Capitulo 4 Soluciones Purcell 9na Edicion

46
Instructor’s Resource Manual Section 4.1 249 CHAPTER 4 The Definite Integral 4.1 Concepts Review 1. 5(6) 2 30; 2(5) 10 2 β‹… = = 2. 3(9) – 2(7) = 13; 9 + 4(10) = 49 3. inscribed; circumscribed 4. 0 1 2 3 6 + + + = Problem Set 4.1 1. 6 6 6 1 1 1 ( 1) 1 6(7) 6(1) 2 15 k k k k k = = = βˆ’ = βˆ’ = βˆ’ = βˆ‘ βˆ‘ βˆ‘ 2. 6 2 1 6(7)(13) 91 6 i i = = = βˆ‘ 3. 7 1 1 1 1 1 1 1 1 2 1 3 1 k k = = + + + + + + βˆ‘ 1 1 1 1 4 1 5 1 6 1 7 1 + + + + + + + + 1 1 1 1 1 1 1 2 3 4 5 6 7 8 1443 840 481 280 = + + + + + + = = 4. 8 2 2 2 2 2 2 2 3 ( 1) 4 5 6 7 8 9 271 l l = + = + + + + + = βˆ‘ 5. 8 2 1 ( 1) 2 m m m βˆ’ = βˆ’ βˆ‘ 1 1 2 0 3 1 (1)2 (1)2 (1)2 βˆ’ =βˆ’ +βˆ’ +βˆ’ 4 2 5 3 6 4 (1)2 (1)2 (1)2 +βˆ’ +βˆ’ +βˆ’ 7 5 8 6 (1)2 (1)2 +βˆ’ +βˆ’ 1 1 2 4 8 16 32 64 2 = βˆ’ + βˆ’ + βˆ’ + βˆ’ + 85 2 = 6. 7 3 (1)2 ( 1) k k k k = βˆ’ + βˆ‘ 3 3 4 4 (1)2 (1)2 4 5 βˆ’ βˆ’ = + 5 5 6 6 7 7 (1)2 (1)2 (1)2 6 7 8 βˆ’ βˆ’ βˆ’ + + + 1154 105 =βˆ’ 7. ( ) 6 6 1 1 cos( ) 1 n n n n n n = = Ο€ = βˆ’ β‹… βˆ‘ βˆ‘ = –1 + 2 – 3 + 4 – 5 + 6 = 3 8. 6 1 sin 2 k k k =βˆ’ Ο€ βŽ› ⎞ ⎜ ⎟ ⎝ ⎠ βˆ‘ sin sin 2sin( ) 2 2 Ο€ Ο€ βŽ› ⎞ βŽ› ⎞ = βˆ’ βˆ’ + + Ο€ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 3 3sin 4sin(2 ) 2 Ο€ βŽ› ⎞ + + Ο€ ⎜ ⎟ ⎝ ⎠ 5 5sin 6sin(3 ) 2 Ο€ βŽ› ⎞ + + Ο€ ⎜ ⎟ ⎝ ⎠ = 1 + 1 + 0 – 3 + 0 + 5 + 0 = 4 9. 41 1 1 2 3 41 i i = + + + + = βˆ‘ 10. 25 1 2 4 6 8 50 2 i i = + + + + + = βˆ‘ 11. 100 1 1 1 1 1 1 2 3 100 i i = + + + + = βˆ‘

Transcript of Capitulo 4 Soluciones Purcell 9na Edicion

Page 1: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.1 249

CHAPTER 4 The Definite Integral

4.1 Concepts Review

1. 5(6)2 30; 2(5) 102

β‹… = =

2. 3(9) – 2(7) = 13; 9 + 4(10) = 49

3. inscribed; circumscribed

4. 0 1 2 3 6+ + + =

Problem Set 4.1

1. 6 6 6

1 1 1( 1) 1

6(7) 6(1)2

15

k k kk k

= = =βˆ’ = βˆ’

= βˆ’

=

βˆ‘ βˆ‘ βˆ‘

2. 6

2

1

6(7)(13) 916i

i=

= =βˆ‘

3. 7

1

1 1 1 11 1 1 2 1 3 1k k== + +

+ + + +βˆ‘

1 1 1 14 1 5 1 6 1 7 1

+ + + ++ + + +

1 1 1 1 1 1 12 3 4 5 6 7 81443840481280

= + + + + + +

=

=

4. 8

2 2 2 2 2 2 2

3( 1) 4 5 6 7 8 9 271

ll

=+ = + + + + + =βˆ‘

5. 8

2

1( 1) 2m m

m

βˆ’

=βˆ’βˆ‘

1 1 2 0 3 1( 1) 2 ( 1) 2 ( 1) 2βˆ’= βˆ’ + βˆ’ + βˆ’4 2 5 3 6 4( 1) 2 ( 1) 2 ( 1) 2+ βˆ’ + βˆ’ + βˆ’7 5 8 6( 1) 2 ( 1) 2+ βˆ’ + βˆ’

1 1 2 4 8 16 32 642

= βˆ’ + βˆ’ + βˆ’ + βˆ’ +

852

=

6. 7

3

( 1) 2( 1)

k k

k k=

βˆ’+βˆ‘

3 3 4 4( 1) 2 ( 1) 24 5

βˆ’ βˆ’= +

5 5 6 6 7 7( 1) 2 ( 1) 2 ( 1) 2

6 7 8βˆ’ βˆ’ βˆ’

+ + +

1154105

= βˆ’

7. ( )6 6

1 1cos( ) 1 n

n nn n n

= =Ο€ = βˆ’ β‹…βˆ‘ βˆ‘

= –1 + 2 – 3 + 4 – 5 + 6 = 3

8. 6

1sin

2k

kk=βˆ’

Ο€βŽ› ⎞⎜ ⎟⎝ ⎠

βˆ‘

sin sin 2sin( )2 2Ο€ Ο€βŽ› ⎞ βŽ› ⎞= βˆ’ βˆ’ + + Ο€βŽœ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠33sin 4sin(2 )2Ο€βŽ› ⎞+ + Ο€βŽœ ⎟

⎝ ⎠

55sin 6sin(3 )2Ο€βŽ› ⎞+ + Ο€βŽœ ⎟

⎝ ⎠

= 1 + 1 + 0 – 3 + 0 + 5 + 0 = 4

9. 41

11 2 3 41

ii

=+ + + + = βˆ‘

10. 25

12 4 6 8 50 2

ii

=+ + + + + = βˆ‘

11. 100

1

1 1 1 112 3 100 i i=

+ + + + = βˆ‘

Page 2: Capitulo 4 Soluciones Purcell 9na Edicion

250 Section 4.1 Instructor’s Resource Manual

12. 1100

1

1 1 1 1 ( 1)12 3 4 100

i

i i

+

=

βˆ’βˆ’ + βˆ’ + βˆ’ = βˆ‘

13. 50

1 3 5 7 99 2 11

ii

a a a a a a βˆ’=

+ + + + + = βˆ‘

14. 1 2( ) ( ) ( )nf w x f w x f w xΞ” + Ξ” + + Ξ”

1( )

n

ii

f w x=

= Ξ”βˆ‘

15. 10

110 10

1 1

( )

40 5090

i ii

i ii i

a b

a b

=

= =

+

= +

= +=

βˆ‘

βˆ‘ βˆ‘

16. 10

110 10

1 1

(3 2 )

3 2

n nn

n nn n

a b

a b

=

= =

+

= +

βˆ‘

βˆ‘ βˆ‘

= 3(40) + 2(50) = 220

17. 9

1 1010 10

1 1

( )

40 50

p pp

p pp p

a b

a b

+ +=

= =

βˆ’

= βˆ’

= βˆ’

βˆ‘

βˆ‘ βˆ‘

= –10

18. 10

110 10 10

1 1 1

( )q qq

q qq q q

a b q

a b q

=

= = =

βˆ’ βˆ’

= βˆ’ βˆ’

βˆ‘

βˆ‘ βˆ‘ βˆ‘

10(11)40 502

65

= βˆ’ βˆ’

= βˆ’

19. 100

1100 100

1 1

(3 2)

3 2

3(5050) 2(100)

i

i i

i

i

=

= =

βˆ’

= βˆ’

= βˆ’

βˆ‘

βˆ‘ βˆ‘

= 14,950

20. [ ]10

110

2

1

( 1)(4 3)

(4 3)

i

i

i i

i i

=

=

βˆ’ +

= βˆ’ βˆ’

βˆ‘

βˆ‘

10 10 102

1 1 14 3

i i ii i

= = == βˆ’ βˆ’βˆ‘ βˆ‘ βˆ‘

= 4(385) – 55 – 3(10) = 1455

21. 10 10 10

3 2 3 2

1 1 1( )

3025 385k k k

k k k k= = =

βˆ’ = βˆ’

= βˆ’

βˆ‘ βˆ‘ βˆ‘

= 2640

22. 10 10

2 3 2

1 15 ( 4) (5 20 )

k kk k k k

= =+ = +βˆ‘ βˆ‘

10 103 2

1 15 20

k kk k

= == +βˆ‘ βˆ‘

= 5(3025) + 20(385) = 22,825

23. 2 2

1 1 1 1(2 3 1) 2 3 1

n n n n

i i i ii i i i

= = = =βˆ’ + = βˆ’ +βˆ‘ βˆ‘ βˆ‘ βˆ‘

2 ( 1)(2 1) 3 ( 1)6 2

n n n n n n+ + += βˆ’ +

3 2 22 3 3 33 2

n n n n n n+ + += βˆ’ +

3 24 36

n n nβˆ’ βˆ’=

24. 2 2

1 1(2 3) (4 12 9)

n n

i ii i i

= =βˆ’ = βˆ’ +βˆ‘ βˆ‘

2

1 1 14 12 9

n n n

i i ii i

= = == βˆ’ +βˆ‘ βˆ‘ βˆ‘

4 ( 1)(2 1) 12 ( 1) 96 2

n n n n n n+ + += βˆ’ +

3 24 12 113

n n nβˆ’ +=

25.

1 2 3 ( 2) ( 1)

( 1) ( 2) 3 2 1S n n nS n n n= + + + + βˆ’ + βˆ’ += + βˆ’ + βˆ’ + + + ++

2 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)S n n n n n n= + + + + + + + + + + + +2S = n(n + 1)

( 1)2

n nS +=

Page 3: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.1 251

26. 2 nS rS a ar ar arβˆ’ = + + + +

2 1 ( )n nar ar ar ar +βˆ’ + + + +

1na ar += βˆ’

1

(1 ); 1

na arS r Sr

+βˆ’= βˆ’ =

βˆ’

27. a. ( )111 1010

21

0 2

11 12 ,2 2

k

k=

βˆ’βŽ› ⎞ βŽ› ⎞= = βˆ’βŽœ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

βˆ‘ so

1010

1

1 1 102312 2 1024

k

k=

βŽ› ⎞ βŽ› ⎞= βˆ’ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

βˆ‘ .

b. 1110

11

0

1 22 2 1,1

k

k=

βˆ’= = βˆ’

βˆ’βˆ‘ so

1011

12 2 2 2046k

k== βˆ’ =βˆ‘ .

28. [ ] [ ]

[ ] [ ]( ) ( 2 ) ( 2) ( 1) ( )

( ) ( 1) ( 2) ( 2 ) ( )S a a d a d a n d a n d a ndS a nd a n d a n d a d a d a= + + + + + + + βˆ’ + + βˆ’ + += + + + βˆ’ + + βˆ’ + + + + + ++

2 (2 ) (2 ) (2 ) (2 ) (2 ) (2 )S a nd a nd a nd a nd a nd a nd= + + + + + + + + + + + + 2S = (n + 1)(2a + nd)

( 1)(2 )2

n a ndS + +=

29. ( )

( ) ( )

3 3 2

3 3 2

1 1

1 3 3 1

1 3 3 1n n

i i

i i i i

i i i i= =

+ βˆ’ = + +

⎑ ⎀+ βˆ’ = + +⎣ βŽ¦βˆ‘ βˆ‘

( )

( )

( )( )

3 3 2

1 1 1

3 2 2

1

3 2 2 2

13 2

2

1

2

1

1 1 3 3 1

13 3 3 3

2

2 6 6 6 3 3 2

2 36

1 2 16

n n n

i i in

in

in

in

i

n i i

n nn n n i n

n n n i n n n

n n n i

n n ni

= = =

=

=

=

=

+ βˆ’ = + +

++ + = + +

+ + = + + +

+ +=

+ +=

βˆ‘ βˆ‘ βˆ‘

βˆ‘

βˆ‘

βˆ‘

βˆ‘

Page 4: Capitulo 4 Soluciones Purcell 9na Edicion

252 Section 4.1 Instructor’s Resource Manual

30. ( )

( )

4 4 3 2

4 4 3 2

1 1

1 4 6 4 1

( 1) 4 6 4 1n n

i i

i i i i i

i i i i i= =

+ βˆ’ = + + +

⎑ ⎀+ βˆ’ = + + +⎣ βŽ¦βˆ‘ βˆ‘

4 4 3 2

1 1 1 1

4 3 2 3

1

( 1) 1 4 6 4 1

( 1)(2 1) ( 1)4 6 4 4 6 46 2

n n n n

i i i in

i

n i i i

n n n n nn n n n i n

= = = =

=

+ βˆ’ = + + +

+ + ++ + + = + + +

βˆ‘ βˆ‘ βˆ‘ βˆ‘

βˆ‘

Solving for 3

1

n

ii

=βˆ‘ gives

( ) ( )

( )

3 4 3 2 3 2 2

1

3 4 3 2

124 3 2

3

1

4 4 6 4 2 3 2 2

4 2

124 2

n

in

i

n

i

i n n n n n n n n n n

i n n n

n nn n ni

=

=

=

= + + + βˆ’ + + βˆ’ + βˆ’

= + +

+⎑ ⎀+ += = ⎒ βŽ₯

⎣ ⎦

βˆ‘

βˆ‘

βˆ‘

31. ( )

( )

5 5 4 3 2

5 5 4 3 2

1 1 1 1 1 1

1 5 10 10 5 1

1 5 10 10 5 1n n n n n n

i i i i i i

i i i i i i

i i i i i i= = = = = =

+ βˆ’ = + + + +

⎑ ⎀+ βˆ’ = + + + +⎒ βŽ₯⎣ βŽ¦βˆ‘ βˆ‘ βˆ‘ βˆ‘ βˆ‘ βˆ‘

( ) ( )

( ) ( )

225 5 4

1

25 4 3 2 4 25 102 6

1

1 ( 1)(2 1) ( 1)1 1 5 10 10 54 6 2

55 10 10 5 5 1 1 (2 1) ( 1)2

n

in

i

n n n n n n nn i n

n n n n n i n n n n n n n n

=

=

+ + + ++ βˆ’ = + + + +

+ + + + = + + + + + + + +

βˆ‘

βˆ‘

Solving for 4

1

n

ii

=βˆ‘ yields

24 5 4 35 51 1

5 2 3 61

( 1)(2 1)(3 3 1)30

n

i

n n n n ni n n n n=

+ + + βˆ’βŽ‘ ⎀= + + βˆ’ =⎣ βŽ¦βˆ‘

32. Suppose we have a ( )1n n+ Γ— grid. Shade in n + 1 – k boxes in the kth column. There are n columns, and the shaded area is 1 2 n+ + + . The shaded area is

also half the area of the grid or ( 1)2

n n + . Thus, ( 1)1 22

n nn ++ + + = .

Suppose we have a square grid with sides of length ( 1)1 22

n nn ++ + + = . From the diagram the area is

3 3 31 2 n+ + + or 2( 1)

2n n +⎑ ⎀⎒ βŽ₯⎣ ⎦

. Thus, 2

3 3 3 ( 1)1 22

n nn +⎑ ⎀+ + + = ⎒ βŽ₯⎣ ⎦.

33. 1 55(2 5 7 8 9 10 14) 7.867 7

x = + + + + + + = β‰ˆ

22 2 22 1 55 55 55 552 5 7 8

7 7 7 7 7s

βŽ‘βŽ› ⎞ βŽ› ⎞ βŽ› ⎞ βŽ› ⎞= ⎒ βˆ’ + βˆ’ + βˆ’ + βˆ’βŽœ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎒⎣

2 2 255 55 559 10 147 7 7

βŽ€βŽ› ⎞ βŽ› ⎞ βŽ› ⎞+ βˆ’ + βˆ’ + βˆ’ βŽ₯⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ βŽ₯⎦

60849

= β‰ˆ 12.4

Page 5: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.1 253

34. a. 21, 0x s= =

b. 21001, 0x s= =

c. 2x =

( ) ( )22 2 2 2 2 21 1 1 23 3 3 3(1 2) (2 2) (3 2) 1 0 1 2s ⎑ ⎀⎑ ⎀= βˆ’ + βˆ’ + βˆ’ = βˆ’ + + = =⎒ βŽ₯⎣ ⎦ ⎣ ⎦

d.

2 2 2 21 23 3

1,000,002

( 1) 0 1

x

s

=

⎑ ⎀= βˆ’ + + =⎣ ⎦

35. a. 1 1 1

( ) 0n n n

i ii i i

x x x x nx nx= = =

βˆ’ = βˆ’ = βˆ’ =βˆ‘ βˆ‘ βˆ‘

b. 2 2 2 2

1 1

1 1( ) ( 2 )n n

i i ii i

s x x x x x xn n= =

= βˆ’ = βˆ’ +βˆ‘ βˆ‘

2 2

1 1 1

1 2 1n n n

i ii i i

xx x xn n n= = =

= βˆ’ +βˆ‘ βˆ‘ βˆ‘

2 2

1

1 2 1( ) ( )n

ii

xx nx nxn n n=

= βˆ’ +βˆ‘

2 2 2 2 2

1 1

1 12n n

i ii i

x x x x xn n= =

βŽ› ⎞ βŽ› ⎞= βˆ’ + = βˆ’βŽœ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ βŽ βˆ‘ βˆ‘

36. The variance of n identical numbers is 0. Let c be the constant. Then

( ) ( )2 22 21 ( ) 0ns c c c c c c⎑ ⎀= βˆ’ + βˆ’ + + βˆ’ =⎒ βŽ₯⎣ ⎦

37. Let 2

1( ) ( )

n

ii

S c x c=

= βˆ’βˆ‘ . Then

( )

( )

2

1

2

1

1

1

'( )

2( )( 1)

2 2

''( ) 2

n

ii

n

iin

ii

n

ii

dS c x cdc

d x cdc

x c

x nc

S c n

=

=

=

=

= βˆ’

= βˆ’

= βˆ’ βˆ’

= βˆ’ +

=

βˆ‘

βˆ‘

βˆ‘

βˆ‘

Set '( ) 0S c = and solve for c :

1

1

1

2 2 0n

ii

n

ini

x nc

c x x

=

=

βˆ’ + =

= =

βˆ‘

βˆ‘

Since ''( ) 2 0S x n= > we know that x minimizes ( )S c .

