Carbohydrates Lectures for Medical and Dentist Students 1 st Year Course, Spring Semester, 2009

37
Carbohydrates Lectures for Medical and Dentist Students 1 st Year Course, Spring Semester, 2009 Semmelweis University, Department of Medical Biochemistry Presented by dr. András

description

Carbohydrates Lectures for Medical and Dentist Students 1 st Year Course, Spring Semester, 2009 Semmelweis University, Department of Medical Biochemistry Presented by dr. András Hrabák, Department of Medical Chemistry, Molecular Biology and Pathobiochemistry. CARBOHYDRATES - PowerPoint PPT Presentation

Transcript of Carbohydrates Lectures for Medical and Dentist Students 1 st Year Course, Spring Semester, 2009

Page 1: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Carbohydrates

Lectures for Medical and Dentist Students1st Year Course, Spring Semester, 2009

Semmelweis University, Department of Medical Biochemistry

Presented by dr. András Hrabák, Departmentof Medical Chemistry, Molecular Biology

and Pathobiochemistry

Page 2: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

CARBOHYDRATES

What are carbohydrates ? - Polyhydroxy-oxo compoundsGrouping principles: 1. According to the size of the molecules (i.e. the number of units) - monosaccharides, oligosaccharides, polysaccharides2. According to the number of carbon atoms in monosaccharides - trioses, tetroses, pentoses, hexoses, heptoses etc.3. According to the carbonyl group - aldoses (aldehyde group), ketoses (keto group)

Significances:1. Energy storage - homopolysaccharides2. Structure material - heteropolysaccharides, cellulose3. Intermediates in the metabolism - smaller sugars4. Miscellaneous

Structural characteristics: aldehyde group is always at the end of the molecule (C-1); keto group is theoretically positioned anywhere in the middle of the chain, however, in biologically important ketoses it is at C-2 position

Page 3: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Monosaccharides:

O = C - H CH2OH O = C - H O = C - H CH2OH H - C - OH C = O H - C - OH HO - C - H C = O CH2OH CH2OH H - C - OH H - C - OH H - C - OH CH2OH CH2OH CH2OH D-glyceraldehyde dihydroxyacetone D-erythrose D-treose D-erythrulose aldotriose ketotriose aldotetroses ketotetrose

Chirality and chiral centers in monosaccharides:

The number of possible chiral isomers of a monosaccharide can be calculated by 2n where n is the number of chiral centers.

A monosaccharide belongs to the D-series if the configuration of the chiral center closest to the primary alcoholic OH-group is identical to that of the chiral carbon of the D-glyceraldehyde.

Page 4: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Explanation: if the groups written over the indicated chiral carbon are oxidizedand eliminated as CO2, except the neighbouring, whose -OH is oxidized toaldehyde, the product is glyceralderhyde containing only one chiral carbon. Therefore, each bigger monosaccharide can be decomposed into D- or L-glyceraldehyde, whose chiral -OH group corresponds to the -OH neighbouringto the primary alcoholic group (or, generally to the OH in the largest distanceto the aldehyde/keto group).

R(S) nomenclature of monosaccharides: more complicated, not used frequently, because each chiral center must be characterized separately(too long names, etc.)Biologically important monosaccharides usually belong to D-series(exceptions: L-fucose, L-iduronate)

Optical rotations: its direction is independent on the D- or L-configuratione.g. D-dlucose is dextrorotatory, D-fructose is levorotatory.Enantiomers: complete mirror images, in which each chiral centers areof different configurations, e.g. D- and L-glucose Diastereomers: partial mirror images in which the deciding OH-group isusually of D-configurations, but other hydroxyl groups may be in differentpositions.

