water . 38

    2.4.3. Power consumption by the carbon dioxide scrubber . . . 38

    2.4.4. Power consumption for carbon dioxide compression . . . 38

    2.4.5. Calculation of plant efficiency losses . . . . . . . . . . . . 39

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    7/13

    2.5. Cost analysis 41

    2.5.1.

    Investment

    costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    2.5.2. Electricity production costs and carbon dioxide recovery

    costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    45

    2.5.3. Sensitivity analysis. . . . . . . . . . . . . . . . . . . . . . . . . . .

    45

    2.5.4. Use of

    diethanolamine

    45

    2.6. Discussion 46

    2.7. Conclusions 49

    III.

    Carbon

    dioxide

    recovery

    from flue gases of a

    conventional

    coal

    fired

    power

    plant using polymer

    membranes

    51

    Abstract

    53

    3.1.

    Introduction.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    54

    3.2. Principle of gas

    separation

    by

    membranes

    55

    3.3.

    System

    description . . . . . . . . . . . . . . . 56

    3.3.1.

    Flue

    gas compressors 59

    3.3.2.

    Heat

    exchangers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    3.3.3. Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    61

    3.3.4.

    Membrane

    module 63

    3.3.5.

    Membrane

    configuration.

    . . . . . . . . . . . . . . . . . . . . . .

    64

    3.3.6. Permeate

    compressors.

    . . . . . . . . . . . . . . . . . . . . . . . . 64

    3.3.7.

    Expanders

    64

    3.3.8.

    Summary of

    design conditions

    and

    design

    parameters

    .

    64

    3.4. Optimization

    of the

    recovery system

    .

    . . . . . . . . . . .

    65

    3.5. Technical calculations 66

    3.6. Costs

    of

    the recovery

    system.

    . . . . . . . . . . . . . . . . . . . . . . . . 67

    3.6.1.

    Investment

    costs . . . . . . . . . . . 68

    3.6.2. Specific carbon dioxide mitigation costs . . . . . . . . . . . .

    70

    3.6.3. Cost break-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    75

    3.6.4. Improved turbomachinery . . . . . . . . . . . . . . . . . . . . . .

    76

    3.6.5. Improved gas-separation

    membranes

    77

    3.7. Discussion 78

    3.8. Conclusions 80

    ii

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    8/13

    rn Carbon dioxide recovery from

    f lue gases

    of

    a

    conventional

    coal-fired power plant by

    low-temperature disti l lat ion

    83

    Abstract

    85

    4.1.

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    86

    4.2.

    System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    87

    4.3.

    Efficiency loss

    resulting

    from carbon dioxide recovery. . . . . .

    90

    4.3.1.

    Heat exchanger (I) and cooling machine (II)

    91

    4.3.2.

    Compression

    and

    expansion (III,

    V,

    XI, XIII) . . . . . . . .

    92

    4.3.3.

    Heat exchanger (IVa, IYb, VI) . . . . . . . . . . . . . . . . . . .

    93

    4.3.4. Drying unit (VII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    4.3.5.

    Heat exchanger (VIII) . . . . . . . . . . . . . . . . . . . . . . . . .

    94

    4.3.6.

    Carbon dioxide separation unit X

    94

    4.3.7. Liquefaction of carbon dioxide (XI) 96

    4.3.8.

    Summary

    97

    4.4. Cost analysis 98

    4.4.1. Investment

    costs.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    4.4.2. Electricity production costs and carbon dioxide recovery

    costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    103

    4.4.3. Cost optimization of the recovery system. . . . . . . . . . . 103

    4.5. Discussion 106

    4.6. Conclusions 107

    v.

    Carbon dioxide recovery

    from

    an integrated coal gasifier

    combined

    cycle

    plant using

    a

    shift

    reactor

    and

    a scrubber 109

    Abstract 111

    5.1.

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    112

    5.2.

    System

    description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    5.2.1.

    Coal gasification and gas clean-up. . . . . . . . . . . . . . . . .

    113

    5.2.2.

    The

    shift reactors

    114

    5.2.3. Hydrogen sulphide removal. . . . . . . . . . . . . . . . . . . . . . 118

    5.2.4. Carbon dioxide separation. . . . . . . . . . . . . . . . . . . . . . . 118

    5.2.5.

    Compression of carbon dioxide

    120

    5.2.6.

    Hydrogen-fuelled gas turbine

    121

    5.3.

    Efficiency losses resulting from carbon dioxide recovery

    122

    5.3.1.