Page 6: Capitulo 4 Soluciones Purcell 9na Edicion

254 Section 4.1 Instructor’s Resource Manual

38. a. The number of gifts given on the nth day is 1

( 1)2

i

m

i im=

+=βˆ‘ .

The total number of gifts is 12

1

( 1) 3642i

i i

=

+=βˆ‘ .

b. For n days, the total number of gifts is 1

( 1)2

n

i

i i

=

+βˆ‘ .

2

1 1 1

( 1)2 2 2

n n n

i i i

i i i i

= = =

+= +βˆ‘ βˆ‘ βˆ‘ 2

1 1

1 12 2

n n

i ii i

= == +βˆ‘ βˆ‘ 1 ( 1)(2 1) 1 ( 1)

2 6 2 2n n n n n+ + +⎑ ⎀ ⎑ ⎀= +⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

1 2 1 1( 1) 1 ( 1)(2 4)4 3 12

nn n n n n+βŽ› ⎞= + + = + +⎜ ⎟⎝ ⎠

1 ( 1)( 2)6

n n n= + +

39. The bottom layer contains 10 Β· 16 = 160 oranges, the next layer contains 9 Β· 15 = 135 oranges, the third layer contains 8 Β· 14 = 112 oranges, and so on, up to the top layer, which contains 1 Β· 7 = 7 oranges. The stack contains 1 Β· 7 + 2 Β· 8+ ... + 9Β· 15 + 10 Β· 16

= 10

1(6 )

ii i

=+βˆ‘ = 715 oranges.

40. If the bottom layer is 50 oranges by 60 oranges, the stack contains 50

1(10 ) 55,675.

ii i

=+ =βˆ‘

41. For a general stack whose base is m rows of n oranges with ,m n≀ the stack contains

2

1 1 1( ) ( )

m m m

i i ii n m i n m i i

= = =βˆ’ + = βˆ’ +βˆ‘ βˆ‘ βˆ‘

( 1) ( 1)(2 1)( )2 6

m m m m mn m + + += βˆ’ +

( 1)(3 1)6

m m n m+ βˆ’ +=

42. 1 1 1 11 2 2 3 3 4 ( 1)n n

+ + + +β‹… β‹… β‹… +

1 1 1 1 1 1 112 2 3 3 4 1n n

βŽ› ⎞ βŽ› ⎞ βŽ› ⎞ βŽ› ⎞= βˆ’ + βˆ’ + βˆ’ + + βˆ’βŽœ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

111n

= βˆ’+

43. 1 3 5 71 22 2 2 2

A ⎑ ⎀= + + + =⎒ βŽ₯⎣ ⎦

44. 1 5 3 7 9 5 11 151 24 4 2 4 4 2 4 4

A ⎑ ⎀= + + + + + + + =⎒ βŽ₯⎣ ⎦

45. 1 3 5 92 32 2 2 2

A ⎑ ⎀= + + + =⎒ βŽ₯⎣ ⎦

46. 1 5 3 7 9 5 11 172 34 4 2 4 4 2 4 4

A ⎑ ⎀= + + + + + + + =⎒ βŽ₯⎣ ⎦

Page 7: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.1 255

47. 2

2 21 1 1 1 10 1 1 1 12 2 2 2 2

AβŽ› βŽžβŽ‘βŽ› ⎞ βŽ› ⎞ βŽ› ⎞⎜ ⎟= β‹… + + β‹… + + β‹… +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎒ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎝ ⎠

21 3 12 2

βŽ€βŽ› βŽžβŽ› ⎞ βŽ₯⎜ ⎟+ β‹… +⎜ ⎟⎜ ⎟βŽ₯⎝ ⎠⎝ ⎠⎦ 1 9 3 17 231

2 8 2 8 8βŽ› ⎞= + + + =⎜ ⎟⎝ ⎠

48. 2

21 1 1 11 1 12 2 2 2

AβŽ‘βŽ› βŽžβŽ› ⎞ βŽ› ⎞⎒⎜ ⎟= β‹… + + β‹… +⎜ ⎟ ⎜ ⎟⎜ ⎟⎒ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣

221 3 11 2 1

2 2 2

βŽ€βŽ› βŽžβŽ› ⎞ βŽ› ⎞βŽ₯⎜ ⎟+ β‹… + + β‹… +⎜ ⎟ ⎜ ⎟⎜ ⎟ βŽ₯⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎦ 1 9 3 17 313

2 8 2 8 8βŽ› ⎞= + + + =⎜ ⎟⎝ ⎠

49.

A = 1(1 + 2 + 3) = 6

50.

( )1 3 53 1 3 2 1 3 12 2 2

A βŽ‘βŽ› ⎞ βŽ› ⎞= β‹… βˆ’ + β‹… βˆ’ + β‹… βˆ’βŽœ ⎟ ⎜ ⎟⎒⎝ ⎠ ⎝ ⎠⎣+ (3 Β· 3 – 1)] 1 7 13 235 8

2 2 2 2βŽ› ⎞= + + + =⎜ ⎟⎝ ⎠

51.

2 2 2 2 2

21 13 7 5 8 171 1 1 1 1 (3 1)6 6 3 2 3 6

A⎑ βŽ€βŽ› ⎞ βŽ› ⎞ βŽ› ⎞ βŽ› ⎞ βŽ› βŽžβŽ› ⎞ βŽ› ⎞ βŽ› ⎞ βŽ› ⎞ βŽ› ⎞⎒ βŽ₯⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= βˆ’ + βˆ’ + βˆ’ + βˆ’ + βˆ’ + βˆ’βŽœ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎒ βŽ₯⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

1 133 40 21 55 253 124386 36 9 4 9 36 216βŽ› ⎞= + + + + + =⎜ ⎟⎝ ⎠

Page 8: Capitulo 4 Soluciones Purcell 9na Edicion

256 Section 4.1 Instructor’s Resource Manual

52.

2 2 2

2 21 4 4 3 3 2 2(3( 1) ( 1) 1) 3 1 3 1 3 1 (3(0) 0 1)5 5 5 5 5 5 5

A⎑ βŽ› ⎞ βŽ› ⎞ βŽ› βŽžβŽ› ⎞ βŽ› ⎞ βŽ› ⎞ βŽ› ⎞ βŽ› ⎞ βŽ› ⎞⎒ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= βˆ’ + βˆ’ + + βˆ’ + βˆ’ + + βˆ’ + βˆ’ + + βˆ’ + βˆ’ + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎒ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣

2 2 2 2

21 1 2 2 3 3 4 43 1 3 1 3 1 3 1 (3(1) 1 1)5 5 5 5 5 5 5 5

βŽ€βŽ› ⎞ βŽ› ⎞ βŽ› βŽžβŽ› βŽžβŽ› ⎞ βŽ› ⎞ βŽ› ⎞ βŽ› ⎞ βŽ₯⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ + + + + + + + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ βŽ₯⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎦

1 [3 2.12 1.48 1.08 1 1.32 1.88 2.68 3.72 5] 4.6565

= + + + + + + + + + =

53. 1 , iix x

n nΞ” = =

21 2( ) 2i

i if x xn n nn

βŽ› βŽžβŽ› βŽžΞ” = + = +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

2 2 21 2 2 2 2( )n

nA Sn n nn n n

⎑ βŽ€βŽ› ⎞ βŽ› ⎞ βŽ› ⎞= + + + + + +⎒ βŽ₯⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ 21 (1 2 3 ) 2n

n= + + + + + 2

( 1) 22

n nn+

= + 1 52 2n

= +

1 5 5lim ( ) lim2 2 2n

n nA S

nβ†’βˆž β†’βˆž

βŽ› ⎞= + =⎜ ⎟⎝ ⎠

54. 1 , iix x

n nΞ” = =

2 2

31 1 1( ) 12 2

ii if x xn n nn

⎑ βŽ€βŽ› ⎞ βŽ› βŽžΞ” = ⎒ β‹… + βŽ₯ = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎒ βŽ₯⎣ ⎦

( )nA S =2 2 2

3 3 31 1 2 1 12 2 2

nn n nn n n

⎑ βŽ€βŽ› ⎞ βŽ› ⎞ βŽ› ⎞+ + + + + +⎒ βŽ₯⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎒ βŽ₯⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 2 2 23

1 (1 2 3 ) 12

nn

= + + + + +

31 ( 1)(2 1) 1

62n n n

n+ +⎑ ⎀= +⎒ βŽ₯⎣ ⎦

3 2

31 2 3 1

12n n n

n

⎑ ⎀+ += +⎒ βŽ₯

⎒ βŽ₯⎣ ⎦ 2

1 3 12 112 n n

⎑ ⎀= + + +⎒ βŽ₯

⎣ ⎦

21 3 1 7lim ( ) lim 2 1

12 6nn n

A Sn nβ†’βˆž β†’βˆž

⎑ βŽ€βŽ› ⎞= + + + =⎒ βŽ₯⎜ ⎟

⎝ ⎠⎣ ⎦

Page 9: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.1 257

55. 2 2, 1iix x

n nΞ” = = βˆ’ +

22 2 8( ) 2 1 2ii if x x

n n n⎑ βŽ€βŽ› ⎞ βŽ› βŽžΞ” = βˆ’ + + =⎜ ⎟ ⎜ ⎟⎒ βŽ₯⎝ ⎠ ⎝ ⎠⎣ ⎦

2 28 16( )nA S

n n

βŽ‘βŽ› ⎞ βŽ› ⎞= + +⎒⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ 28nn

βŽ€βŽ› ⎞+ βŽ₯⎜ ⎟⎝ ⎠⎦

28 (1 2 3 )n

n= + + + + 2

8 ( 1)2

n nn

+⎑ ⎀= ⎒ βŽ₯⎣ ⎦

2

24 n nn

⎑ ⎀+= ⎒ βŽ₯

⎒ βŽ₯⎣ ⎦ 44

n= +

4lim ( ) lim 4 4nn n

A Snβ†’βˆž β†’βˆž

βŽ› ⎞= + =⎜ ⎟⎝ ⎠

56. First, consider 0 and 2.a b= = 2 2, i

ix xn n

Ξ” = =

2 2

32 2 8( )ii if x x

n n nβŽ› ⎞ βŽ› βŽžΞ” = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2

3 3 38 8(2 ) 8( )n

nA Sn n n

⎑ βŽ€βŽ› ⎞ βŽ› βŽžβŽ› ⎞= + + β‹…β‹… β‹…+⎒ βŽ₯⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎒ βŽ₯⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 2 23 3

8 8 ( 1)(2 1)(1 2 )6

n n nnn n

+ +⎑ ⎀= + + β‹…β‹…β‹… + = ⎒ βŽ₯⎣ ⎦

3 2

3 24 2 3 8 4 43 3 3

n n nnn n

⎑ ⎀+ += = + +⎒ βŽ₯

⎒ βŽ₯⎣ ⎦

28 4 4 8lim ( ) lim .3 33

nn n

A Sn nβ†’βˆž β†’βˆž

βŽ› ⎞= + + =⎜ ⎟

⎝ ⎠

By symmetry, 8 1623 3

A βŽ› ⎞= =⎜ ⎟⎝ ⎠

.

57. 1 , iix x

n nΞ” = =

3 3

41( )i

i if x xn n n

βŽ› ⎞ βŽ› βŽžΞ” = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

3 3 34 4 4

1 1 1( ) (1 ) (2 ) ( )nA S nn n n⎑ ⎀

= + + +⎒ βŽ₯⎣ ⎦

3 3 34

1 (1 2 )nn

= + + + 2

41 ( 1)

2n n

n+⎑ ⎀= ⎒ βŽ₯⎣ ⎦

4 3 2

41 2

4n n n

n

⎑ ⎀+ += ⎒ βŽ₯

⎒ βŽ₯⎣ ⎦ 2

1 2 114 n n⎑ ⎀

= + +⎒ βŽ₯⎣ ⎦

21 2 1 1lim ( ) lim 14 4n

n nA S

n nβ†’βˆž β†’βˆž

⎑ ⎀= + + =⎒ βŽ₯

⎣ ⎦

58. 1 , iix x

n nΞ” = =

3 3

4 21( )i

i i i if x xn n n n n

⎑ βŽ€βŽ› ⎞ βŽ› βŽžΞ” = ⎒ + βŽ₯ = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎒ βŽ₯⎣ ⎦

3 3 34 2

1 1( ) (1 2 ) (1 2 )nA S n nn n

= + + + + + + +

2

4 21 ( 1) 1 ( 1)

2 2n n n n

n n+ +⎑ ⎀ ⎑ ⎀= +⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

2 2 2

2 2 2 22 1 3 4 1 3 1 1

44 2 4 4n n n n n n

nn n n n+ + + + +

= + = = + +

3lim ( )4n

nA S

β†’βˆž=

59. 21 2( ) 2i

i if t tn n nn⎑ βŽ€Ξ” = + = +⎒ βŽ₯⎣ ⎦

2 21 1 1

2 1 2( )n n n

ni i i

iA S in nn n= = =

βŽ› ⎞= + = +⎜ ⎟

⎝ βŽ βˆ‘ βˆ‘ βˆ‘

21 ( 1) 2

2n n

n+⎑ ⎀= +⎒ βŽ₯⎣ ⎦

2

2 22

n nn

⎑ ⎀+= +⎒ βŽ₯⎒ βŽ₯⎣ ⎦

1 1 22 2n

βŽ› ⎞= + +⎜ ⎟⎝ ⎠

1 5lim ( ) 22 2n

nA S

β†’βˆž= + =

The object traveled 122

ft.

60. 2 2

31 1 1( ) 12 2

ii if t tn n nn

⎑ βŽ€βŽ› βŽžΞ” = ⎒ + βŽ₯ = +⎜ ⎟⎝ ⎠⎒ βŽ₯⎣ ⎦

22

3 31 1 1

1 1 1 1( )2 2

n n n

ni i i

iA S in nn n= = =

βŽ› ⎞= + = +⎜ ⎟⎜ ⎟

⎝ βŽ βˆ‘ βˆ‘ βˆ‘

31 ( 1)(2 1) 1

62n n n

n+ +⎑ ⎀= +⎒ βŽ₯⎣ ⎦

21 3 12 1

12 n n⎑ ⎀

= + + +⎒ βŽ₯⎣ ⎦

1 7lim ( ) (2) 1 1.1712 6n

nA S

β†’βˆž= + = β‰ˆ

The object traveled about 1.17 feet.

Page 10: Capitulo 4 Soluciones Purcell 9na Edicion

258 Section 4.1 Instructor’s Resource Manual

61. a. 2 3 2

3( )iib b b if x xn n n

βŽ› ⎞ βŽ› βŽžΞ” = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

32

0 31

nb

i

bA in =

= βˆ‘ 3

3( 1)(2 1)

6b n n nn

+ +⎑ ⎀= ⎒ βŽ₯⎣ ⎦

3

23 12

6b

n n⎑ ⎀

= + +⎒ βŽ₯⎣ ⎦

3 3

02lim6 3

bn

b bAβ†’βˆž

= =

b. Since a β‰₯ 0, 0 0 ,b a baA A A= + or

3 3

0 0 .3 3

b b aa

b aA A A= βˆ’ = βˆ’

62. 3 3

53

5 3 98 32.73 3 3

A = βˆ’ = β‰ˆ

The object traveled about 32.7 m.

63. a. 3

50

5 1253 3

A = =

b. 3 3

41

4 1 63 213 3 3

A = βˆ’ = =

c. 3 3

52

5 2 117 393 3 3

A = βˆ’ = =

64. a. , ib bix xn n

Ξ” = =

1

1( )m m m

i mbi b b if x xn n n

+

+βŽ› ⎞ βŽ› βŽžΞ” = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

1

11

( )m n

mn m

i

bA S in

+

+=

= βˆ‘

1 1

1 1

m m

nmb n C

mn

+ +

+

⎑ ⎀= +⎒ βŽ₯

+⎒ βŽ₯⎣ ⎦

11

11

mmn

mb Cb

m n

++

+= +

+

1

0 ( ) lim ( )1

mb m

nn

bA x A Sm

+

β†’βˆž= =

+

1lim 0nmn

Cn +β†’βˆž

= since Cn is a polynomial in n

of degree m.

b. Notice that 0 0( ) ( ) ( )b m b m a maA x A x A x= βˆ’ .

Thus, using part a, 1 1

( )1 1

m mb ma

b aA xm m

+ += βˆ’

+ +.

65. a. 3 1

2 30

2( ) 43 1

A x+

= =+

b. 3 1 3 1

2 31

2 1 1 15( ) 43 1 3 1 4 4

A x+ +

= βˆ’ = βˆ’ =+ +

c. 5 1 5 1

2 51

2 1 32 1 63( )5 1 5 1 3 6 6

A x+ +

= βˆ’ = βˆ’ =+ +

21 10.52

= =

d. 9 1

2 90

2 1024( ) 102.49 1 10

A x+

= = =+

66. Inscribed: Consider an isosceles triangle formed by one side of the polygon and the center of the circle. The

angle at the center is 2nΟ€ . The length of the base

is 2 sinrnΟ€ . The height is cosr

nΟ€ . Thus the area

of the triangle is 2 21 2sin cos sin2

r rn n nΟ€ Ο€ Ο€

= .

2 21 2 1 2sin sin2 2nA n r nr

n nΟ€ Ο€βŽ› ⎞= =⎜ ⎟

⎝ ⎠

Circumscribed: Consider an isosceles triangle formed by one side of the polygon and the center of the circle. The

angle at the center is 2nΟ€ . The length of the base

is 2 tanrnΟ€ . The height is r. Thus the area of the

triangle is 2 tanrnΟ€ .