Page 5: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Biologically important pentoses and hexoses:Pentoses: O = C - H O = C - H CH2OH CH2OH H- C - OH H - C - OH C = O C = O H- C - OH HO- C - H H- C - OH HO- C - H H- C - OH H- C - OH H- C - OH H- C - OH CH2OH CH2OH CH2OH CH2OH D-ribose D-xylose D-ribulose D-xylulose Hexoses: O = C - H O = C - H O = C - H CH2OH H- C - OH H - C - OH HO- C - H C = O Epimers: sugar pairs in HO- C -H HO- C - H HO- C - H HO- C - H which only one chiral center has H- C - OH HO- C - H H- C - OH H- C - OH different configuration, H- C - OH H- C - OH H- C - OH H- C - OH e.g. glucose and galactose CH2OH CH2OH CH2OH CH2OH D-glucose D-galactose D-mannose D-fructose

Page 6: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Mutarotation, formation of cyclic monosaccharides (hemiacetals):

It is based on the reaction of the aldehyde or keto group with a hydroxyl group appropriately positioned to form a five- or six-membered cyclohemiacetale or cyclohemiketale ring. Reaction type is an intramolecular nucleophilic addition.

HO - C - H O = C - H H - C - OH H - C - OH H - C - OH H - C - OH HO - C - H O HO - C - H HO - C - H O H - C - OH H - C - OH H - C - OH H - C H - C - OH H - C CH2OH CH2OH CH2OH -D-glucose (67 %) open chain form -D-glucose (33 %)

Consequences: the appearance of a new chiral center at C-1 position and the existence of twonew D-glucose isomers (anomers) which are in equilibrium with each other and with the open chain form. Optical rotation is changed during the process (e.g. dissolution of glucose

in water), this is the explanation of the name „mutarotation”.

Page 7: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Pyranose and furanose rings: stable steric structures are possible if the number of the ring atoms is 5 or 6. As pyrane is a six-membered ring containing one oxygen, while furane is similar with a five-membered ring, the cyclohemiacetaleor cyclohemiketale sugar rings are called as „pyranose” (6-membered) or „furanose” (5-membered) structures. Pyranose is characteristic of aldohexoses while furanose is typically found in pentoses and ketohexoses.

Anomers: Chiral isomers differing only in the position of carbonyl-derived hydroxyl group (glycosidic hydroxyl). If its position is identical to the D-configuration of the determining carbon of the projected formula, it is calledas –anomer, while in the case of identity with L-configuration, it is –anomer.Anomers are in equilibrium and they can be transformed freely to each other, differently from other chiral isomers.

Representation rules of cyclic sugars:

1.The oxygen atom of the hemiacetal/ketale ring is written into the upper right position of pyranose or in the uppest position of furanose rings.2. Hydroxyl groups written on the right side of the carbon chain in open-chainmodel, have to be drawn below the ring plane. 3. The CH2OH group should be written over the ring plane in the case of D-sugars (and opposite for L-isomers).

Page 8: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

O O

OH

OHOH

HO

HO HO

CH2OH CH2OH

OH

HO

O O

OH

OH

OH

OH

OH

OH OH

OH

CH2OH CH2OH

Hemiacetal ring structures of - and -D-glucose:

-D-glucose -D-glucose

The structures above cannot show the possible conformations.

-D-glucopyranose (1-OH axial) -D-glucopyranose (1-OH equatorial)

-D-glucopyranose is more stable (~63 %), because all of itshydroxyl groups are in equatorial position; equilibrium is shiftedto right.

Page 9: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

O O

2, 3

,

OH

OH

OH

HOHO

HOH2C HOH

2C

2’-endo--D-deoxyribofuranose 3’-endo--D-ribofuranose

2’-endo--D-deoxyribofuranose is characteristic of B-DNA, 3’-endo--D-ribofuranose conformation is typical in A-DNA and in RNA.

Different endo-conformations of furanose rings in nucleic acids

Page 10: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Reaction of carbohydrates I.

1. Reduction and oxidation2. Ester formation3. Ether formation4. Glycoside formation5. Isomerization

1a. Reduction of carbohydrates: aldehyde or keto group is reduced into primary or secondary alcoholic hydroxyl group, respectively. The product is called sugar alcohol (hexitol, pentitol). Glucose, or fructose are reduced to sorbitol. O = C - H CH2OH CH2OH H - C - OH H - C - OH C = O HO - C -H HO - C -H HO - C -H H - C - OH H - C - OH H - C - OH H - C - OH H - C - OH H - C - OH CH2OH CH2OH CH2OH D-glucose D-sorbitol D-fructose

Page 11: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Reactions of carbohydrates II.