    Shift reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    122

    5.3.2. Physical absorption unit . . . . . . . . . . . . . . . . . . . . . . 127

    II I

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    9/13

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    10/13

    6.4. Cost analysis 165

    6.4.1.

    Investment

    costs . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    166

    6.4.2. Electricity production costs

    and

    carbon dioxide recovery

    costs.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    6.4.3. Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

    6.5. Discussion 170

    6.6. Conclusions 173

    VII. Underground storage of carbon dioxide . . . . . . . . . . . . . . .

    175

    Abstract

    177

    7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

    7.2. Underground structures for carbon dioxide

    storage.

    . . . . . . 179

    7.3. Underground storage capacity 180

    7.3.1. Storage capacity

    in natural

    gas fields 181

    7.3.2. Storage capacity

    in

    oil fields . . . . . . . . . . . . . . . . . . . . . 184

    7.3.3. Storage capacity

    in

    aquifers 188

    7.3.4. Discussion

    and

    conclusion.

    . . . . . . . . . . . . . . . . . . . .

    192

    7.4. Underground injection of carbon

    dioxide.

    . . . . . . . . . . . . . . . . 196

    7.5. Costs of underground storage of carbon dioxide 199

    7.5.1. Costs of compression. . . . . . . . . . . . . . . . . . . . . . . . .

    201

    7.5.2. Costs of surface pipeline

    and

    surface facilities. . . . . . . . 202

    7.5.3. Well drilling costs . . . . . . . . . . . . . . . . . . . . . . . . . . .

    202

    7.5.4. Costs of carbon dioxide storage . . . . . . . . . . . . . . . . . . . 203

    7.5.5. Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . .

    204

    7.5.6. Discussion of the cost estimate . . . . . . . . . . . . .

    205

    7.6. Conclusions 208

    VIn. Summary and conclusions

    IX.

    e f e r e n c e s

    223

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    11/13

    Abbreviations

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    12/13

    Ag

    ASU

    BFW

    CO

    CO

    2

    c

    p

    c

    v

    DEA

    DEMEA

    DGA

    DIPA

    GtC

    Gtonne

    H

    2

    H

    2

    H

    2

    S

    HP

    ICGCC

    IPCC

    K

    kJ

    e

    kPa

    rr

    kW

    kWh

    LP

    m

    3

    N

    MDEA

    MEA

    MJ

    MP

    MUS

    MW

    MW

    e

    Silver

    Air separation

    unit

    Boiler feed-water

    Carbon monoxide

    Carbon dioxide

    US-dollarcent

    Isobaric heat capacity

    Isochoric

    heat

    capacity

    Diethanolamine

    Diethylmethylamine

    Diglycolamine

    Diisopropanolamine

    Gigatonne carbon (l09 tonne carbon)

    Gigatonne (10

    tonne)

    Hydrogen

    Water

    Hydrogen sulphide

    High pressure

    Integrated

    coal gasifier combined cycle

    plant

    Intergovernmental Panel on Climate Change

    Kelvin

    Kilojoule electric

    Kilopascal (0.01 bar)

    Equilibrium constant

    Kilowatt

    Kilowatthour

    (3.6x10

    6

    joule electricity)

    Low pressure

    Cubic metre at

    standard

    conditions

    Methyldiethanolamine

    Monoethanolamine

    Megajoule (l06 joule)

    Medium pressure

    Million US-dollar

    Megawatt (10

    6

    watt)

    Megawatt electricity

    IX

    bbrevi tions

  • 8/10/2019 Carbon Dioxide Removal From Coal-Fired Power Plants

    13/13

    bbrevi tions

    MW

    th

    N

    2

    NO

    x

    2

    Pd

    P

    f

    PI

    P

    p

    ppm

    PPO

    PS

    SMS

    SMS-R

    SMS-V

    S02

    tC

    TEA

    tpd

    TSC

    US

    W

    Megawatt thermal

    Nitrogen

    Nitrogen oxides

    Oxygen

    Palladium

    Partial

    pressure at feed side

    Polyimide

    Partial pressure

    at

    permeate side

    part

    per

    million

    Polydimethylphenyleneoxide

    Polysulphone

    Single Membrane Stage

    Single Membrane Stage with recycling

    Single Membrane Stage with venting

    Sulphur

    dioxide

    tonne carbon

    Triethanolamine

    tonne

    per

    day

    Two-Stage Cascade

    US-dollar

    Watt

    x