2 2tan tannB n r nrn nΟ€ Ο€βŽ› ⎞= =⎜ ⎟

⎝ ⎠

22 2

2

sin1 2lim lim sin lim2

nn

n n nn

A nr rn

Ο€

Ο€β†’βˆž β†’βˆž β†’βˆž

βŽ› βŽžΟ€ ⎜ ⎟= = Ο€βŽœ ⎟⎝ ⎠

2r= Ο€ 2

2 sinlim lim tan lim

cosn

nn n n

n n

rB nrn

Ο€

Ο€ Ο€β†’βˆž β†’βˆž β†’βˆž

βŽ› βŽžΟ€ Ο€ ⎜ ⎟= =⎜ ⎟⎝ ⎠

2r= Ο€

Page 11: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.2 259

4.2 Concepts Review

1. Riemann sum

2. definite integral; ( )ba

f x dx∫

3. up downA Aβˆ’

4. 1 1582 2

βˆ’ =

Problem Set 4.2

1. (2)(2.5 1) (3)(3.5 2.5) (4.5)(5 3.5)PR f f f= βˆ’ + βˆ’ + βˆ’ = 4(1.5) + 3(1) + (–2.25)(1.5) = 5.625

2. PR = f(0.5)(0.7 – 0) + f(1.5)(1.7 – 0.7) + f(2)(2.7 – 1.7) + f(3.5)(4 – 2.7) = 1.25(0.7) + (–0.75)(1) + (–1)(1) + 1.25(1.3) = 0.75

3. 5

1( )P i i

iR f x x

== Ξ”βˆ‘ (3)(3.75 3) (4)(4.25 3.75) (4.75)(5.5 4.25) (6)(6 5.5) (6.5)(7 6)f f f f f= βˆ’ + βˆ’ + βˆ’ + βˆ’ + βˆ’

= 2(0.75) + 3(0.5) + 3.75(1.25) + 5(0.5) + 5.5(1) = 15.6875

4. 4

1( )P i i

iR f x x

== Ξ”βˆ‘ ( 2)( 1.3 3) ( 0.5)(0 1.3) (0)(0.9 0) (2)(2 0.9)f f f f= βˆ’ βˆ’ + + βˆ’ + + βˆ’ + βˆ’

= 4(1.7) + 3.25(1.3) + 3(0.9) + 2(1.1) = 15.925

5. 8

1( )P i i

iR f x x

== Ξ”βˆ‘ [ ]( 1.75) ( 1.25) ( 0.75) ( 0.25) (0.25) (0.75) (1.25) (1.75) (0.5)f f f f f f f f= βˆ’ + βˆ’ + βˆ’ + βˆ’ + + + +

= [–0.21875 – 0.46875 – 0.46875 – 0.21875 + 0.28125 + 1.03125 + 2.03125 + 3.28125](0.5) = 2.625

6. 6

1( )P i i

iR f x x

== Ξ”βˆ‘ [ ](0.5) (1) (1.5) (2) (2.5) (3) (0.5)f f f f f f= + + + + +

= [1.5 + 5 + 14.5 + 33 + 63.5 + 109](0.5) = 113.25

7. 3 3

1x dx∫

8. 2 30

( 1)x dx+∫

9. 21

1 1x dx

xβˆ’ +∫

10. 20

(sin )x dxΟ€βˆ«

11. 2 2, iix x

n nΞ” = =

2( ) 1 1i iif x x

n= + = +

1 1

2 2( ) 1n n

ii i

f x x in n= =

⎑ βŽ€βŽ› βŽžΞ” = + ⎜ ⎟⎒ βŽ₯⎝ ⎠⎣ βŽ¦βˆ‘ βˆ‘

21 1

2 41n n

i ii

n n= == +βˆ‘ βˆ‘ 2

2 4 ( 1)( )2

n nnn n

+⎑ ⎀= + ⎒ βŽ₯⎣ ⎦

12 2 1n

βŽ› ⎞= + +⎜ ⎟⎝ ⎠

20

1( 1) lim 2 2 1 4n

x dxnβ†’βˆž

⎑ βŽ€βŽ› ⎞+ = + + =⎜ ⎟⎒ βŽ₯⎝ ⎠⎣ ⎦∫

Page 12: Capitulo 4 Soluciones Purcell 9na Edicion

260 Section 4.2 Instructor’s Resource Manual

12. 2 2, iix x

n nΞ” = =

2 2

22 4( ) 1 1ii if x

n nβŽ› ⎞= + = +⎜ ⎟⎝ ⎠

22

1 1

4 2( ) 1n n

ii i

f x x inn= =

⎑ βŽ€βŽ› βŽžΞ” = +⎒ βŽ₯⎜ ⎟

⎝ ⎠⎣ βŽ¦βˆ‘ βˆ‘

23

1 1

2 81n n

i ii

n n= == +βˆ‘ βˆ‘ 3

2 8 ( 1)(2 1)( )6

n n nnn n

+ +⎑ ⎀= + ⎒ βŽ₯⎣ ⎦

24 3 12 23 n nβŽ› ⎞

= + + +⎜ ⎟⎝ ⎠

2 220

4 3 1 14( 1) lim 2 23 3n

x dxn nβ†’βˆž

⎑ βŽ€βŽ› ⎞+ = + + + =⎒ βŽ₯⎜ ⎟

⎝ ⎠⎣ ⎦∫

13. 3 3, 2iix x

n nΞ” = = βˆ’ +

3 6( ) 2 2 4ii if x

n nβŽ› ⎞= βˆ’ + + Ο€ = Ο€ βˆ’ +⎜ ⎟⎝ ⎠

1 1

6 3( ) 4n n

ii i

if x xn n= =

⎑ βŽ€Ξ” = Ο€βˆ’ +⎒ βŽ₯⎣ βŽ¦βˆ‘ βˆ‘

21 1

3 18( 4)n n

i ii

n n= == Ο€ βˆ’ +βˆ‘ βˆ‘ 2

18 ( 1)3( 4)2

n nn

+⎑ ⎀= Ο€ βˆ’ + ⎒ βŽ₯⎣ ⎦

13 12 9 1n

βŽ› ⎞= Ο€ βˆ’ + +⎜ ⎟⎝ ⎠

12

1(2 ) lim 3 12 9 1n

x dxnβˆ’ β†’βˆž

⎑ βŽ€βŽ› ⎞+ Ο€ = Ο€ βˆ’ + +⎜ ⎟⎒ βŽ₯⎝ ⎠⎣ ⎦∫

= 3 3Ο€ βˆ’

14. 3 3, 2iix x

n nΞ” = = βˆ’ +

2 2

23 36 27( ) 3 2 2 14ii i if x

n n nβŽ› ⎞= βˆ’ + + = βˆ’ +⎜ ⎟⎝ ⎠

22

1 1

36 27 3( ) 14n n

ii i

f x x i in nn= =

⎑ βŽ€βŽ› βŽžβŽ› βŽžΞ” = βˆ’ +⎒ βŽ₯⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

βˆ‘ βˆ‘

22 3

1 1 1

3 108 8114n n n

i i ii i

n n n= = == βˆ’ +βˆ‘ βˆ‘ βˆ‘

2 3108 ( 1) 81 ( 1)(2 1)42

2 6n n n n n

n n+ + +⎑ ⎀ ⎑ ⎀= βˆ’ +⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

21 27 3 142 54 1 2

2n n nβŽ› βŽžβŽ› ⎞= βˆ’ + + + +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

1 22

(3 2)x dxβˆ’

+∫

21 27 3 1lim 42 54 1 2

2n n n nβ†’βˆž

⎑ βŽ€βŽ› βŽžβŽ› ⎞= βˆ’ + + + +⎒ βŽ₯⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

= 15

15.

5 5, iix x

n nΞ” = =

5( ) 1iif x

n= +

1 1

5 5( ) 1n n

ii i

f x x in n= =

⎑ βŽ€βŽ› βŽžΞ” = + ⎜ ⎟⎒ βŽ₯⎝ ⎠⎣ βŽ¦βˆ‘ βˆ‘

21 1

5 251n n

i ii

n n= == +βˆ‘ βˆ‘ 2

25 ( 1)52

n nn

+⎑ ⎀= + ⎒ βŽ₯⎣ ⎦

25 15 12 nβŽ› ⎞= + +⎜ ⎟⎝ ⎠

50

25 1 35( 1) lim 5 12 2n

x dxnβ†’βˆž

⎑ βŽ€βŽ› ⎞+ = + + =⎜ ⎟⎒ βŽ₯⎝ ⎠⎣ ⎦∫

16. 20 20, 10iix x

n nΞ” = = βˆ’ +

220 20( ) 10 10ii if x

n nβŽ› ⎞ βŽ› ⎞= βˆ’ + + βˆ’ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2

2380 40090 i i

n n= βˆ’ +

22

1 1

380 400 20( ) 90n n

ii i

f x x i in nn= =

⎑ βŽ€βŽ› βŽžβŽ› βŽžΞ” = βˆ’ +⎒ βŽ₯⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

βˆ‘ βˆ‘ 21 1

20 760090n n

i ii

n n= == βˆ’βˆ‘ βˆ‘ 2

31

8000 n

ii

n =+ βˆ‘

2 37600 ( 1) 8000 ( 1)(2 1)1800

2 6n n n n n

n n+ + +⎑ ⎀ ⎑ ⎀= βˆ’ +⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦ 2

1 4000 3 11800 3800 1 23n n n

βŽ› βŽžβŽ› ⎞= βˆ’ + + + +⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

10 210

( )x x dxβˆ’

+∫ 21 4000 3 1 2000lim 1800 3800 1 2

3 3n n n nβ†’βˆž

⎑ βŽ€βŽ› βŽžβŽ› ⎞= βˆ’ + + + + =⎒ βŽ₯⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

Page 13: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.2 261

17.

50

( )f x dx∫

1 1 27(1)(2) 1(2) 3(2) (3)(3)2 2 2

= + + + =

18.

4 x

y

2

2

4

( )( ) ( )( ) ( )( )20

1 1 9( ) 1 3 1 2 1 22 2 2

f x dx = + + =∫

19.

2 20

1 1 1( ) ( 1 ) (1)(1)4 2 2 4

f x dx Ο€= Ο€β‹… + = +∫

20.

2 22

1 1( ) ( 2 ) (2)(2) (2)(4)4 2

f x dxβˆ’

= βˆ’ Ο€β‹… βˆ’ βˆ’βˆ«

= 8Ο€βˆ’ βˆ’

21. The area under the curve is equal to the area of a

semi-circle: 2 2 212

AA

A x dx AΟ€βˆ’

βˆ’ =∫ .

22. The area under the curve is equal to the area of a triangle:

( )4

4

12 4 4 162

f x dxβˆ’

βŽ› ⎞= β‹… =⎜ ⎟⎝ ⎠∫

23. ( ) ( )4

0

1 4 24 42 60 15

s v t dt βŽ› ⎞= = =⎜ ⎟⎝ ⎠∫

24. ( ) ( ) ( )4

0

14 4 4 9 1 202

s v t dt= = + βˆ’ =∫

25. ( ) ( ) ( ) ( )4

0

14 2 1 2 1 32

s v t dt= = + =∫

26. ( ) ( ) ( )4 2

0

14 2 04

s v t dt Ο€ Ο€= = + =∫

27. t s(t)

20 40

40 80

60 120

80 160

100 200

120 240

Page 14: Capitulo 4 Soluciones Purcell 9na Edicion

262 Section 4.2 Instructor’s Resource Manual

28. t s(t)

20 10

40 40

60 90

80 160

100 250

120 360

29. t s(t)

20 20

40 80

60 160

80 240

100 320

120 400

30. t s(t)

20 20

40 60

60 80

80 60

100 0

120 -100

31. a. 33

( 3 2 1 0 1 2)(1) 3x dxβˆ’

= βˆ’ βˆ’ βˆ’ + + + = βˆ’βˆ«

b. 3 2 2 23

[( 3) ( 2)x dxβˆ’

= βˆ’ + βˆ’βˆ«

2( 1) 0 1 4](1) 19+ βˆ’ + + + =

c. ( )33

16 (1)(1) 32

x x dxβˆ’

⎑ βŽ€βˆ’ = =⎒ βŽ₯⎣ ⎦∫

d. ( )33 12 2

3 016 6 23

x x dx x dxβˆ’

βˆ’ = = β‹… =∫ ∫

e. 33

1 1(3)(3) (3)(3) 92 2

x dxβˆ’

= + =∫

f. 3 33

3( 3) (3) 0

3 3x x dx

βˆ’

βˆ’= + =∫

g. 2 0 1 21 1 0 1

0x x dx x dx x dx x dxβˆ’ βˆ’

= βˆ’ + +∫ ∫ ∫ ∫

1 1(1)(1) 1(1) (1)(1) 12 2

= βˆ’ + + =

h. 2 0 12 2 21 1 0

0x x dx x dx x dxβˆ’ βˆ’

= βˆ’ +∫ ∫ ∫

2 2

1x dx+∫

3 3 31 2 1 23 3 3

βŽ› ⎞= βˆ’ + βˆ’ =⎜ ⎟⎜ ⎟

⎝ ⎠

32. a. 11

( ) 0f x dxβˆ’

=∫ because this is an odd

function.

b. 11

( ) 3 3 6g x dxβˆ’

= + =∫

c. 11

( ) 3 3 6f x dxβˆ’

= + =∫

d. [ ]11

( ) 3 ( 3) 6g x dxβˆ’

βˆ’ = βˆ’ + βˆ’ = βˆ’βˆ«

e. 11

( ) 0xg x dxβˆ’

=∫ because xg(x) is an odd

function.

f. 1 31

( ) ( ) 0f x g x dxβˆ’

=∫ because 3( ) ( )f x g x

is an odd function.

33. 1 11

1 ( )( )2

n

P i i i ii

R x x x xβˆ’ βˆ’=

= + βˆ’βˆ‘

( )2 21

1

12

n

i ii

x x βˆ’=

= βˆ’βˆ‘

2 2 2 2 2 21 0 2 1 3 2

1 ( ) ( ) ( )2

x x x x x x⎑= βˆ’ + βˆ’ + βˆ’βŽ£

2 21( )n nx x βˆ’ ⎀+ + βˆ’ ⎦

2 20

1 ( )2 nx x= βˆ’

2 21 ( )2

b a= βˆ’

2 2 2 21 1lim ( ) ( )2 2n

b a b aβ†’βˆž

βˆ’ = βˆ’

Page 15: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.2 263

34. Note that ( )1 2

2 21 1

13i i i i ix x x x xβˆ’ βˆ’βŽ‘ ⎀= + +⎒ βŽ₯⎣ ⎦

1/ 22 2 2

1 1 1 11 (3 i i i ix x x xβˆ’ βˆ’ βˆ’ βˆ’βŽ‘ ⎀β‰₯ + + =⎒ βŽ₯⎣ ⎦

and

1/ 22 2

1 11 (3i i i i ix x x x xβˆ’ βˆ’βŽ‘ ⎀= + +⎒ βŽ₯⎣ ⎦

1/ 22 2 21 ( )

3 i i i ix x x x⎑ βŽ€β‰€ + + =⎒ βŽ₯⎣ ⎦.

2

1

n

p i ii

R x x=

= Ξ”βˆ‘

2 21 1 1

1

1 ( )( )3

n

i i i i i ii

x x x x x xβˆ’ βˆ’ βˆ’=

= + + βˆ’βˆ‘

3 31

1

1 ( )3

n

i ii

x x βˆ’=

= βˆ’βˆ‘

3 3 3 3 3 31 0 2 1 3 2

1 ( ) ( ) ( )3

x x x x x x⎑= βˆ’ + βˆ’ + βˆ’βŽ£

3 31( )n nx x βˆ’ ⎀+ + βˆ’ ⎦

3 3 3 30

1 1( ) ( )3 3nx x b a= βˆ’ = βˆ’

35. Left: 2 30

( 1) 5.24x dx+ =∫

Right: 2 30

( 1) 6.84x dx+ =∫

Midpoint: 2 30

( 1) 5.98x dx+ =∫

36. Left: 10

tan 0.5398x dx β‰ˆβˆ«

Right: 10

tan 0.6955x dx β‰ˆβˆ«

Midpoint: 10

tan 0.6146x dx β‰ˆβˆ«

37. Left: 10

cos 0.8638x dx β‰ˆβˆ«

Right: 10

cos 0.8178x dx β‰ˆβˆ«

Midpoint: 10

cos 0.8418x dx β‰ˆβˆ«

38. Left: 3

11 1.1682dxx

βŽ› ⎞ β‰ˆβŽœ ⎟⎝ ⎠∫

Right: 3

11 1.0349dxx

βŽ› ⎞ β‰ˆβŽœ ⎟⎝ ⎠∫

Midpoint: 3

11 1.0971dxx

βŽ› ⎞ β‰ˆβŽœ ⎟⎝ ⎠∫

39. Partition [0, 1] into n regular intervals, so 1Pn

= .

If 1 , ( ) 12i i

ix f xn n

= + = .

0 1 1

1lim ( ) lim 1n n

i iP ni i

f x xnβ†’ β†’βˆž= =

Ξ” = =βˆ‘ βˆ‘

If 1 , ( ) 0i iix f xn n

= + =Ο€

.

0 1 1lim ( ) lim 0 0

n n

i iP ni i

f x xβ†’ β†’βˆž= =

Ξ” = =βˆ‘ βˆ‘

Thus f is not integrable on [0, 1].