1b. Oxidations of monosaccharides - primary alcoholic group is oxidized uronic acid - aldehyde group is oxidized aldonic acid - both terminal groups are oxidized aldaric acid

O = C - H O = C - H COOH H - C - OH H - C - OH H - C - OH HO - C - H HO - C - H HO - C - H H - C - OH H - C - OH H - C - OH H - C - OH H - C - OH H - C - OH COOH CH2OH CH2OH D-glucuronic acid D-glucose D-gluconic acid Significances: glucuronic acid is involved in biotransformations making compounds more hydrophilic by glucuronide formation. Phosphate ester of gluconic acid is an important intermediate of pentose phosphate cycle.Uronic acids are also building blocks of heteropolysaccharides.

Page 12: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

2. Ester formation: alcoholic hydroxyl groups can react with acids forming esters. Important reactions: intramolecular lactone formation.

3. Ether formation: alcoholic groups can react with each other forming ethers.4. Glycoside formation: involves the participation of glycosydic hydroxyl group.Glycosydic hydroxyl group is distiguished from other hydroxyl groups. They are derived from an aldehyde/keto group by the formation of an intramolecular hemiacetalor hemiketale in a reversible reaction. Therefore, glycosydic OH-group is a hidden aldehyde/keto group, which is more reactive compared to other hydroxyl groups.This group can form special glycosidic ethers (glycosides) or esters. Oligo- and

polysaccharides are also glycosides.

D-gluconic acid andits lactone form (on the right)

COOH C = O H - C - OH H - C - OH O HO - C - H HO - C - H H - C - OH H - C - OH H - C - OH H - C CH2OH CH2OH

Page 13: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Glycoside formation: e.g. –D-glucose reacting with another –D-glucose leads to theformation of maltose:

Two glucose molecules react with each other; one of them (showing on the left side)participates in the reaction with its glycosidic –OH group, forming a glycosidic ether orglycoside. The other glucose (right side) participates with an ordinary secondary alcoholic hydroxyl group. The product is called glycoside, also considered as anacetale (from chemical aspect), which is a disaccharide, this one is called maltose.Polysaccharides are also formed via glycosidic bonds between monosaccharide units.

O

OHHO

CH2OH CH

2OH

HO

OH

OH

O

- H2O

CH2OH

HO

OH

O

CH2OH

OH

OH

O

O

OH

OH

OH

Page 14: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Reactions of sugars with acids and bases

1. Strong acids cause the dehydration of pentoses to furfural and that of hexoses tohydroxymethylfurfural:

2. In basic environment, monosaccharides may be isomerized. During this process enolate anion is formed by proton movement: H - C = O | HO - C - H mannose | R H | H - C = O H - C - OH H - C - OH | || | H - C - OH C - OH C = O glucose | | | fructose R R ene-diol R

O

OHHO

HO CH2OH

H+

OCHO

aldopentose furfural

- nH2O

Page 15: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Deoxy sugars: H - C = O H - C = O H - C = O CH2 HO - C - H CH2 H - C - OH H - C - OH HO - C - H H - C - OH H - C - OH H - C - OH CH2OH HO - C - H H - C - OH CH3 CH2OH 2-deoxy-D-ribose L-fucose 2-deoxy-D-glucose

Amino sugars (in natural amino sugars, amino group is found in position 2) H - C = O H - C = O H - C = O H - C - NH2 H - C - NH2 NH2 - C - H HO - C - H HO - C - H HO - C - H H - C - OH HO - C - H H - C - OH H - C - OH H - C - OH H - C - OH CH2OH CH2OH CH2OH D-glucosamine D-galactosamine D-mannosamine

Page 16: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

N-acetylated sugar derivatives:

H - C = O H - C = O COOH H - C - NH - CO-CH3 H - C - NH - CO - CH3 C = O HO - C - H CH3 - CH - O - C - H CH2

H - C - OH HOOC H - C - OH CH3 H - C - OH H - C - OH H - C - OH CO - NH - C- H CH2OH CH2OH OH - C - H N-acetyl-D-glucosamine N-acetyl-D-muramic acid Muramic acid: N-acetyl-D-glucosamine bearing lactic acid H - C - OHby an ether bond at C-3 position Sialic acid: N-acetyl-mannosamine connected to pyruvic acid H - C - OH sialic acidat C-1 position Function of deoxy and amino sugars: CH2OH

Deoxyribose is a component of DNA, fucose is found in the carbohydrate moietiesof glycoproteins; 2-deoxy-D-glucose is used in research.Acetylated amino sugars are the components of heteropolysaccharides,glycoproteins,blood group and histocompatibility antigens

Page 17: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Functions of sugar alcohols and acids:

Ribitol is a component of riboflavin (vitamin B2). Sorbitol is used as a sweeting agent instead of glucose or sucrose (diabetes!)D-glucuronic acid is important in biotransformation and together with other uronic acids are components of mucopolysaccharides. L-ascorbic acid is Vitamin C. D-glyceric acid is important in glycolysis and its bis-phosphate ester is a regulator of oxygen binding of hemoglobin.

Sugar phosphates (phosphate esters) H - C = O CH2 - O- PO3H2 COOH COOH

H - C - OH C = O H - C - OH H - C - PO3H2

HO - C - H HO - C - H CH2- O-PO3H2 CH2 - O - PO3H2

3-phosphoglycerate 2,3-bisphosphoglycerate H - C - OH H - C - OH Functions of phosphate esters: H - C - OH H - C - OH important intermediates of glycolysis and other processes of carbohydrate metabolism CH2 - O - PO3H2 CH2 - O - PO3H2

glucose-6-phosphate fructose-1,6-bisphosphate

Page 18: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Sugar alcohols:

CH2OH CH2OH CH2OH CH2OH | | | | H - C - OH H - C- OH H - C - OH H - C - OH | | | | H - C - OH HO - C - H H - C - OH CH2OH | | | H - C - OH H - C - OH CH2OH | | CH2OH H - C - OH | CH2OH D-ribitol D-sorbitol D-erythritol glycerol

Uronic and aldonic acids: H - C = O O = C COOH | | | H - C - OH HO - C H - C - OH | || O | HO - C - H HO - C CH2OH | | H - C - OH H - C | | H - C - OH HO - C - H | | COOH CH2OH

D-glucuronic acid L-ascorbic acid (lactone) D-glyceric acid

Page 19: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Disaccharides I.

They are composed of monosaccharides by glycosidic bondingscontaining 2-10 monosaccharide units

maltose cellobiose

Maltose and cellobiose are reducing disaccharides composed of two -D-glucoses and -D-glucoses, respectively, via 1-4 glycosidicbonds.

O O

OH

OH

O1

OH

OH

OH OH4

CH2OH CH2OH

O

O

OH

CH2OH

OH

OH

1OH

OH

4

CH2OH

OHO

Page 20: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Disaccharides II.

Lactose (milk sugar) and saccharose (sucrose, cane sugar):

lactose saccharose (sucrose)

Lactose is a reducing disaccharide composed of a -D-galactose and a-D-glucose via 1,4-glycosidic bond. Sucrose is a non-reducing di-saccharide composed of an -D-glucose and a -D-fructose via a 1,2-glycosidic bond.