Page 16: Capitulo 4 Soluciones Purcell 9na Edicion

264 Section 4.3 Instructor’s Resource Manual

4.3 Concepts Review

1. 4(4 – 2) = 8; 16(4 – 2) = 32

2. 3sin x

3. 4

1( )f x dx∫ ;

52

x dx∫

4. 5

Problem Set 4.3

1. ( ) 2A x x=

2. ( )A x ax=

3. ( )212( ) 1 , 1A x x x= βˆ’ β‰₯

4. If 21 x≀ ≀ , then ( )212( ) 1A x x= βˆ’ .

If 2 x≀ , then 32( )A x x= βˆ’

5. ( )21( )

2 2axA x x ax= =

6. ( )21 1( ) ( 2)( 1 / 2) 2 , 22 4

A x x x x x= βˆ’ βˆ’ + = βˆ’ β‰₯

7. 2 0 12 ( 1) 1 2

( ) 3 2( 2) 2 35 ( 3) 3 4etc.

x xx x

A x x xx x

≀ β‰€βŽ§βŽͺ + βˆ’ < ≀βŽͺβŽͺ= + βˆ’ < β‰€βŽ¨βŽͺ + βˆ’ < ≀βŽͺβŽͺ⎩

8. 2121 12 2

212

3 12 2

212

0 1

(3 )( 1) 1 2

1 ( 2) 2 3( )

(5 )( 3) 3 4

2+ ( 4) 4 5

etc.

x x

x x x

x xA x

x x x

x x

⎧ ≀ ≀βŽͺβŽͺ + βˆ’ βˆ’ < ≀βŽͺβŽͺ + βˆ’ < ≀βŽͺ= ⎨βŽͺ + βˆ’ βˆ’ < ≀βŽͺβŽͺ βˆ’ < ≀βŽͺβŽͺ⎩

Page 17: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.3 265

9. 2 2

1 12 ( ) 2 ( ) 2(3) 6f x dx f x dx= = =∫ ∫

10. 2 20 0

2 ( ) 2 ( )f x dx f x dx=∫ ∫

1 20 1

2 ( ) ( ) 2(2 3) 10f x dx f x dx⎑ ⎀= + = + =⎒ βŽ₯⎣ ⎦∫ ∫

11. [ ]2 2 20 0 0

2 ( ) ( ) 2 ( ) ( )f x g x dx f x dx g x dx+ = +∫ ∫ ∫

1 2 20 1 0

2 ( ) ( ) ( )f x dx f x dx g x dx⎑ ⎀= + +⎒ βŽ₯⎣ ⎦∫ ∫ ∫

= 2(2 + 3) + 4 = 14

12. 1 1 10 0 0[2 ( ) ( )] 2 ( ) ( )f s g s ds f s ds g s ds+ = +∫ ∫ ∫

= 2(2) + (–1) = 3

13. 1 2 22 1 1[2 ( ) 5 ( )] 2 ( ) 5 ( )f s g s ds f s ds g s ds+ = βˆ’ βˆ’βˆ« ∫ ∫

2 10 0

2(3) 5 ( ) ( )g s ds g s ds⎑ ⎀= βˆ’ βˆ’ βˆ’βŽ’ βŽ₯⎣ ⎦∫ ∫

= –6 – 5[4 + 1] = –31

14. [ ]11

3 ( ) 2 ( ) 0f x g x dx+ =∫

15. [ ]20

3 ( ) 2 ( )f t g t dt+∫

1 2 20 1 0

3 ( ) ( ) 2 ( )f t dt f t dt g t dt⎑ ⎀= + +⎒ βŽ₯⎣ ⎦∫ ∫ ∫

= 3(2 + 3) + 2(4) = 23

16. 20

3 ( ) 2 ( )f t g t dt⎑ ⎀+ + Ο€βŽ£ ⎦∫

1 2 20 1 0

3 ( ) ( ) 2 ( )f t dt f t dt g t dt⎑ ⎀= + +⎒ βŽ₯⎣ ⎦∫ ∫ ∫

20

dt+Ο€βˆ«

3 (2 3) 2(4) 2 5 3 4 2 2= + + + Ο€ = + + Ο€

17. 1

( ) 2 2x

xG x D t dt x⎑ βŽ€β€² = =⎒ βŽ₯⎣ ⎦∫

18. 1

1( ) 2 2 2

xx xx

G x D t dt D t dt x⎑ ⎀ ⎑ βŽ€β€² = = βˆ’ = βˆ’βŽ’ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦∫ ∫

19. ( )2 20

( ) 2 2x

xG x D t t dt x x⎑ βŽ€β€² = + = +⎒ βŽ₯⎣ ⎦∫

20. 31

( ) cos (2 ) tan( )x

xG x D t t dt⎑ βŽ€β€² = ⎒ βŽ₯⎣ ⎦∫

3cos (2 ) tan( )x x=

21. / 4

( ) ( 2)cot(2 )x xG x D s s ds

Ο€βŽ‘ βŽ€β€² = βˆ’βŽ’ βŽ₯⎣ ⎦∫

/ 4( 2)cot(2 )

( 2)cot(2 )

xxD s s ds

x xΟ€

⎑ ⎀= βˆ’ βˆ’βŽ’ βŽ₯⎣ ⎦= βˆ’ βˆ’

∫

22. 1 1

( )x x

x xG x D xt dt D x t dt⎑ ⎀ ⎑ βŽ€β€² = =⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦∫ ∫

2 2

1

12 2

x

x xt xD x D x

⎑ ⎀ ⎑ ⎀⎑ ⎀ βŽ› βŽžβˆ’βŽ’ βŽ₯= = ⎒ βŽ₯⎜ ⎟⎒ βŽ₯ ⎜ ⎟⎒ βŽ₯ ⎒ βŽ₯⎒ βŽ₯⎣ ⎦ ⎝ ⎠⎣ ⎦⎒ βŽ₯⎣ ⎦

323 1

2 2 2 2xx xD x

βŽ› ⎞= βˆ’ = βˆ’βŽœ ⎟⎜ ⎟

⎝ ⎠

23. 2

21

( ) sin 2 sin( )x

xG x D t dt x x⎑ ⎀

β€² = =⎒ βŽ₯⎒ βŽ₯⎣ ⎦∫

24. 2

1( ) 2 sin

x xxG x D z z dz

+⎑ βŽ€β€² = +⎒ βŽ₯

⎒ βŽ₯⎣ ⎦∫

2 2(2 1) 2( ) sin( )x x x x x= + + + +

25. 2

2 2

2 202 2 20

2 22

2 20 0

( )1

1 1

1 1

xx

xx

x x

tG x dtt

t tdt dtt tt tdt dt

t t

βˆ’

βˆ’

βˆ’

=+

= ++ +

= βˆ’ ++ +

∫

∫ ∫

∫ ∫

( )( )

( )22 2

2 22

5 2

4 2

'( ) 211

21 1

x xG x xxx

x xx x

βˆ’= βˆ’ βˆ’ +

++ βˆ’

= ++ +

26. sin 5cos

( )x

x xG x D t dt⎑ ⎀= ⎒ βŽ₯⎣ ⎦∫

sin 05 50 cos

x

x xD t dt t dt⎑ ⎀= +⎒ βŽ₯⎣ ⎦∫ ∫

sin cos5 50 0

x xxD t dt t dt⎑ ⎀= βˆ’βŽ’ βŽ₯⎣ ⎦∫ ∫

5 5sin cos cos sinx x x x= +

27. ( ) ( )( )3/ 22 2

1;1 1

xf x f xx x

β€² β€²β€²= =+ +

So, f(x) is increasing on [0, )∞ and concave up on (0,∞ ).

Page 18: Capitulo 4 Soluciones Purcell 9na Edicion

266 Section 4.3 Instructor’s Resource Manual

28. ( )

( )( ) ( )

( ) ( )

2

2 2

2 22 2

11

1 1 2 2 1

1 1

xf xx

x x x x xf xx x

+β€² =+

+ βˆ’ + + βˆ’β€²β€² = = βˆ’+ +

So, f(x) is increasing on [0,∞ ) and concave up on

( )0, 1 2βˆ’ + .

29. ( ) ( )cos ; sinf x x f x xβ€² β€²β€²= = βˆ’

So, f(x) is increasing on 3 50, , , ,...2 2 2Ο€ Ο€ Ο€βŽ‘ ⎀ ⎑ ⎀

⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦and

concave up on ( ) ( ), 2 , 3 ,4 ,...Ο€ Ο€ Ο€ Ο€ .

30. ( ) ( )sin ; 1 cosf x x x f x xβ€² β€²β€²= + = +

So, f(x) is increasing on ( )0,∞ and concave up

on ( )0,∞ .

31. ( ) ( ) 21 1;f x f xx x

β€² β€²β€²= = βˆ’

So, f(x) is increasing on (0, )∞ and never concave up.

32. f(x) is increasing on 0x β‰₯ and concave up on ( ) ( )0,1 , 2,3 ,...

33.

4 2 40 0 2

( ) 2 4 6 10f x dx dx x dx= + = + =∫ ∫ ∫

34.

4 1 2 40 0 1 2

( ) (4 )

1 1.5 2.0 4.5

f x dx dx x dx x dx= + + βˆ’

= + + =∫ ∫ ∫ ∫

35.

4 2 40 0 2

( ) (2 ) ( 2)

2 2 4

f x dx x dx x dx= βˆ’ + βˆ’

= + =∫ ∫ ∫

36.

( )

( ) ( )

( )

40

3 40 33 40 3

3 3

3 3 3 3

27 76 172 2

x dx

x dx x dx

x dx x dx

+ βˆ’

= + βˆ’ + + βˆ’

= βˆ’ + = + =

∫

∫ ∫

∫ ∫

37. a. Local minima at 0, β‰ˆ 3.8, β‰ˆ 5.8, β‰ˆ 7.9,

β‰ˆ 9.9; local maxima at β‰ˆ 3.1, β‰ˆ 5, β‰ˆ 7.1, β‰ˆ 9, 10

b. Absolute minimum at 0, absolute maximum at β‰ˆ 9

c. β‰ˆ (0.7, 1.5), (2.5, 3.5), (4.5, 5.5), (6.5, 7.5), (8.5, 9.5)

d.

38. a. Local minima at 0, β‰ˆ 1.8, β‰ˆ 3.8, β‰ˆ 5.8; local maxima at β‰ˆ 1, β‰ˆ 2.9, β‰ˆ 5.2, β‰ˆ 10

b. Absolute minimum at 0, absolute maximum at 10

c. (0.5, 1.5), (2.2, 3.2), (4.2,5.2), (6.2,7.2), (8.2, 9.2)

Page 19: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.3 267

d.

39. a. ( )0 40

(0) 1 0F t dt= + =∫

b.

4

( )

'( ) 1

y F xdy F x xdx

=

= = +

( )4

515

1dy x dx

y x x C

= +

= + +

c. Now apply the initial condition (0) 0y = :

5150 0 0

0

C

C

= + +

=

Thus 515( )y F x x x= = +

d. ( )1 4 5

01 61 (1) 1 15 5

x dx F+ = = + =∫ .

40. a.

000

20

( ) sin

(0) sin 0

(2 ) sin 0

xG x t dt

G t dt

G t dtΟ€

Ο€

=

= =

= =

∫

∫

∫

b. Let ( )y G x= . Then

'( ) sindy G x xdx

= = .

sincos

dy x dxy x C

== βˆ’ +

c. Apply the initial condition

0 (0) cos 0y C= = βˆ’ + . Thus, 1C = , and hence ( ) 1 cosy G x x= = βˆ’ .

d. ( )0

sin 1 cos 2x dx GΟ€

Ο€ Ο€= = βˆ’ =∫

e. G attains the maximum of 2 when

,3x Ο€ Ο€= . G attains the minimum of 0 when

0,2 ,4x Ο€ Ο€= Inflection points of G occur at

3 5 7, , ,2 2 2 2

x Ο€ Ο€ Ο€ Ο€=

f.

41. For 1t β‰₯ , t t≀ . Since 41 1x+ β‰₯ for all x, 4 41 1 1x x≀ + ≀ + .

1 1 14 40 0 0

1 (1 )dx x dx x dx≀ + ≀ +∫ ∫ ∫

By problem 39d, 1 40

61 15

x dx≀ + β‰€βˆ«

42. On the interval [0,1], 4 42 4 4x x≀ + ≀ + . Thus

( )1 1 12 20 0 0

1 20

2 4 4

212 45

dx x dx x dx

x dx

≀ + ≀ +

≀ + ≀

∫ ∫ ∫

∫

Here, we have used the result from problem 39:

( ) ( )( )

1 14 40 0

1 1 40 0

6 215 5

4 3 1

3 1

3

x dx x dx

dx x dx

+ = + +

= + +

= + =

∫ ∫

∫ ∫

43. 5 ( ) 69f x≀ ≀ so

( )( )

4 30

4 30

4 5 5 4 69

20 5 276

x dx

x dx

β‹… ≀ + ≀ β‹…

≀ + ≀

∫

∫

44. On [2,4], ( )55 58 6 10x≀ + ≀ . Thus,

( )

( )

4 55 52

4 52

2 8 6 2 10

65,536 6 200,000

x dx

x dx

β‹… ≀ + ≀ β‹…

≀ + ≀

∫

∫

Page 20: Capitulo 4 Soluciones Purcell 9na Edicion

268 Section 4.3 Instructor’s Resource Manual

45. On [1,5],

51

51

2 2 23 3 35 1

17 24 3 4 55

68 23 205

x

dxx

dxx

+ ≀ + ≀ +

βŽ› ⎞ βŽ› βŽžβ‰€ + ≀ β‹…βŽœ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

βŽ› βŽžβ‰€ + β‰€βŽœ ⎟⎝ ⎠

∫

∫

46. On [10, 20],

5 5 5

5 5 52010

52010

52010

1 1 11 1 120 10

21 1 1110 1 1020 10

4,084,101 1 161,0511320,000 10,000

112.7628 1 16.1051

x

dxx

dxx

dxx

βŽ› ⎞ βŽ› ⎞ βŽ› ⎞+ ≀ + ≀ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

βŽ› ⎞ βŽ› ⎞ βŽ› βŽžβ‰€ + β‰€βŽœ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

βŽ› βŽžβ‰€ + β‰€βŽœ ⎟⎝ ⎠

βŽ› βŽžβ‰€ + β‰€βŽœ ⎟⎝ ⎠

∫

∫

∫

47. On [ ]4 ,8Ο€ Ο€

( ) ( ) ( )( )( )

21 120 20

8 21 120 204

8 21204

5 5 sin 5

4 (5) 5 sin 4 5

10120 5 sin5

x

x dx

x dx

Ο€

ππ

Ο€

Ο€ Ο€

Ο€ Ο€

≀ + ≀ +

≀ + ≀ +

≀ + ≀

∫

∫

48. On [0.2,0.4],

( )( )( )

2 2

2

2

0.4 20.2

2

0.002 0.0001cos 0.4 0.002 0.0001cos

0.002 0.0001cos 0.2

0.2 0.002 0.0001cos 0.4

0.002 0.0001cos

0.2 0.002 0.0001cos 0.2

x

x dx

+ ≀ +

≀ +

+

≀ +

≀ +

∫

Thus,

( )0.4 20.2

0.000417 0.002 0.0001cos

0.000419

x dx≀ +

≀

∫

49. Let 0

1( )2

x tF x dtt

+=

+∫ . Then

00 0

1 1 ( ) (0)lim lim2 0

1 0 1'(0)2 0 2

x

x x

t F x Fdtx t x

F

β†’ β†’

+ βˆ’=

+ βˆ’+

= = =+

∫

50. 11

10 01

1

1 1lim1 21 1 1lim

1 2 2( ) (1)lim

11 1 2'(1)2 1 3

x

xx

x

x

t dtx t

t tdt dtx t tF x F

x

F

β†’

β†’

β†’

+βˆ’ +

+ +⎑ ⎀= βˆ’βŽ’ βŽ₯βˆ’ + +⎣ βŽ¦βˆ’

=βˆ’+

= = =+

∫

∫ ∫

51. 1

( ) 2 2x

f t dt x= βˆ’βˆ«

Differentiate both sides with respect to x:

( )1

( ) 2 2

( ) 2

xd df t dt xdx dx

f x

= βˆ’

=

∫

If such a function exists, it must satisfy ( ) 2f x = , but both sides of the first equality

may differ by a constant yet still have equal derivatives. When 1x = the left side is

11

( ) 0f t dt =∫ and the right side is 2 1 2 0β‹… βˆ’ = .

Thus the function ( ) 2f x = satisfies

1( ) 2 2

xf t dt x= βˆ’βˆ« .

Page 21: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.3 269

52. 20

( )x

f t dt x=∫

Differentiate both sides with respect to x: 2

0( )

( ) 2

xd df t dt xdx dx

f x x

=

=

∫

53. 2

3130

( )x

f t dt x=∫

Differentiate both sides with respect to x:

( )( ) ( )

( )

231

30

2 2

2

( )

2

2

( )2

xd df t dt xdx dx

f x x x

xf x

xf x

=

=

=

=

∫

54. No such function exists. When 0x = the left side is 0, whereas the right side is 1

55. True; by Theorem B (Comparison Property)

56. False. a = –1, b = 2, f(x) = x is a counterexample.

57. False. a = –1, b = 1, f(x) = x is a counterexample.

58. False; A counterexample is ( ) 0f x = for all x,

except ( )1 1f = . Thus, ( )2

00f x dx =∫ , but f is

not identically zero.

59. True. ( ) ( )b ba af x dx g x dxβˆ’βˆ« ∫

[ ( ) ( )]ba f x g x dx= βˆ’βˆ«

60. False. a = 0, b = 1, f(x) = 0, g(x) = –1 is a counterexample.

61. ( ) ( )( )

2 2 , 22 2 , 2

, 24 , 2

t tv t

t t

t tt t

⎧ + βˆ’ ≀βŽͺ= ⎨ βˆ’ βˆ’ >βŽͺβŽ©β‰€βŽ§

= ⎨ βˆ’ >⎩

( ) ( )

( )

0

02

0 2

2

2

2

2

, 0 2

4 , 2

, 0 22

2 4 , 22

, 0 22

4 4 22

t

t

t

s t v u du

u du t

u du u du t

t t

tt t

t t

tt t

=

⎧ ≀ ≀βŽͺ= ⎨βŽͺ + βˆ’ >⎩⎧

≀ ≀βŽͺβŽͺ= ⎨ ⎑ ⎀βŽͺ + βˆ’ >⎒ βŽ₯βŽͺ ⎒ βŽ₯⎣ ⎦⎩⎧

≀ ≀βŽͺβŽͺ= ⎨βŽͺβˆ’ + βˆ’ >βŽͺ⎩

∫

∫

∫ ∫

24 4 0; 4 2 2 6.83

2t t tβˆ’ + = = + β‰ˆ

62. a. ( )

( )

0

100

0 100

100 700

0 100 700

5 , 0 100

5 6 100 700100

5 6 1 , 700100

t

t

t

du t

us t du du t

udu du du t

⎧βŽͺ ≀ ≀βŽͺβŽͺ βŽ› ⎞βŽͺ= + βˆ’ < β‰€βŽ¨ ⎜ ⎟

⎝ ⎠βŽͺβŽͺ βŽ› ⎞+ βˆ’ + βˆ’ >βŽͺ ⎜ ⎟βŽͺ ⎝ ⎠⎩

∫

∫ ∫

∫ ∫ ∫

( )

2

1007002

100

2

5 , 0 100

500 6 100 700200

500 6 700 700200

5 , 0 100

50 6 , 100 700200

2400 , 700

t

t t

uu t

uu t t

t t

tt t

t t

⎧βŽͺβŽͺ ≀ ≀βŽͺβŽͺ ⎑ ⎀βŽͺ= + βˆ’ < β‰€βŽ’ βŽ₯⎨

⎒ βŽ₯βŽͺ ⎣ ⎦βŽͺβŽͺ ⎑ ⎀

+ βˆ’ βˆ’ βˆ’ >βŽͺ ⎒ βŽ₯⎒ βŽ₯βŽͺ ⎣ ⎦⎩

≀ β‰€βŽ§βŽͺβŽͺ= βˆ’ + βˆ’ < β‰€βŽ¨βŽͺ

βˆ’ >βŽͺ⎩

Page 22: Capitulo 4 Soluciones Purcell 9na Edicion

270 Section 4.4 Instructor’s Resource Manual

b. ( ) 0v t > for 0 600t≀ < and ( ) 0v t < for 600t > . So, 600t = is the point at which

the object is farthest to the right of the origin. At 600t = , ( ) 1750s t = .

c. ( ) 0 2400 ; 2400s t t t= = βˆ’ =

63. ( ) ( ) ( )f x f x f xβˆ’ ≀ ≀ , so

( ) ( )b ba a

f x dx f x dxβˆ’ ≀ β‡’βˆ« ∫

( ) ( )b ba a

f x dx f x dxβ‰₯ βˆ’βˆ« ∫

and combining this with

( ) ( ) ,b ba a

f x dx f x dxβ‰₯∫ ∫

we can conclude that

( ) ( )b ba a

f x dx f x dxβ‰€βˆ« ∫

64. If x a> , ( ) ( )xa

f x dx M x aβ€² ≀ βˆ’βˆ« by the

Boundedness Property. If x a< ,

( ) ( ) ( )a xx a

f x dx f x dx M x aβ€²= βˆ’ β‰₯ βˆ’ βˆ’βˆ« ∫ by

the Boundedness Property. Thus

( )xa

f x dx M x aβ€² ≀ βˆ’βˆ« .

From Problem 63, ( ) ( )x xa a

f x dx f x dxβ€² β€²β‰₯∫ ∫ .

( ) ( ) ( ) ( ) ( )xa

f x dx f x f a f x f aβ€² = βˆ’ β‰₯ βˆ’βˆ«

Therefore, ( ) ( )f x f a M x aβˆ’ ≀ βˆ’ or

( ) ( )f x f a M x a≀ + βˆ’ .

4.4 Concepts Review

1. antiderivative; F(b) – F(a)

2. F(b) – F(a)

3. ( ) ( )cFdF βˆ’

4. ∫2

1

4

31 duu

Problem Set 4.4

1. 242 3

00

4 0 44xx dx

⎑ ⎀= = βˆ’ =⎒ βŽ₯⎒ βŽ₯⎣ ⎦

∫

2. 252 4

11

32 1 335 5 5 5xx dx

βˆ’βˆ’

⎑ ⎀= = + =⎒ βŽ₯⎒ βŽ₯⎣ ⎦

∫

3. 22 2 3 2

1 1(3 2 3) 3x x dx x x x

βˆ’ βˆ’βŽ‘ βŽ€βˆ’ + = βˆ’ +⎣ ⎦∫

= (8 – 4 + 6) – (–1 –1 – 3) = 15

4. 22 3 4

1 1(4 7) 7x dx x x⎑ ⎀+ = +⎣ ⎦∫

= (16 + 14) – (1 + 7) = 22

5. 44

21 1

1 1dwww

⎑ ⎀= βˆ’βŽ’ βŽ₯⎣ ⎦∫ 1 3( 1)4 4

βŽ› ⎞= βˆ’ βˆ’ βˆ’ =⎜ ⎟⎝ ⎠

6. 3

33 21

1

2 1dtt t

⎑ ⎀= βˆ’βŽ’ βŽ₯⎣ ⎦

∫ 1 8( 1)9 9

βŽ› ⎞= βˆ’ βˆ’ βˆ’ =⎜ ⎟⎝ ⎠

7. 44 3/ 2

0 0

23

t dt t⎑ ⎀= ⎒ βŽ₯⎣ ⎦∫ 2 168 03 3

βŽ› ⎞= β‹… βˆ’ =⎜ ⎟⎝ ⎠

8. 88 4 / 33

1 1

34

w dw w⎑ ⎀= ⎒ βŽ₯⎣ ⎦∫ 3 3 4516 14 4 4

βŽ› ⎞ βŽ› ⎞= β‹… βˆ’ β‹… =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

9. 232 2

3 244

1 13 2yy dy

y y

βˆ’βˆ’

βˆ’βˆ’

⎑ βŽ€βŽ› ⎞+ = βˆ’βŽœ ⎟ ⎒ βŽ₯⎜ ⎟ ⎒ βŽ₯⎝ ⎠ ⎣ ⎦

∫

8 1 64 1 17833 8 3 32 96

βŽ› ⎞ βŽ› ⎞= βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

10. 44 34 4 2 2

21 11

8 8( 8 )3

s sds s s dsss

βˆ’ ⎑ βŽ€βˆ’= βˆ’ = +⎒ βŽ₯

⎒ βŽ₯⎣ ⎦∫ ∫

64 12 8 153 3

βŽ› ⎞ βŽ› ⎞= + βˆ’ + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

11. [ ]/ 2 / 200

cos sinx dx xΟ€ Ο€=∫ = 1 – 0 = 1

12. [ ]/ 2 / 2/ 6/ 6

2sin 2cost dt tΟ€ Ο€

ππ= βˆ’βˆ« 0 3 3= + =

13. 11 4 2 5 3

0 0

2(2 3 5) 55

x x dx x x x⎑ βŽ€βˆ’ + = βˆ’ +⎒ βŽ₯⎣ ⎦∫

2 221 5 05 5

βŽ› ⎞= βˆ’ + βˆ’ =⎜ ⎟⎝ ⎠

14. 11 4 / 3 1/ 3 7 / 3 4 / 3

0 0

3 3( 2 )7 2

x x dx x x⎑ βŽ€βˆ’ = βˆ’βŽ’ βŽ₯⎣ ⎦∫

3 3 1507 2 14

βŽ› ⎞= βˆ’ βˆ’ = βˆ’βŽœ ⎟⎝ ⎠

Page 23: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.4 271

15. u = 3x + 2, du = 3 dx 3 / 2 3/ 21 2 2 (3 2)

3 9 9u du u C x Cβ‹… = + = + +∫

16. u = 2x – 4, du = 2 dx 1/ 3 4 / 3 4 / 31 3 3 (2 4)

2 8 8u du u C x Cβ‹… = + = βˆ’ +∫

17. u = 3x + 2, du = 3 dx 1 1 1cos( ) sin sin(3 2)3 3 3

u du u C x Cβ‹… = + = + +∫

18. u = 2x – 4, du = 2 dx 1 1sin cos2 2

u du u Cβ‹… = βˆ’ +∫

1 cos(2 4)2

x C= βˆ’ βˆ’ +

19. u = 6x – 7, du = 6dx 1 1sin cos6 6

u du u Cβ‹… = βˆ’ +∫

1 cos(6 7)6

x C= βˆ’ βˆ’ +

20. 7,u v= Ο€ βˆ’ du = Ο€ dv 1 1 1cos sin sin( 7)u du u C v Cβ‹… = + = Ο€ βˆ’ +Ο€ Ο€ Ο€βˆ«

21. 2 4, 2u x du x dx= + =

3 / 2 2 3/ 21 1 1 ( 4)2 3 3

u du u C x Cβ‹… = + = + +∫

22. 3 25, 3u x du x dx= + =

9 10 3 101 1 1 ( 5)3 30 30

u du u C x Cβ‹… = + = + +∫

23. 2 3, 2u x du x dx= + =

12 / 7 5 / 71 72 10

u du u Cβˆ’ βˆ’β‹… = βˆ’ +∫

2 5 / 77 ( 3)10

x Cβˆ’= βˆ’ + +

24. 23 , 2 3u v du v dv= + Ο€ =

7 / 8 15 / 81 42 3 15 3

u du u Cβ‹… = +∫

( )15 / 824 315 3

v C= + Ο€ +

25. 2 4, 2u x du x dx= + = 1 1sin( ) cos2 2

u du u Cβ‹… = βˆ’ +∫

21 cos( 4)2

x C= βˆ’ + +

26. 3 25, 3u x du x dx= + =

31 1 1cos sin sin( 5)3 3 3

u du u C x Cβ‹… = + = + +∫

27. 22

4, 4

xu x du dxx

= + =+

2sin cos cos 4u du u C x C= βˆ’ + = βˆ’ + +∫

28. 3 223 2

23, 3 3

zu z du dzz

= + =βŽ› ⎞+⎜ ⎟⎝ ⎠

3 23 3 3cos sin sin 32 2 2

u du u C z Cβ‹… = + = + +∫

29. 3 9( 5)u x= + , 3 8 2 2 3 89( 5) (3 ) 27 ( 5)du x x dx x x dx= + = + 1 1cos sin27 27

u du u Cβ‹… = +∫

3 91 sin ( 5)27

x C⎑ ⎀= + +⎣ ⎦

30. 7 9 6 7 8(7 ) , 441 (7 )u x du x x dx= + Ο€ = + Ο€ 1 1sin cos

441 441u du u Cβ‹… = βˆ’ +∫

7 91 cos(7 )441

x C= βˆ’ + Ο€ +

31. 2 2sin( 4), 2 cos( 4)u x du x x dx= + = +

3 / 2

3/ 22

1 12 3

1 sin( 4)3

u du u C

x C

β‹… = +

⎑ ⎀= + +⎣ ⎦

∫

32. 7

6 7

cos(3 9)

21 sin(3 9)

u x

du x x dx

= +

= βˆ’ +

4 / 33 1 121 28

u du u CβŽ› βŽžβ‹… βˆ’ = βˆ’ +⎜ ⎟⎝ ⎠∫

4 / 371 cos(3 9)28

x C⎑ ⎀= βˆ’ + +⎣ ⎦

Page 24: Capitulo 4 Soluciones Purcell 9na Edicion

272 Section 4.4 Instructor’s Resource Manual

33. 3 2 3cos( 5), 3 sin( 5)u x du x x dx= + = βˆ’ +

9 101 13 30

u du u CβŽ› βŽžβ‹… βˆ’ = βˆ’ +⎜ ⎟⎝ ⎠∫

10 31 cos ( 5)30

x C= βˆ’ + +

34. 3tan( 1) u xβˆ’= + , 4 2 33 sec ( 1)du x x dxβˆ’ βˆ’= βˆ’ +

6 / 55 1 53 18

u du u CβŽ› βŽžβ‹… βˆ’ = βˆ’ +⎜ ⎟⎝ ⎠∫

6 / 535 tan( 1)18

x Cβˆ’βŽ‘ ⎀= βˆ’ + +⎣ ⎦

35. 2 1, 2u x du x dx= + = 2111 22 10 10

0 11

( 1) (2 )11ux x dx u du⎑ ⎀

+ = = ⎒ βŽ₯⎒ βŽ₯⎣ ⎦

∫ ∫

11 111 1(2) (1)11 11⎑ ⎀ ⎑ ⎀= βˆ’βŽ’ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

204711

=

36. 3 21, 3u x du x dx= + = 10 13 2 3/ 2

1 0 0

21(3 )3

x x dx udu uβˆ’

⎑ ⎀+ = = ⎒ βŽ₯⎣ ⎦∫ ∫

3 / 22 2 21 03 3 3

βŽ› ⎞ βŽ› ⎞= β‹… βˆ’ β‹… =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

37. u = t + 2, du = dt 53 5 2

21 1 1

1 1( 2)

dt u duut

βˆ’βˆ’

⎑ ⎀= = βˆ’βŽ’ βŽ₯⎣ ⎦+∫ ∫

[ ]1 415 5

⎑ ⎀= βˆ’ βˆ’ βˆ’ =⎒ βŽ₯⎣ ⎦

38. u = y – 1, du = dy 910 9 3/ 2

2 1 1

213

y dy udu u⎑ βŽ€βˆ’ = = ⎒ βŽ₯⎣ ⎦∫ ∫

2 2 52(27) (1)3 3 3⎑ ⎀ ⎑ ⎀= βˆ’ =⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

39. u = 3x + 1, du = 3 dx 8 8 255 5 16

1 13 1 3 1 33 3

x dx x dx u du+ = + β‹… =∫ ∫ ∫

253/ 2

16

2 2 2 122(125) (64)9 9 9 9

u⎑ ⎀ ⎑ ⎀ ⎑ ⎀= = βˆ’ =⎒ βŽ₯ ⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦ ⎣ ⎦

40. u = 2x + 2, du = 2 dx 7 7

1 1

1616 1/ 24 4

1 1 222 2 2 2

1 4 2 22

dx dxx x

u du uβˆ’

=+ +

⎑ ⎀= = = βˆ’ =⎣ ⎦

∫ ∫

∫

41. 27 2 , 4u t du t dt= + =

( )3 32 23 3

2525 3/ 225 25

7 2 (8 ) 2 7 2 4

423

t t dt t t dt

u du u

βˆ’ βˆ’+ = + β‹…

⎑ ⎀= = ⎒ βŽ₯⎣ ⎦

∫ ∫

∫

4 4(125) (125) 03 3⎑ ⎀ ⎑ ⎀= βˆ’ =⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

42. 3 23 , (3 3)u x x du x dx= + = + 2 23 3

1 13 3

3616 1/ 2 1/ 24 4

1 1 3 333 3

1 23 3

x xdx dxx x x x

u du uβˆ’

+ +=

+ +

⎑ ⎀= = ⎒ βŽ₯⎣ ⎦

∫ ∫

∫

2 2 86 23 3 3

βŽ› ⎞ βŽ› ⎞= β‹… βˆ’ β‹… =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

43. cos , sinu x du x dx= = βˆ’

( )/ 2 / 22 20 0

030 21

1

cos sin cos sin

3

x x dx x x dx

uu du

ππ= βˆ’ βˆ’

⎑ ⎀= βˆ’ = βˆ’βŽ’ βŽ₯

⎒ βŽ₯⎣ ⎦

∫ ∫

∫

1 103 3

βŽ› ⎞= βˆ’ βˆ’ =⎜ ⎟⎝ ⎠

44. sin 3 , 3cos3u x du x dx= =

( )

/ 2 20

/ 2 12 20 0

13

0

sin 3 cos3

1 1sin 3 3cos33 3

1 109 9 9

x x dx

x x dx u du

u

Ο€

Ο€

βˆ’

βˆ’

= =

⎑ ⎀ βŽ› ⎞= = βˆ’ βˆ’ = βˆ’βŽ’ βŽ₯ ⎜ ⎟⎝ ⎠⎒ βŽ₯⎣ ⎦

∫

∫ ∫

45. 2 2 , (2 2) 2( 1)u x x du x dx x dx= + = + = + 1 2 20

1 2 20

( 1)( 2 )

1( 2 ) 2( 1)2

x x x dx

x x x dx

+ +

= + +

∫

∫

333 20

0

1 92 6 2

uu du⎑ ⎀

= = =⎒ βŽ₯⎒ βŽ₯⎣ ⎦

∫

46. 11,2

u x du dxx

= βˆ’ =

3 34 41 1

141 30

0

( 1) ( 1)22

12 24 2

x xdx dxx x

uu du

βˆ’ βˆ’=

⎑ ⎀= = =⎒ βŽ₯

⎒ βŽ₯⎣ ⎦

∫ ∫

∫

Page 25: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.4 273

47. sin , cosu du dΞΈ ΞΈ ΞΈ= = 1/ 241/ 2 3

00

1 104 64 64

uu du⎑ ⎀

= = βˆ’ =⎒ βŽ₯⎒ βŽ₯⎣ ⎦

∫

48. cos , sinu du dΞΈ ΞΈ ΞΈ= = βˆ’ 3 / 23 / 2 3 2

1 1

1 1 4 112 2 3 6

u du uβˆ’ βˆ’ βŽ› ⎞⎑ βŽ€βˆ’ = = βˆ’ =⎜ ⎟⎣ ⎦ ⎝ ⎠∫

49. 3 3, 3u x du dx= βˆ’ =

[ ]0 033

1 1 1cos sin (0 sin( 3))3 3 3

u du u βˆ’βˆ’= = βˆ’ βˆ’βˆ«

sin 33

=

50. 2 , 2u x du dx= Ο€ = Ο€

[ ]001 1 1sin cos ( 1 1)

2 2 2u du u

Ο€ Ο€= βˆ’ = βˆ’ βˆ’ βˆ’Ο€ Ο€ Ο€βˆ«

1=Ο€

51. 2 , 2u x du x dx= Ο€ = Ο€

[ ]001 1 1sin cos ( 1 1)

2 2 2u du u

Ο€ Ο€= βˆ’ = βˆ’ βˆ’ βˆ’Ο€ Ο€ Ο€βˆ«

1=Ο€

52. 5 42 , 10u x du x dx= =

[ ]5 52 2

001 1 cos sin

10 10u du u

Ο€ Ο€=∫

5 51 1(sin(2 ) 0) sin(2 )10 10

= Ο€ βˆ’ = Ο€

53. 2 , 2u x du dx= = / 2 / 2

0 01 1 cos sin2 2

u du u duΟ€ Ο€

+∫ ∫

[ ] [ ]/ 2 / 20 0

1 1sin cos2 2

u uΟ€ Ο€= βˆ’

1 1(1 0) (0 1) 12 2

= βˆ’ βˆ’ βˆ’ =

54. 3 , 3 ; 5 , 5u x du dx v x dv dx= = = = 3 / 2 5 / 23 / 2 5 / 2

1 1cos sin3 5

u du v dvΟ€ Ο€

βˆ’ Ο€ βˆ’ Ο€+∫ ∫

[ ] [ ]3 / 2 5 / 23 / 2 5 / 2

1 1sin cos3 5

u vΟ€ Ο€βˆ’ Ο€ βˆ’ Ο€= βˆ’

1 1 2[( 1) 1] [0 0]3 5 3

= βˆ’ βˆ’ βˆ’ βˆ’ = βˆ’

55. cos , sinu x du x dx= = βˆ’

[ ]0 011

sin cos 1 cos1u du uβˆ’ = = βˆ’βˆ«

56. sin , cosu du dΞΈ ΞΈ ΞΈ= Ο€ = Ο€

[ ]1 1cos sin 0u du uΟ€ Ο€

βˆ’Ο€βˆ’Ο€= =

Ο€ Ο€βˆ«

57. 2 2cos( ), 2 sin( )u x du x x dx= = βˆ’ cos14 4cos1 3

11

1 1 cos 1 12 2 4 8 8

uu du⎑ ⎀

βˆ’ = βˆ’ = βˆ’ +⎒ βŽ₯⎒ βŽ₯⎣ ⎦

∫41 cos 1

8βˆ’

=

58. 3 2 3sin( ), 3 cos( )u x du x x dx= = 33 sin( / 8)sin( / 8) 2 3

3 3sin( / 8) sin( / 8)

338

1 13 9

2sin

9

u du uππ

βˆ’ Ο€ βˆ’ Ο€

Ο€

⎑ ⎀= ⎣ ⎦

βŽ› ⎞⎜ ⎟⎝ ⎠=

∫

59. a. Between 0 and 3, ( ) 0f x > . Thus, 30

( ) 0f x dx >∫ .

b. Since f is an antiderivative of 'f , 30

'( ) (3) (0)

0 2 2 0

f x dx f f= βˆ’

= βˆ’ = βˆ’ <∫

c. 30

''( ) '(3) '(0)

1 0 1 0

f x dx f f= βˆ’

= βˆ’ βˆ’ = βˆ’ <∫

d. Since f is concave down at 0, ''(0) 0f < . 30

'''( ) ''(3) ''(0)

0 (negative number) > 0

f x dx f f= βˆ’

= βˆ’βˆ«

60. a. On [ ]0, 4 , ( ) 0f x > . Thus, 40

( ) 0f x dx >∫ .

b. Since f is an antiderivative of 'f , 40

'( ) (4) (0)

1 2 1 0

f x dx f f= βˆ’

= βˆ’ = βˆ’ <∫

c. 40

''( ) '(4) '(0)

1 9( 2) 04 4

f x dx f f= βˆ’

= βˆ’ βˆ’ = >

∫

d.