O

O

OH

CH2OH

OH

OH

1OH

OH

4

CH2OH

OHO

OO

OH

OH

O1

OH

HOOH

CH2OH

CH2OH

HOH2C

2 5

Page 21: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Disaccharides III.Reducing and non-reducing disaccharides:

If a saccharide contains a free aldehyde or glycosidic (hidden aldehyde) group, it can reduce various reactants, e.g. Cu2+ or Ag+-ions. Sugars lacking these free aldehyde or glycosidic hydroxyl groups fail to reduce these ions. In non-reducing disaccharides, their glycosidic bonding has been formed with the participation of both glycosidic hydroxyl groups. Consequently, non-reducing disaccharides nor did show mutarotation, also requiring the presence of free aldehyde (or glycosidic -OH) group.

Biological importance of disaccharides:Lactose: the most abundant disaccharide in the milk.Sucrose (saccharose): the most important sugar in nutrition in thecivilized world.Maltose and cellobiose are structural units and degradationproducts of starch and cellulose, respectively.

Page 22: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Polysaccharides (glycans)

Polysaccharides contain more than 10 monosaccharide units linked by glycosidic bonds.They may be homopolysaccharides composed of one type of monosaccharides or hetero-polysaccharides composed of more than one type of monosaccharides and their units aredi- or oligosaccharides.Biologically important homopolysaccharides: Name Monosaccharide unit Linkage Found in Starch -D-glucose amylose -1,4 plants amylopectine -1,4; -1,6 plants Glycogene -D-glucose -1,4; -1,6 liver, muscle Cellulose -D-glucose -1,4 plants Inulin -D-fructose -1,6 plants Dextrane -D-glucose -1,6 bacteria

Significance: Starch and glycogen are energy stores in plants and animals, respectively,degraded by amylase and phosphorylase into glucose and glucose-1-phosphate units,respectively. The -1,6-bonding is splitted by -1,6-glycosidases. Cellulose is the mostimportant structural polysaccharide in the plant cell wall. It is degraded by cellulaseproduced by bacteria and snails only. Inulin is used to determine the blood volume,dextrane is used for gel filtration after sulfation with H2SO4.

Page 23: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Amylose - disaccharide unit of -D-glucoses, 1,4-bonding

Amylopectin and glycogen -tetrasaccharide unit of -D-glucoses including a branchingpoint, 1,4 and 1,6-bonding

Cellulose - trisaccharide unit of-D-glucoses, 1,4-bonding

O O

OH

O1

OH

OH OH4

CH2OH CH2OH

OO

n

O

O

O

O

O

OO

OH

OH

OH

OH

OH

OH

CH2OH CH2O

O

CH2OH

CH2OH

OH

HO

O

branching point

amylopectin 24-30glycogen 8-12

O

O

O

O

OO

O

OH

OH

OH

OH

OH

OH

CH2OH

CH2OH

CH2OH

Page 24: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Important heteropolysaccharides

Name Major monosaccharides Linkage kDa size Found in

Hyaluronic acid D-glucuronic acid and -1,3; -1,4 3-8000 synovial fluid N-acetyl-D-glucosamine cartilage, skinChondroitin D-glucuronic acid and -1,3; -1,4 5-50 cornea, bone N-acetyl-D-galactosamine vascular wall, skin - sulfate A 4-sulfate ester - sulfate C 6-sulfate esterDermatan sulfate L-iduronic acid and -1,3; -1,4 15-40 skin, heart N-acetyl-D-galactosamine 4-sulfate ester vascular wallKeratan sulfate D-galactose and -1,3; -1,4 4-20 cartilage N-acetyl-D-glucosamine 4-sulfate ester corneaHeparin (sulfate) L-iduronic acid -1,4 6-25 cartilage N-acetyl-D-glucosamine 2-sulfate ester heart , muscle D-glucuronic acid (6-sulfate ester) mast cell, liverBacterial cell wall N-acetyl-muramic acid -1,4 bacterial polysaccharide N-acetyl-D-glucosamine cell wall

Page 25: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Heteropolysaccharides I.