( ) ( )

40

'''( ) ''(4) ''(0)

negative positive 0

f x dx f f= βˆ’

= βˆ’ <

∫

Page 26: Capitulo 4 Soluciones Purcell 9na Edicion

274 Section 4.4 Instructor’s Resource Manual

61. ( ) ( ) ( ) 2120 202

V t V t t dt t t Cβ€²= = βˆ’ = βˆ’ +∫ ∫

( )0 0V C= = since no water has leaked out at

time 0t = . Thus, ( ) 21202

V t t t= βˆ’ , so

( ) ( )20 10 200 150 50V Vβˆ’ = βˆ’ = gallons.

Time to drain: 2120 200; 202

t t tβˆ’ = = hours.

62. ( ) ( ) ( )

( ) ( )

( ) ( )

121

00

10

9

2

0

2191 0220 220

20110 9 1110 220

55 0 1110 220

110 hrs

T

tV V V t dt t

tV V dt

t TV T V dt T

T

⎑ βŽ€β€²βˆ’ = = βˆ’ =⎒ βŽ₯

⎒ βŽ₯⎣ ⎦

βŽ› βŽžβˆ’ = βˆ’ =⎜ ⎟⎝ ⎠

βŽ› ⎞= βˆ’ = βˆ’ = βˆ’βŽœ ⎟⎝ ⎠

β‰ˆ

∫

∫

∫

63. Use a midpoint Riemann sum with 12n = partitions.

( )12

1

1(5.4 6.3 6.4 6.5 6.9 7.5 8.4 8.4 8.0 7.5 7.0 6.5)

84.8

i ii

V f x x=

= Ξ”

β‰ˆ + + + + + ++ + + + +

=

βˆ‘

64. Use a midpoint Riemann sum with 10n = partitions.

( )10

1

6200 6300 6500 6500 66001

6700 6800 7000 7200 720067,000

i ii

V f x x=

= Ξ”

+ + + +βŽ› βŽžβ‰ˆ ⎜ ⎟+ + + + +⎝ ⎠=

βˆ‘

65. Use a midpoint Riemann sum with 12n = partitions.

( )12

0

2(3.0 3.0 3.8 5.8 7.8 6.9 6.5 6.3 7.2 8.2 8.7 5.4)145.2

i ii

E P t t=

= Ξ”

β‰ˆ + + + + ++ + + + + +

=

βˆ‘

66. ( ) ( )

( ) ( )2

0

14

5mass 22

xx m x

x dx m

Ξ΄

Ξ΄

β€²= = +

= = =∫

67. a. ; nb bn nnn na a

x dx B y dy A= =∫ ∫

Using Figure 3 of the text, ( )( ) ( )( )n n

n na a A B b b+ + = or 1 1n n

n nB A b a+ ++ = βˆ’ . Thus

1 1nb bn n nnna a

x dx y dy b a+ ++ = βˆ’βˆ« ∫

b. nb bn nna a

x dx y dy+∫ ∫

1( 1) /

1 1

nb bnn n

naa

x n yn n

++⎑ ⎀ ⎑ ⎀= +⎒ βŽ₯ ⎒ βŽ₯+ +⎣ ⎦⎒ βŽ₯⎣ ⎦

1 11 1

1 1 1 1

n nn nb a n nb a

n n n n

+ ++ +βŽ› ⎞ βŽ› ⎞= βˆ’ + βˆ’βŽœ ⎟ ⎜ ⎟⎜ ⎟+ + + +⎝ ⎠⎝ ⎠

1 11 1( 1) ( 1)

1

n nn nn b n a b a

n

+ ++ ++ βˆ’ +

= = βˆ’+

c. 111

bb n nn a a

B x dx xn

+⎑ ⎀= = ⎣ ⎦+∫

1 11 ( )1

n nb an

+ += βˆ’+

( 1) /1

nbnb n nnnn a na

nA y dy yn

+⎑ ⎀= = ⎒ βŽ₯+⎣ ⎦∫

( )1 11

n nn b an

+ += βˆ’+

1 1( )1

n nn n

nnB b a An

+ += βˆ’ =+

68. Let ( ) ( )xa

y G x f t dt= = ∫ . Then

'( ) ( )dy G x f xdx

= =

( )dy f x dx= Let F be any antiderivative of f . Then ( ) ( )G x F x C= + . When x a= , we must have

( ) 0G a = . Thus, ( )C F a= βˆ’ and

( ) ( ) ( )G x F x F a= βˆ’ . Now choose x b= to obtain

( )( ) ( ) ( )ba

f t dt G b F b F a= = βˆ’βˆ«

69. 333 2

00

9 0 93xx dx

⎑ ⎀= = βˆ’ =⎒ βŽ₯⎒ βŽ₯⎣ ⎦

∫

70. 242 3

00

4 0 44xx dx

⎑ ⎀= = βˆ’ =⎒ βŽ₯⎒ βŽ₯⎣ ⎦

∫

Page 27: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.4 275

71. [ ]00sin cos 1 1 2x dx x

Ο€ Ο€= βˆ’ = + =∫

72. 22 2 2 3

0 0

1 1(1 )2 3

x x dx x x x⎑ ⎀+ + = + +⎒ βŽ₯⎣ ⎦∫

8 202 2 03 3

βŽ› ⎞= + + βˆ’ =⎜ ⎟⎝ ⎠

73. The right-endpoint Riemann sum is 2

23

1 1

1 0 1 10 ,n n

i ii i

n n n= =

βˆ’βŽ› ⎞ βŽ› ⎞+ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

βˆ‘ βˆ‘ which for

n = 10 equals 77 0.385200

= .

11 2 30 0

1 1 0.3333 3

x dx x⎑ ⎀= = =⎒ βŽ₯⎣ ⎦∫

74 ( )4 4 42 2 2

2 3 2 3x x dx x dx x dxβˆ’ βˆ’ βˆ’

βˆ’ = βˆ’βˆ« ∫ ∫

[ ]2 ( 2 1 0 1 2 3)(1)= βˆ’ βˆ’ + + + +

1 13 (2)(2) (4)(4)2 2⎑ βŽ€βˆ’ +⎒ βŽ₯⎣ ⎦

= –24

75. 1 12 2 2

x xd x x x xdx x

βŽ› βŽžβŽ› ⎞ = + =⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

( )1 12 2

bba a

x dx x x b b a a⎑ ⎀= = βˆ’βŽ’ βŽ₯⎣ ⎦∫

76. For b > 0, if b is an integer,

00 1 2 ( 1)

bx dx b= + + + β‹…β‹…β‹… + βˆ’βˆ«

1

1

( 1) .2

b

i

b biβˆ’

=

βˆ’= =βˆ‘

If b is not an integer, let n b= . Then

00 1 2 ( 1) ( )

bx dx n n b n= + + + β‹…β‹…β‹… + βˆ’ + βˆ’βˆ«

( 1) ( )2

n n n b nβˆ’= + βˆ’

( 1)( )

2b b

b b bβˆ’

= + βˆ’ .

77. a. Let c be in ( ),a b . Then '( ) ( )G c f c= by the First Fundamental Theorem of Calculus. Since G is differentiable at c , G is continuous there. Now suppose c a= .

Then lim ( ) lim ( )xax c x a

G x f t dt→ →

= ∫ . Since f is

continuous on [ ],a b , there exist (by the Min-Max Existence Theorem) m and M such that ( ) ( ) ( )f m f x f M≀ ≀ for all x in [ ],a b . Then

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x x xa a a

f m dt f t dt f M dt

x a f m G x x a f M

≀ ≀

βˆ’ ≀ ≀ βˆ’βˆ« ∫ ∫

By the Squeeze Theorem lim ( ) ( ) lim ( )

lim ( ) ( )x a x a

x a

x a f m G x

x a f M+ +β†’ β†’

+β†’

βˆ’ ≀

≀ βˆ’

Thus,

lim ( ) 0 ( ) ( )aax a

G x f t dt G a+β†’

= = =∫

Therefore G is right-continuous at x a= . Now, suppose c b= . Then

lim ( ) lim ( )bxx b x b

G x f t dtβˆ’ βˆ’β†’ β†’

= ∫

As before, ( ) ( ) ( ) ( ) ( )b x f m G x b x f Mβˆ’ ≀ ≀ βˆ’ so we can apply the Squeeze Theorem again to obtain

lim ( ) ( ) lim ( )

lim ( ) ( )x b x b

x b

b x f m G x

b x f Mβˆ’ βˆ’β†’ β†’

βˆ’β†’

βˆ’ ≀

≀ βˆ’

Thus

lim ( ) 0 ( ) ( )bbx b

G x f t dt G bβˆ’β†’

= = =∫

Therefore, G is left-continuous at x b= .

b. Let F be any antiderivative of f. Note that G is also an antiderivative of f. Thus,

( ) ( )F x G x C= + . We know from part (a) that ( )G x is continuous on [ ],a b . Thus

( )F x , being equal to ( )G x plus a constant, is also continuous on [ ],a b .

Page 28: Capitulo 4 Soluciones Purcell 9na Edicion

276 Section 4.5 Instructor’s Resource Manual

78. Let 1, 0

( )0, 0

xf x

x>⎧

= ⎨ β‰€βŽ© and

1( ) ( )

xF x f t dt

βˆ’= ∫ .

If 0x < , then ( ) 0F x = . If 0x β‰₯ , then

101 0

( ) ( )

0 1

0

x

x

F x f t dt

dt dt

x x

βˆ’

βˆ’

=

= +

= + =

∫

∫ ∫

Thus, , 0

( )0, 0x x

F xxβ‰₯⎧

= ⎨ <⎩

which is continuous everywhere even though ( )f x is not continuous everywhere.

4.5 Concepts Review

1. ( )1 b

af x dx

b aβˆ’ ∫

2. ( )f c

3. ( )2

00; 2 f x dx∫

4. ( ) ( );f x p f x+ = period

Problem Set 4.5

1. 33 3 4

1 1

1 14 403 1 2

x dx x⎑ ⎀= =⎣ βŽ¦βˆ’ ∫

2. 44 2 3

1 1

1 1 55 354 1 3 3

x dx x⎑ ⎀= =⎒ βŽ₯βˆ’ ⎣ ⎦∫

3. 33 2

0 2 0

1 1 1163 0 3 316

x dx xx

⎑ ⎀= + =⎒ βŽ₯⎣ βŽ¦βˆ’ +∫

4.

( ) ( )

222 30 3 0

1 1 2 162 0 2 316

1 224 4 6 23 3

x dx xx

⎑ ⎀= +⎒ βŽ₯βˆ’ ⎣ ⎦+

= βˆ’ = βˆ’

∫

5. ( )

( ) ( )

( )

12

0 12 0

0 12 21 12 22 0

21 12 2

1 21 2

1 2 231 2 231 172( 2) ( 2) 23 6

x dx

x dx x dx

x x x x

βˆ’

βˆ’

βˆ’

++⎑ ⎀= βˆ’ + +⎒ βŽ₯⎣ ⎦⎧ ⎫⎑ ⎀ ⎑ ⎀= βˆ’ + +⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

= βˆ’ βˆ’ + βˆ’ + + =

∫

∫ ∫

6. ( )

( )

23

0 23 0

220

12 3

1 251 45 5

x x dx

x x dx x dx

x

βˆ’

βˆ’

++βŽ› ⎞= βˆ’ + +⎜ ⎟⎝ ⎠

⎑ ⎀= =⎣ ⎦

∫

∫ ∫

7. [ ]

[ ]

001 1cos sin

1 sin sin 0 0

x dx xΟ€ Ο€

Ο€ Ο€

ππ

=

= βˆ’ =

∫

8. ( )

( )

001 1sin cos

01 21 1

x dx xΟ€ Ο€

Ο€ Ο€

Ο€ Ο€

= βˆ’βˆ’

= βˆ’ βˆ’ βˆ’ =

∫

9.

( )

2 20 0

1 1 1cos sin20

1 0 0 0

x x dx xππ

Ο€ Ο€

Ο€

βŽ› ⎞= ⎜ βŽŸβˆ’ ⎝ ⎠

= βˆ’ =

∫

10. / 2 2

0

/ 23

0

1 sin cos/ 2 0

2 1 2sin3 3

x x dx

x

ππ

Ο€βˆ’

⎑ ⎀= =⎒ βŽ₯Ο€ Ο€βŽ£ ⎦

∫

11. ( ) ( )23 42 2 2

1 1

1 11 12 1 8

625 6092 76.1258 8

y y dy y⎑ ⎀+ = +⎒ βŽ₯βˆ’ ⎣ ⎦

= βˆ’ = =

∫

12.

( )

/ 4/ 4 2 20 0

1 1 1tan sec tan/ 4 1 / 4 1 2

2 21 04 4

x x xΟ€

Ο€

Ο€ Ο€

Ο€ Ο€

⎑ ⎀= ⎒ βŽ₯βˆ’ βˆ’ ⎣ ⎦

= βˆ’ =βˆ’ βˆ’

∫

13.

( )

/ 2/ 2/ 4 / 4

1 sin 4 2cos/ 48 cos / 4 cos / 2 0.815

z dz zz

ππ

Ο€ ππ Ο€

Ο€ ππ

⎑ ⎀= βˆ’βŽ£ ⎦

= βˆ’ β‰ˆ

∫

14.

( )

/ 20 2

/ 22

0

1 sin cos/ 2 1 cos

2 1 cos

2 1 2

v v dvv

v

Ο€

Ο€

Ο€

Ο€

Ο€

+

⎑ ⎀= βˆ’ +⎒ βŽ₯⎣ ⎦

= βˆ’ +

∫

Page 29: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.5 277

15. ( )

( )

3

03

3/ 2

0

1 1 3 0

2 1 3 13

11514 / 3 3 1; 1.4281

x dx c

x c

c c

+ = + βˆ’

⎑ ⎀+ = +⎒ βŽ₯⎣ ⎦

= + = β‰ˆ

∫

16. ( )( )1 2 21

13 2

1

1 1

1 32 ; 0.583 3

x dx c

x c c

βˆ’

βˆ’

= βˆ’ βˆ’

⎑ ⎀ = = Β± β‰ˆ ±⎒ βŽ₯⎣ ⎦

∫

17. ( ) ( )( )3 2 24

33 2

4

1 1 3 4

1 7 73

39 2.083

x dx c

x x c

c

βˆ’

βˆ’

βˆ’ = βˆ’ +

⎑ βŽ€βˆ’ = βˆ’βŽ’ βŽ₯⎣ ⎦

= Β± β‰ˆ Β±

∫

18. ( ) ( )( )

( )

1

012

2

0

1 1 1 0

2 36

3 3 0.21 or 0.796

x x dx c c

x xc c

c

βˆ’ = βˆ’ βˆ’

⎑ βŽ€βˆ’ βˆ’= βˆ’βŽ’ βŽ₯

⎒ βŽ₯⎣ ⎦

Β±= β‰ˆ

∫

19. ( )2

2

00

2 0 ; 2 ; 12

x xx dx c c c

⎑ ⎀= βˆ’ = =⎒ βŽ₯

⎣ ⎦∫

20. ( )2

2

22

2 2 ; 4 ; 1,12

x xx dx c c c

βˆ’βˆ’

⎑ ⎀= + = = βˆ’βŽ’ βŽ₯

⎣ ⎦∫

21. ( )

[ ]

sin sin

cos 2 sin ; 0

z dz c

z c c

Ο€

πππ

Ο€ Ο€

Ο€

βˆ’

βˆ’

= +

βˆ’ = =

∫

22. ( )( )0

0

cos 2 cos 2 0

sin 2 3cos 2 ; ,2 4 4

y dy c

y c c

Ο€

Ο€

Ο€

Ο€ ππ

= βˆ’

⎑ ⎀ = =⎒ βŽ₯⎣ ⎦

∫

23. ( ) ( )( )2 2 20

23 2 2

0

2 0

1 1 2 23 2

21 3 1.266

v v dv c c

v v c c

c

βˆ’ = βˆ’ βˆ’

⎑ βŽ€βˆ’ = βˆ’βŽ’ βŽ₯⎣ ⎦

+= β‰ˆ

∫

24. ( )22 3 3 4 3

0 03

12 0 ; 24

2 1.26

x dx c x c

c

⎑ ⎀= βˆ’ =⎒ βŽ₯⎣ ⎦

= β‰ˆ

∫

25. ( ) ( )( )4

14

2

1

4 1

53 3 ;2 2

ax b dx ac b

a x bx ac b c

+ = + βˆ’

⎑ ⎀+ = + =⎒ βŽ₯⎣ ⎦

∫

26. ( )2 2 3 20 0

10 ;3

3

bby dy c b y bc

bc

⎑ ⎀= βˆ’ =⎒ βŽ₯⎣ ⎦

=

∫

27. ( )

( )

22

B

A

B

A

ax b dxf c

B A

a x bxac b

B A

+=

βˆ’

⎑ ⎀+⎒ βŽ₯⎣ ⎦ = +βˆ’

∫

( )( ) ( )2

;2 2

1 1 ( ) / 22 2

a B A B A b B Aac b

B Aa aB A b ac b

c B A A B

βˆ’ + + βˆ’= +

βˆ’

+ + = +

= + = +

28. ( )2 2 3 20

0

10 ;3

33

bb

ay dy ac b ay abc

bc

⎑ ⎀= βˆ’ =⎒ βŽ₯⎣ ⎦

=

∫

29.. Using c Ο€= yields 42 (5) 1250 3927Ο€ Ο€= β‰ˆ

30. Using 0.8c = yields ( )22 3 sin 0.8 7.19+ β‰ˆ

Page 30: Capitulo 4 Soluciones Purcell 9na Edicion

278 Section 4.5 Instructor’s Resource Manual

31. Using 0.5c = yields 222 3.2

1 0.5=

+

32. Using c = 15 yields 516 (20 10) 13.8

15βŽ› ⎞ βˆ’ β‰ˆβŽœ ⎟⎝ ⎠

.

33. A rectangle with height 25 and width 7 has approximately the same area as that under the curve. Thus

70

1 ( ) 257

H t dt β‰ˆβˆ«

34. a. A rectangle with height 28 and width 24 has approximately the same area as that under the curve. Thus,

240

1 ( ) 2824 0

T t dt β‰ˆβˆ’ ∫

b. Yes. The Mean Value Theorem for Integrals guarantees the existence of a c such that

240

1 ( ) ( )24 0

T t dt T c=βˆ’ ∫

The figure indicates that there are actually two such values of c, roughly, 11c = and

16c = .

35. 0

(sin cos ) sin 2 cosx x dx x dx x dxΟ€ Ο€ Ο€

βˆ’Ο€ βˆ’Ο€+ = +∫ ∫ ∫

[ ]00 2 sin 0x Ο€= + =

36. 312 41

0(1 )

x dxxβˆ’

=+∫ , since the integrand is

odd.

37. / 2/ 2

sin 01 cos

x dxx

Ο€

βˆ’Ο€=

+∫ , since the integrand is odd.

38. 3 32 3 2 33 0

cos( ) 2 cos( )x x dx x x dxΟ€ Ο€

βˆ’ Ο€=∫ ∫

( )33 30

2 2sin( ) sin 3 33 3

xΟ€

⎑ ⎀= = Ο€βŽ£ ⎦

39. 2(sin cos )x x dxΟ€

βˆ’Ο€+∫

2 2(sin 2sin cos cos )x x x x dxΟ€

βˆ’Ο€= + +∫

(1 2sin cos ) sin 2x x dx dx x dxΟ€ Ο€ Ο€

βˆ’Ο€ βˆ’Ο€ βˆ’Ο€= + = +∫ ∫ ∫

002 0 2[ ] 2dx x

Ο€ Ο€= + = = Ο€βˆ«

40. / 2 2 3 3/ 2

sin ( )cos( ) 0z z z dzΟ€

βˆ’Ο€=∫ , since

2 3 3( )sin [( ) ]cos[( ) ]z z zβˆ’ βˆ’ βˆ’ 2 3 3sin ( )cos( )z z z= βˆ’ βˆ’ βˆ’

3 2 3[ sin( )] cos( )z z z= βˆ’ βˆ’ 2 3 3sin ( ) cos( )z z z= βˆ’

41. 1 2 31

(1 )x x x dxβˆ’

+ + +∫

1 1 1 12 31 1 1 1

dx x dx x dx x dxβˆ’ βˆ’ βˆ’ βˆ’

= + + +∫ ∫ ∫ ∫

[ ]13

10

0

82 0 2 03 3xx

⎑ ⎀= + + + =⎒ βŽ₯

⎒ βŽ₯⎣ ⎦

42. 100 3 5100

( sin cos sin ) 0v v v v v dvβˆ’

+ + + =∫

since 3 5( sin( ) cos( ) sin ( ))v v v v vβˆ’ + βˆ’ βˆ’ βˆ’ + βˆ’ 3 5( sin cos sin )v v v v v= βˆ’ βˆ’ βˆ’ βˆ’ 3 5( sin cos sin )v v v v v= βˆ’ + + +

43. ( )1 1 13 3 3 31 0 1

2x x dx x dx x dxβˆ’ βˆ’

+ = +∫ ∫ ∫

14

0

12 04 2x⎑ ⎀

= + =⎒ βŽ₯⎒ βŽ₯⎣ ⎦

44. ( )/ 4 25/ 4

sin tan 0x x x x dxΟ€

βˆ’Ο€+ =∫

since 25sin ( ) tan( )x x x xβˆ’ βˆ’ + βˆ’ βˆ’ 25sin tanx x x x= βˆ’ βˆ’

45. ( ) ( )a bb a

f x dx f x dxβˆ’

βˆ’=∫ ∫ when f is even.

( ) ( )a bb a

f x dx f x dxβˆ’

βˆ’= βˆ’βˆ« ∫ when f is odd.

Page 31: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.5 279

46. , u x du dx= βˆ’ = βˆ’

( ) ( )b ba a

f x dx f u duβˆ’

βˆ’βˆ’ = βˆ’βˆ« ∫

( ) ( )a ab b

f u du f x dxβˆ’ βˆ’

βˆ’ βˆ’= =∫ ∫ since the variable

used in the integration is not important.

47.

[ ]

4 / 20 0

/ 20

cos 8 cos

8 sin 8

x dx x dx

x

Ο€ Ο€

Ο€

=

= =

∫ ∫

48. Since sin x is periodic with period 2Ο€ , sin 2x is periodic with period Ο€ .

4 20 0

sin 2 8 sin 2x dx x dxΟ€ Ο€

=∫ ∫

2

0

18 cos 22

xΟ€

⎑ ⎀= βˆ’βŽ’ βŽ₯⎣ ⎦ = –4(–1 – 1) = 8

49. 11 0 0

sin sin sinx dx x dx x dx+Ο€ Ο€ Ο€

= =∫ ∫ ∫

[ ]0cos 2x Ο€= βˆ’ =

50. 2 / 2 / 22 0

sin 2 sin 2x dx x dx+Ο€ Ο€

=∫ ∫

[ ] / 20

1 cos 2 12

x Ο€= βˆ’ =

51.

[ ] ( )

1 / 21 0 0

/ 20

cos cos 2 cos

2 sin 2 1 0 2

x dx x dx x dx

x

Ο€ Ο€ Ο€

Ο€

+= =

= = βˆ’ =

∫ ∫ ∫

52. The statement is true. Recall that 1 ( )

ba

f f x dxb a

=βˆ’ ∫ .

1 ( )b b b ba a a a

fdx f dx f x dx dxb a

= = β‹…βˆ’βˆ« ∫ ∫ ∫

1 ( ) ( ) ( )b ba a

f x dx b a f x dxb a

= β‹… βˆ’ =βˆ’ ∫ ∫

53. All the statements are true.

a. 1 1b ba a

u v u dx v dxb a b a

+ = +βˆ’ βˆ’βˆ« ∫

1 ( )ba

u v dx u vb a

= + = +βˆ’ ∫

b. 1b ba a

kku u dx ku dx kub a b a

= = =βˆ’ βˆ’βˆ« ∫

c. Note that

( ) ( )1 1b a

a bu u x dx u x dx

b a a b= =

βˆ’ βˆ’βˆ« ∫ , so

we can assume a b< . 1 1b b

a au u dx v dx v

b a b a= ≀ =

βˆ’ βˆ’βˆ« ∫

54. a. 0V = by periodicity.

b. 0V = by periodicity.

c. ( )

( )

12 2 2

1 2 20

Λ† sin 120

Λ† sin 120

rmsV V t dt

V t dt

Ο†

φπ Ο†

Ο€

+= +

=

∫

∫

by periodicity. 120u tΟ€= , 120du dtΟ€=

1202 2 20

1202

0

2

1 Λ† sin120

Λ† 1 1cos sin120 2 21 Λ†2

rmsV V u du

V u u u

V

Ο€

ππ

Ο€

=

⎑ ⎀= βˆ’ +⎒ βŽ₯⎣ ⎦

=

∫

d. Λ† 21202

V=

Λ† 120 2 169.71 VoltsV = β‰ˆ

55. Since f is continuous on a closed interval [ ],a b there exist (by the Min-Max Existence Theorem) an m and M in [ ],a b such that

( ) ( ) ( )f m f x f M≀ ≀ for all x in [ ],a b . Thus

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1( ) ( ) ( )

b b ba a a

ba

ba

f m dx f x dx f M dx

b a f m f x dx b a f M

f m f x dx f Mb a

≀ ≀

βˆ’ ≀ ≀ βˆ’

≀ β‰€βˆ’

∫ ∫ ∫

∫

∫

Since f is continuous, we can apply the Intermediate Value Theorem and say that f takes on every value between ( )f m and ( )f M . Since

1 ( )ba

f x dxb aβˆ’ ∫ is between ( )f m and ( )f M ,

there exists a c in [ ],a b such that

1( ) ( )ba

f c f x dxb a

=βˆ’ ∫ .

56. a. [ ]2 2 22 200 0

(sin cos ) 2x x dx dx x ππ Ο€ Ο€+ = = =∫ ∫

Page 32: Capitulo 4 Soluciones Purcell 9na Edicion

280 Section 4.5 Instructor’s Resource Manual

b.

c.

2 22 20 0

2 cos sinx dx x dxΟ€ Ο€

Ο€ = +∫ ∫

2 20

2 cos ,x dxΟ€

= ∫ thus 2 20

cos x dxΟ€

∫

2 20

sin x dxΟ€

= = Ο€βˆ«

57. a. Even b. 2Ο€

c. On [ ]0,Ο€ , sin sinx x= . cosu x= , sindu x dx= βˆ’

( ) ( )

( )

sin sin cos

sin cos

cos cos

f x dx x x dx

u du u C

x C

= β‹…

= βˆ’ = +

= +

∫ ∫

∫

Likewise, on [ ], 2Ο€ Ο€ ,

( ) ( )cos cosf x dx x C= βˆ’ +∫

( )/ 2

01 cos1 0.46f x dx

Ο€= βˆ’ β‰ˆβˆ«

( ) ( )( )

/ 2 / 2

/ 2 02

2 1 cos1 0.92

f x dx f x dxΟ€ Ο€

Ο€βˆ’=

= βˆ’ β‰ˆ

∫ ∫

( ) ( ) ( )3 / 2 3 / 2

0 0

cos1 1 0.46

f x dx f x dx f x dxΟ€ Ο€ Ο€

Ο€= +

= βˆ’ β‰ˆ βˆ’βˆ« ∫ ∫

( ) ( )( )

3 / 2 3 / 2

3 / 2 02

2 cos1 1 0.92

f x dx f x dxΟ€ Ο€

Ο€βˆ’=

= βˆ’ β‰ˆ βˆ’

∫ ∫

( )2

00f x dx

Ο€=∫

( )4 / 3

/ 63 12cos1 cos cos

2 2

0.44

f x dxΟ€

Ο€

βŽ› ⎞ βŽ› ⎞= βˆ’ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ βŽ β‰ˆ βˆ’

∫

( ) ( )10 / 3 4 / 3

13 / 6 / 60.44f x dx f x dx

Ο€ Ο€

Ο€ Ο€= β‰ˆ βˆ’βˆ« ∫

58. a. Odd b. 2Ο€ c. This function cannot be integrated in closed

form. We can only simplify the integrals using symmetry and periodicity, and approximate them numerically.

Note that ( ) 0a

af x dx

βˆ’=∫ since f is odd, and

( ) 0a

af x dx

Ο€

Ο€

+

βˆ’=∫ since

( ) ( )f x f xΟ€ Ο€+ = βˆ’ βˆ’ .

( ) ( )/ 210

1 0.692

f x dx JΟ€ Ο€

= β‰ˆβˆ« (Bessel

function)

( )/ 2

/ 20f x dx

Ο€

Ο€βˆ’=∫

( ) ( )3 / 2 / 2

0 00.69f x dx f x dx

Ο€ Ο€= β‰ˆβˆ« ∫

( )3 / 2

3 / 20f x dx

Ο€

Ο€βˆ’=∫ ; ( )2

00f x dx

Ο€=∫

( ) ( )13 / 6 2

/ 6 00f x dx f x dx

Ο€ Ο€

Ο€= =∫ ∫

( )4 / 3

/ 61.055f x dx

Ο€

Ο€β‰ˆβˆ« (numeric integration)

( ) ( )10 / 3 4 / 3

13 / 6 / 61.055f x dx f x dx

Ο€ Ο€

Ο€ Ο€= β‰ˆβˆ« ∫

59. a. Written response.

b. 0 0

( )a a a cA g x dx f x dx

c aβŽ› ⎞= = ⎜ ⎟⎝ ⎠∫ ∫

2

20 0( ) ( )

c ca a af x dx f x dxc c c

= =∫ ∫

0 0( )

b b b cB h x dx f x dxc b

βŽ› ⎞= = ⎜ ⎟⎝ ⎠∫ ∫

2

20 0( ) ( )

c cb b bf x dx f x dxc c c

= =∫ ∫

Thus, 0 0

( ) ( )a b

g x dx h x dx+∫ ∫

2 2

2 20 0( ) ( )

c ca bf x dx f x dxc c

= +∫ ∫

2 2

2 0 0( ) ( )

c ca b f x dx f x dxc+

= =∫ ∫ since

2 2 2a b c+ = from the triangle.

60. If f is odd, then ( ) ( )f x f xβˆ’ = βˆ’ and we can write

[ ]0 0( ) ( )

a af x dx f x dx

βˆ’ βˆ’= βˆ’ βˆ’βˆ« ∫

0( )

af u du= ∫

0( )

af u du= βˆ’βˆ« 0

( )a

f x dx= βˆ’βˆ«

On the second line, we have made the substitution u x= βˆ’ .

Page 33: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor's Resource Manual Section 4.6 281