Hyaluronic acid - disaccharide unit, -1,3-bonding in the unit

Chondroitin-4(6)-sulfate - disaccharide unit, -1,3-bonding in the unit

O

O

OH

COOH

O

OO

OH

CH2OH

NH - CO - CH3OHn

D-glucuronic acid N-acetyl-D-glucosamine

O

O

OH

COOH

O

OO

-O3S-O

CH2OH

NH - CO - CH3OHn

D-glucuronic acid N-acetyl-D-

6-sulfate

galactosamine

Page 26: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

O

O OH O

O-O3S-O

COOH

OH

O

NH-CO-CH3

CH2OH

nL-iduronic acid N-acetyl-D-galactosamine-

4-sulfate

Dermatan sulfate - -1,3-bonding

Page 27: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

OO

O

O

OH

OH

CH2OH CH2O-SO3-

HO

O

NH-CO-CH3

n

D-galactose N-acetyl-D-glucosamine-

6-sulfate

Keratan sulfate I; in keratan sulfate II N-acetyl D-galactosamineis instead of D-galactose - disaccharide unit, -1,3-bonding

Page 28: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

O

O

O

COOHOOOH OH

NH-SO3- O-SO3

-

CH2-O-SO3-

nD-glucosamine-N-sulfate L-iduronic acid-

6-sulfate 2-sulfate

Heparin; disaccharide unit, -1,4,-bonding

Page 29: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Glycoproteins and proteoglycans

Covalent conjugates of proteins and carbohydrates. In glycoproteins, the protein part is bigger, while in proteoglycans the size of the poly-saccharide is definitive. They are different in certain aspects:

Proteoglycan Glycoprotein

Found in cartilage, bone membranes, body fluidscarbohydrate glycosaminoglycan oligosaccharidemonosaccharide units/molecule > 50 < 25repeating unit disaccharide nobranching no yeshexuronic acid found not found

The carbohydrates are linked to protein via special amino acid side chains. The most frequent glycopeptide bonds are the N-glycosidic bond via asparagine side chains and the O-glycosidic bonds via serine or threonine residues. The most frequent sugars in glycoproteins are mannose, glucose, galactose, N-acetylated hexosamines, sialic acid, L-fucose. Proteoglycans contain heteropolysaccharides.

Page 30: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Glycoproteins and proteoglycans II.

In the figure below the two specific glycopeptide bonds are shown.

In bacterial cell walls, where the muramic acid has a lactic side chainwhich can be esterified, a tetrapeptide is linked to this part of the molecule (L-Ala-D-Glu-L-Lys-D-Ala) and the peptidoglycan chainsare linked to each other by pentaglycine bridges between L-Lys -NH2 side chains and D-Ala COOH terminals (by amide bondings)

O

O

HOH2C

HOH2C

HO

HO

OH

OH

NH

NH

CO-CH3

CO-CH3

NH-CO-CH2-CH

O-CH-CH

CO

CO

NH

NH

protein

protein

CH3

A

B

Page 31: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Glycolipids and lipopolysaccharides

Covalent conjugates of lipids and carbohydrates. The most known example is the ABO blood group system where a penta- or hexa-saccharide unit is linked to the sphingosine part of a ceramide and the specificity is determined by the composition of the carbohydrate moiety.

Lipopolysaccharides (LPS) are known as bacterial endotoxins. They may cause serious septic shock because LPS induces the inducible nitric oxide synthase enzyme in various cells resulting in a high NO level causing a dramatic decrease of blood pressure leading to death. LPS is also involved in the initiation of inflammatory responses.

SalmonellaLPSlipid A

O OO

OO

PO

O

O

P

O

P

OHO

HO

HO

O

NH NH

NH3+

OH O

O

O

O

O O O

O

OC14

C14 C14

C12

O-

C14

C14

O

O

O

O

C16

OH

NH3+

O-O-

Page 32: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

O

CH2OH

O

O

O

CH2OH

O O

O

O

OH

OH

OH

OH

HO

HO

HO

HO

HO

HO

O

O

CH2OH

CH2OH

CH3

NH-CO-CH3NH-CO-CH3A-antigen: N-acetyl-galactosamine

B-antigen: D-galactose

H(O)-antigen: ----galactose-N-acetyl-glucosamine

L-fucose

Blood group antigens; AB0 system, 0 antigen right down

Page 33: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

Analysis of carbohydrates

Classical protocol:1. Isolation and purification2. Polysaccharide or not ? – positive Lugol reaction indicates starch or glycogen 3. If not, disaccharide or not ? – positive Barfoed probe suggests monosaccharide or reducing disaccharide. Maltose and lactose are distinguished by their different fermentation.4. If monosaccharide, pentose or hexose – pentose is detected by Bial-orcin reaction5. For hexose, aldose, or ketose – Seliwanoff-reaction positivity indicates fructose6. Aldohexose – glucose and galactose are fermented differently

More detailed analysis is possible using more sophisticated chemical methods including various hydrolytic processes, methylation, osazone formation.Recent protocol: Gas chromatography, HPLC and the study of various bondings byspectroscopic methods. These are chemical methods.

Blood glucose content is a very important indicator of metabolic homeostasis. It can be measured by a kit based on the specific oxidation of glucose by glucose oxidaseenzyme. This reaction requires FAD coenzyme, which is reoxidized forming peroxide.Peroxide is removed by peroxidase enzyme, using a chromofor substrate, finally the oxidation of the substrate is accompanied by a color formation measured by spectro-photometer. Using a glucose standard with known glucose concentration, the glucosecontent of blood samples can be calculated. Normal range of blood sugar content is3.3-5.5 mM. It is strictly regulated by various hormones (details in 2nd year)

Page 34: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

PFK-I is inhibited allosterically by ATP, which is the end product ofglycolysis, activated by ADP and AMP. It is also activated by fructose-2,6-bisphosphate, produced by PFK-II.

O OH

CH2OH

-O-P-O-H2C

OH

OH OH

OH

-O-P-O-H2C OHO

CH2

-O-P-O-

O O

O

O-

O-

O-

+ ATP

- ATP

fructose-6-phosphate fructose-1,6-bisphosphate

enzyme: phosphofructokinase I

Role of a hexose phosphate in the regulated reaction of glycolysis

Page 35: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

CH2OH

C=O

HO-C-H

H-C-OH

CH2O-PO

32-

CH2O-PO

32-

H-C-OH

+ H-C-OH

H-C-OH

H-C=O

H-C-OH

H-C-OH

H-C-OH

CH2O-PO

32-

HO-C-H

C=O

CH2OH

H-C=O

H-C-OH

CH2-O-PO

32-

+

xylulose-5-phosphate ribose-5-phosphate sedoheptulose-7-phosphate glyceraldehyde-3-phosphate

enzyme: transketolase

This is a reaction of pentose phosphate pathway, an alternative glucosecatabolic route, contributing to NADPH and pentose synthesis.

Role of a pentose phosphates in the catabolism of glucose in liver

Page 36: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

N

N

O

OO

OH OH

CH2-O-P-O-P-O-PO

32-

O O

O-

O-

O

HO

OH

OH

CH2OH

+

O-

O-

OO

OHOH

OO

O

N

NCH

2-O-P-O-P-O

CH2OH

OH

OH

HO

O

uridine-triphosphate (UTP) glucose-1-phosphate

2-O

3P-O

UDP-glucose synthetase

O=P-O-P=O

O-

O-

O-

O-

UDP-glucose pyrophosphate

+

Role of a sugar phosphate in the synthesis of a sugar nucleotide

Page 37: Carbohydrates Lectures for Medical and Dentist Students 1 st  Year Course, Spring Semester, 2009

ATTENTION!

The material of carbohydrate lectures will be presented onto the website of the Department of Medical Biochemistry.

You may try to read it and to save it onto your own pendrive after searching the following website:www.biokemia.sote.hu, for students Medical Chemistry II. authorized pages, username: file; Password: open2; In the case of any troubles write an e-mail to Dr. István Léránt to the address of [email protected]: carblec.pptSoftware needed: Office/PowerPoint Recommended material: Lehninger book, list of carbohydrate structures created by Dr. Zsolt Rónai.

Have a good learning, dr. A. Hrabák