4.6 Concepts Review

1. 1, 2, 2, 2, …, 2, 1

2. 1, 4, 2, 4, 2, …, 4, 1

3. 4n

4. large

Problem Set 4.6

1. 21 3 –1( ) ; 0.25

8f x h

x= = =

0 1.00x = 0( ) 1f x =

1 1.25x = 1( ) 0.64f x =

2 1.50x = 2( ) 0.4444f x β‰ˆ

3 1.75x = 3( ) 0.3265f x β‰ˆ

4 2.00x = 4( ) 0.25f x =

5 2.25x = 5( ) 0.1975f x β‰ˆ

6 2.50x = 6( ) 0.16f x =

7 2.75x = 7( ) 0.1322f x β‰ˆ

8 3.00x = 8( ) 0.1111f x β‰ˆ

Left Riemann Sum: 3

0 1 7211 0.25[ ( ) ( ) ( )] 0.7877dx f x f x f xx

β‰ˆ + +…+ β‰ˆβˆ«

Right Riemann Sum: ( )31 2 821

1 0.25[ ( ) ... ( )] 0.5655dx f x f x f xx

β‰ˆ + + + β‰ˆβˆ«

Trapezoidal Rule: 3

0 1 7 8211 0.25[ ( ) 2 ( ) 2 ( ) ( )] 0.6766

2dx f x f x f x f x

xβ‰ˆ + +…+ + β‰ˆβˆ«

Parabolic Rule: 3

0 1 2 7 8211 0.25[ ( ) 4 ( ) 2 ( ) 4 ( ) ( )] 0.6671

3dx f x f x f x f x f x

xβ‰ˆ + + +…+ + β‰ˆβˆ«

Fundamental Theorem of Calculus: 33

21 1

1 1 1 2– – 1 0.66673 3

dxxx

⎑ ⎀= = + = β‰ˆβŽ’ βŽ₯⎣ ⎦∫

2. 31 3 –1( ) ; 0.25

8f x h

x= = =

0 1.00x = 0( ) 1f x =

1 1.25x = 1( ) 0.5120f x =

2 1.50x = 2( ) 0.2963f x β‰ˆ

3 1.75x = 3( ) 0.1866f x β‰ˆ

4 2.00x = 4( ) 0.1250f x =

5 2.25x = 5( ) 0.0878f x β‰ˆ

6 2.50x = 6( ) 0.0640f x =

7 2.75x = 7( ) 0.0481f x β‰ˆ

8 3.00x = 8( ) 0.0370f x β‰ˆ

Left Riemann Sum: 3

0 1 7311 0.25[ ( ) ( ) ( )] 0.5799dx f x f x f xx

β‰ˆ + +…+ β‰ˆβˆ«

Right Riemann Sum: ( )31 2 831

1 0.25[ ( ) ... ( )] 0.3392dx f x f x f xx

β‰ˆ + + + β‰ˆβˆ«

Trapezoidal Rule: 3

0 1 7 8311 0.25[ ( ) 2 ( ) 2 ( ) ( )] 0.4596

2dx f x f x f x f x

xβ‰ˆ + +…+ + β‰ˆβˆ«

Parabolic Rule: 3

0 1 2 7 8311 0.25[ ( ) 4 ( ) 2 ( ) 4 ( ) ( )] 0.4455

3dx f x f x f x f x f x

xβ‰ˆ + + +…+ + β‰ˆβˆ«

Fundamental Theorem of Calculus: 3

33 21

1

1 1 4 0.444492

dxx x

⎑ ⎀= βˆ’ = β‰ˆβŽ’ βŽ₯

⎣ ⎦∫

Page 34: Capitulo 4 Soluciones Purcell 9na Edicion

282 Section 4.6 Instructor’s Resource Manual

3. 2 – 0( ) ; 0.258

f x x h= = =

0 0.00x = 0( ) 0f x =

1 0.25x = 1( ) 0.5f x =

2 0.50x = 2( ) 0.7071f x β‰ˆ

3 0.75x = 3( ) 0.8660f x β‰ˆ

4 1.00x = 4( ) 1f x =

5 1.25x = 5( ) 1.1180f x β‰ˆ

6 1.50x = 6( ) 1.2247f x β‰ˆ

7 1.75x = 7( ) 1.3229f x β‰ˆ

8 2.00x = 8( ) 1.4142f x β‰ˆ

Left Riemann Sum: 2

0 1 700.25[ ( ) ( ) ( )] 1.6847x dx f x f x f xβ‰ˆ + +…+ β‰ˆβˆ«

Right Riemann Sum: ( )21 2 80

0.25[ ( ) ... ( )] 2.0383x dx f x f x f xβ‰ˆ + + + β‰ˆβˆ«

Trapezoidal Rule: 2

0 1 7 800.25[ ( ) 2 ( ) 2 ( ) ( )] 1.8615

2xdx f x f x f x f xβ‰ˆ + +…+ + β‰ˆβˆ«

Parabolic Rule: 2

1 2 3 7 800.25[ ( ) 4 ( ) 2 ( ) 4 ( ) ( )] 1.8755

3xdx f x f x f x f x f xβ‰ˆ + + +…+ + β‰ˆβˆ«

Fundamental Theorem of Calculus: 22 3/ 2

0 0

2 4 2 1.88563 3

xdx x⎑ ⎀= = β‰ˆβŽ’ βŽ₯⎣ ⎦∫

4. 2 3 –1( ) 1; 0.258

f x x x h= + = =

0 1.00x = 0( ) 1.4142f x β‰ˆ

1 1.25x = 1( ) 2.0010f x β‰ˆ

2 1.50x = 2( ) 2.7042f x β‰ˆ

3 1.75x = 3( ) 3.5272f x β‰ˆ

4 2.00x = 4( ) 4.4721f x β‰ˆ

5 2.25x = 5( ) 5.5400f x β‰ˆ

6 2.50x = 6( ) 6.7315f x β‰ˆ

7 2.75x = 7( ) 8.0470f x β‰ˆ

8 3.00x = 8( ) 9.4868f x β‰ˆ

Left Riemann Sum: 3 2

0 1 711 0.25[ ( ) ( ) ( )] 8.6093x x dx f x f x f x+ β‰ˆ + + + β‰ˆβˆ«

Right Riemann Sum: ( )3 21 2 81

1 0.25[ ( ) ... ( )] 10.6274x x dx f x f x f x+ β‰ˆ + + + β‰ˆβˆ«

Trapezoidal Rule: 3 2

0 1 7 810.251 [ ( ) 2 ( ) 2 ( ) ( )] 9.6184

2x x dx f x f x f x f x+ β‰ˆ + + + + β‰ˆβˆ«

Parabolic Rule: 3 2

0 1 2 7 810.251 [ ( ) 4 ( ) 2 ( ) 4 ( ) ( )] 9.5981

3x x dx f x f x f x f x f x+ β‰ˆ + + + + + β‰ˆβˆ«

Fundamental Theorem of Calculus: ( )33 2 2 3/ 2

1 1

1 11 ( 1) 10 10 – 2 2 9.59813 3

x x dx x⎑ ⎀+ = + = β‰ˆβŽ’ βŽ₯⎣ ⎦∫

5. ( )52 1 0( ) 1 ; 0.1258

f x x x h βˆ’= + = =

0 0.00x = 0( ) 0f x =

1 0.125x = 1( ) 0.1351f x β‰ˆ

2 0.250x = 2( ) 0.3385f x β‰ˆ

3 0.375x = 3( ) 0.7240f x β‰ˆ

4 0.500x = 4( ) 1.5259f x β‰ˆ

5 0.625x = 5( ) 3.2504f x β‰ˆ

6 0.750x = 6( ) 6.9849f x β‰ˆ

7 0.875x = 7( ) 15.0414f x β‰ˆ

8 1.000x = 8( ) 32f x =

Page 35: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.6 283

Left Riemann Sum: ( )51 20 1 70

1 0.125[ ( ) ( ) ( )] 3.4966x x dx f x f x f x+ β‰ˆ + + + β‰ˆβˆ«

Right Riemann Sum: ( ) ( )51 2

1 2 801 0.125[ ( ) ... ( )] 7.4966x x dx f x f x f x+ β‰ˆ + + + β‰ˆβˆ«

Trapezoidal Rule: ( )51 20 1 7 80

0.1251 [ ( ) 2 ( ) 2 ( ) ( )] 5.49662

x x dx f x f x f x f x+ β‰ˆ + + + + β‰ˆβˆ«

Parabolic Rule: ( )51 20 1 2 7 80

0.1251 [ ( ) 4 ( ) 2 ( ) 4 ( ) ( )] 5.25803

x x dx f x f x f x f x f x+ β‰ˆ + + + + + β‰ˆβˆ«

Fundamental Theorem of Calculus: ( ) ( )15 61 2 2

00

11 1 5.2512

x x dx x⎑ ⎀+ = + =⎒ βŽ₯

⎣ ⎦∫

6. ( )3/ 2 4 1( ) 1 ; 0.3758

f x x h βˆ’= + = =

0 1.000x = 0( ) 2.8284f x β‰ˆ

1 1.375x = 1( ) 3.6601f x β‰ˆ

2 1.750x = 2( ) 4.5604f x β‰ˆ

3 2.125x = 3( ) 5.5243f x β‰ˆ

4 2.500x = 4( ) 6.5479f x β‰ˆ

5 2.875x = 5( ) 7.6279f x β‰ˆ

6 3.250x = 6( ) 8.7616f x β‰ˆ

7 3.625x = 7( ) 9.9464f x β‰ˆ

8 4.000x = 8( ) 11.1803f x β‰ˆ

Left Riemann Sum: ( )4 3/ 20 1 71

1 0.375[ ( ) ( ) ( )] 18.5464x dx f x f x f x+ β‰ˆ + + + β‰ˆβˆ«

Right Riemann Sum: ( ) ( )4 3/ 21 2 81

1 0.375[ ( ) ... ( )] 21.6784x dx f x f x f x+ β‰ˆ + + + β‰ˆβˆ«

Trapezoidal Rule: ( )4 3/ 20 1 7 81

0.3751 [ ( ) 2 ( ) 2 ( ) ( )] 20.11242

x dx f x f x f x f x+ β‰ˆ + + + + β‰ˆβˆ«

Parabolic Rule: ( )4 3/ 20 1 2 7 81

0.3751 [ ( ) 4 ( ) 2 ( ) 4 ( ) ( )] 20.09793

x dx f x f x f x f x f x+ β‰ˆ + + + + + β‰ˆβˆ«

Fundamental Theorem of Calculus: ( ) ( )44 3/ 2 5 / 2

1 1

21 1 20.09795

x dx x⎑ ⎀+ = + β‰ˆβŽ’ βŽ₯⎣ ⎦∫

7.

LRS RRS MRS Trap Parabolic

n = 4 0.5728 0.3728 0.4590 0.4728 0.4637

n = 8 0.5159 0.4159 0.4625 0.4659 0.4636

n = 16 0.4892 0.4392 0.4634 0.4642 0.4636

8.

LRS RRS MRS Trap Parabolic

n = 4 1.2833 0.9500 1.0898 1.1167 1.1000

n = 8 1.1865 1.0199 1.0963 1.1032 1.0987

n = 16 1.1414 1.0581 1.0980 1.0998 1.0986

Page 36: Capitulo 4 Soluciones Purcell 9na Edicion

284 Section 4.6 Instructor’s Resource Manual

9.

LRS RRS MRS Trap Parabolic

n = 4 2.6675 3.2855 2.9486 2.9765 2.9580

n = 8 2.8080 3.1171 2.9556 2.9625 2.9579

n = 16 2.8818 3.0363 2.9573 2.9591 2.9579

10.

LRS RRS MRS Trap Parabolic

n = 4 10.3726 17.6027 13.6601 13.9876 13.7687

n = 8 12.0163 15.6314 13.7421 13.8239 13.7693

n = 16 12.8792 14.6867 13.7625 13.7830 13.7693

11. ( ) ( )2 31 2;f x f xx x

β€² β€²β€²= βˆ’ =

The largest that ( )f cβ€²β€² can be on [ ]1,3 occurs when 1c = , and ( )1 2f β€²β€² =

( ) ( )

3

2

3 1 4002 0.01;312

nn

βˆ’β‰€ β‰₯ Round up: n = 12

30 1 11 121

1 0.167 [ ( ) 2 ( ) 2 ( ) ( )]2

1.1007

dx f x f x f x f xx

β‰ˆ + + + +

β‰ˆ

∫

12. ( )( )

( )( )2 3

1 2;1 1

f x f xx x

β€² β€²β€²= βˆ’ =+ +

The largest that ( )f cβ€²β€² can be on [ ]1,3 occurs when 1c = , and ( ) 114

f β€²β€² = .

( )3

2

3 1 1 1000.01;4 612

nn

βˆ’ βŽ› ⎞ ≀ β‰₯⎜ ⎟⎝ ⎠

Round up: n = 5

30 1 4 51

1 0.4 [ ( ) 2 ( ) 2 ( ) ( )]1 20.6956

dx f x f x f x f xx

β‰ˆ + + + ++

β‰ˆ

∫

13. ( ) ( ) 3/ 21 1;

2 4f x f x

x xβ€² β€²β€²= = βˆ’

The largest that ( )f cβ€²β€² can be on [ ]1, 4 occurs when 1c = , and ( ) 114

f β€²β€² = .

( )3

2

4 1 1 9000.01;4 1612

nn

βˆ’ βŽ› ⎞ ≀ β‰₯⎜ ⎟⎝ ⎠

Round up: n = 8

40 1 7 81

0.375 [ ( ) 2 ( ) 2 ( ) ( )]2

4.6637

x dx f x f x f x f xβ‰ˆ + + + +

β‰ˆ

∫

Page 37: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.6 285

14. ( ) ( )( )3 / 2

1 1;2 1 4 1

f x f xx x

β€² β€²β€²= = βˆ’+ +

The largest that ( )f cβ€²β€² can be on [ ]1,3 occurs when 1c = , and ( ) 3/ 211

4 2f β€²β€² =

Γ—.

( )3

2 3 / 2

3 1 1 1000.01;12 212 4 2

nn

βˆ’ βŽ› ⎞ ≀ β‰₯⎜ βŽŸΓ—βŽ ⎠

Round up: n = 3

3

0 1 2 310.6671 [ ( ) 2 ( ) 2 ( ) ( )]

23.4439

x dx f x f x f x f x+ β‰ˆ + + +

β‰ˆ

∫

15. ( ) ( ) ( )

( ) ( )

2 3 4

45

1 2 6; ; ;

24

f x f x f xx x x

f xx

β€² β€²β€² β€²β€²β€²= βˆ’ = = βˆ’

=

The largest that ( ) ( )4f c can be on [ ]1,3 occurs when 1c = , and ( ) ( )4 1 24f = .

( ) ( )

5

4

4 124 0.01; 4.545

180n

n

βˆ’β‰€ β‰ˆ Round up to even: n = 6

30 1 5 61

1 0.333[ ( ) 4 ( ) ... 4 ( ) ( )]3

1.0989

dx f x f x f x f xx

β‰ˆ + + + +

β‰ˆ

∫

16. ( ) ( )( )

( )( )

( ) ( )( )

3 / 2

45 / 2 7 / 2

1 1; ;2 1 4 1

3 15;8 1 16 1

f x f xx x

f x f xx x

β€² β€²β€²= = βˆ’+ +

β€²β€²β€² = = βˆ’+ +

The largest that ( ) ( )4f c can be on [ ]4,8 occurs when 4c = , and ( ) ( )4 34400 5

f = .

( )5

4

8 4 3 0.01; 1.1753400 5180

nn

βˆ’ βŽ› βŽžβ‰€ β‰ˆβŽœ ⎟

⎝ ⎠ Round up to even: n = 2

( ) ( ) ( )80 1 24

21 4 10.54643

x dx f x f x f x⎑ ⎀+ β‰ˆ + + β‰ˆβŽ£ ⎦∫

Page 38: Capitulo 4 Soluciones Purcell 9na Edicion

286 Section 4.6 Instructor’s Resource Manual

17. 2 3 2– –

( )3 2

m hm hm h m h

a bax bx c dx x x cx++ ⎑ ⎀+ + = + +⎒ βŽ₯⎣ ⎦∫

3 2 3 2( ) ( ) ( ) – ( – ) – ( – ) – ( – )3 2 3 2a b a bm h m h c m h m h m h c m h= + + + + +

2 3(6 2 ) (4 ) (2 )3 2a bm h h mh c h= + + + 2 2[ (6 2 ) (6 ) 6 ]

3h a m h b m c= + + +

[ ( ) 4 ( ) ( )]3h f m h f m f m hβˆ’ + + +

2 2 2[ ( – ) ( – ) 4 4 4 ( ) ( ) ]3h a m h b m h c am bm c a m h b m h c= + + + + + + + + + +

2 2[ (6 2 ) (6 ) 6 ]3h a m h b m c= + + +

18. a. To show that the Parabolic Rule is exact, examine it on the interval [m – h, m + h]. Let 3 2( ) ,f x ax bx cx d= + + + then

( )m hm h

f x dx+

βˆ’βˆ«4 4 3 3 2 2( ) ( ) ( ) ( ) ( ) ( ) [( ) ( )]

4 3 2a b cm h m h m h m h m h m h d m h m h⎑ ⎀ ⎑ ⎀ ⎑ ⎀= + βˆ’ βˆ’ + + βˆ’ βˆ’ + + βˆ’ βˆ’ + + βˆ’ βˆ’βŽ£ ⎦ ⎣ ⎦ ⎣ ⎦

3 3 2 3(8 8 ) (6 2 ) (4 ) (2 ).4 3 2a b cm h h m m h h mh d h= + + + + +

The Parabolic Rule with n = 2 gives 3 3 2 32( ) [ ( ) 4 ( ) ( )] 2 2 2 2 2

3 3m hm h

hf x dx f m h f m f m h am h amh bm h bh chm dh+

βˆ’= βˆ’ + + + = + + + + +∫

3 3 2 3(8 8 ) (6 2 ) (4 ) (2 )4 3 2a b cm h mh m h h mh d h= + + + + +

which agrees with the direct computation. Thus, the Parabolic Rule is exact for any cubic polynomial.

b. The error in using the Parabolic Rule is given by 5

(4)4

( ) ( )180

nl kE f m

nβˆ’

= βˆ’ for some m between l and k.

However, 2 (3)( ) 3 2 , ( ) 6 2 , ( ) 6 ,f x ax bx c f x ax b f x aβ€² β€²β€²= + + = + = and (4) ( ) 0f x = , so 0.nE =

19. The left Riemann sum will be smaller than ( )b

af x dx∫ .

If the function is increasing, then ( ) ( )1i if x f x +< on the interval [ ]1,i ix x + . Therefore, the left Riemann sum will underestimate the value of the definite integral. The following example illustrates this behavior:

If f is increasing, then ( ) 0f cβ€² > for any ( ), .c a b∈ Thus, the error ( ) ( )

2

02n

b aE f c

nβˆ’

β€²= > . Since the error is

positive, then the Riemann sum must be less than the integral.

Page 39: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.6 287

20. The right Riemann sum will be larger than ( )b

af x dx∫ .

If the function is increasing, then ( ) ( )1i if x f x +< on the interval [ ]1,i ix x + . Therefore, the right Riemann sum will overestimate the value of the definite integral. The following example illustrates this behavior:

If f is increasing, then ( ) 0f cβ€² > for any ( ), .c a b∈ Thus, the error ( ) ( )

2

02n

b aE f c

nβˆ’

β€²= βˆ’ < . Since the error is

negative, then the Riemann sum must be greater than the integral.

21. The midpoint Riemann sum will be larger than ( )b

af x dx∫ .

If f is concave down, then ( ) 0f cβ€²β€² < for any ( ), .c a b∈ Thus, the error ( ) ( )

3

2 024

nb a

E f cn

βˆ’β€²β€²= < . Since the error

is negative, then the Riemann sum must be greater than the integral.

22. The Trapezoidal Rule approximation will be smaller than ( )b

af x dx∫ .

If f is concave down, then ( ) 0f cβ€²β€² < for any ( ), .c a b∈ Thus, the error ( ) ( )

3

2 012

nb a

E f cn

βˆ’β€²β€²= βˆ’ > . Since the

error is positive, then the Trapezoidal Rule approximation must be less than the integral.

23. Let n = 2. ( ) ;kf x x= h = a

0 –x a= 0( ) – kf x a=

1 0x = 1( ) 0f x =

2x a= 2( ) kf x a=

–[– 2 0 ] 0

2a k k ka

ax dx a aβ‰ˆ + β‹… + =∫

1 1 1– –

1 1 [ – (– ) ]1 1

aa k k k ka a

x dx x a ak k

+ + +⎑ ⎀= =⎒ βŽ₯+ +⎣ ⎦∫ 1 11 [ – ] 01

k ka ak

+ += =+

A corresponding argument works for all n.

24. a. T β‰ˆ 48.9414; 3( ) 4f x xβ€² = 3 3 2[4(3) – 4(1) ](0.25)– 48.9414 – 0.5417

12T β‰ˆ = 48.3997

The correct value is 48.4 .

Page 40: Capitulo 4 Soluciones Purcell 9na Edicion

288 Section 4.7 Instructor’s Resource Manual

b. T β‰ˆ 1.9886; ( ) cosf x xβ€² =

( )212[cos – cos 0]

– 1.99998712

Tππ

β‰ˆ

The correct value is 2.

25. The integrand is increasing and concave down. By problems 19-22, LRS < TRAP < MRS < RRS.

26. The integrand is increasing and concave up. By problems 19-22, LRS < MRS < TRAP < RRS

27. 10 [75 2 71 2 60 2 45 2 45 2 52 2 57 2 60 59]2

A β‰ˆ + β‹… + β‹… + β‹… + β‹… + β‹… + β‹… + β‹… + = 4570 ft2

28. 3[23 4 24 2 23 4 21 2 18 4 15 2 12 4 11 2 10 4 8 0]3

A β‰ˆ + β‹… + β‹… + β‹… + β‹… + β‹… + β‹… + β‹… + β‹… + β‹… + = 465 ft2

6 2790V A= β‹… β‰ˆ ft3

29. 20 [0 4 7 2 12 4 18 2 20 4 20 2 17 4 10 0]3

A β‰ˆ + β‹… + β‹… + β‹… + β‹… + β‹… + β‹… + β‹… + = 2120 ft2

4 mi/h = 21,120 ft/h (2120)(21,120)(24) = 1,074,585,600 ft3

30. Using a right-Riemann sum, 240

Distance ( )v t dt= ∫8

1( )i

iv t t

=β‰ˆ Ξ”βˆ‘

( ) 331 54 53 52 35 31 2860

= + + + + + +

852 14.260

= = miles

31. Using a right-Riemann sum, 1200

Water Usage ( )F t dt= ∫

10

1( ) 12(71 68 148)

13,740gallons

ii

F t t=

β‰ˆ Ξ” = + + +

=

βˆ‘

4.7 Chapter Review

Concepts Test

1. True: Theorem 4.3.D

2. True: Obtained by integrating both sides of the Product Rule

3. True: If ( ) ( ) , ( )F x f x dx f x= ∫ is a derivative of F(x).

4. False: 2( ) 2 1f x x x= + + and 2( ) 7 5g x x x= + βˆ’ are a

counterexample.

5. False: The two sides will in general differ by a constant term.

6. True: At any given height, speed on the downward trip is the negative of speed on the upward.

7. True: 1 0 2 1 3 2a a a a a a+ + + + + 1 2 1n n n na a a aβˆ’ βˆ’ βˆ’+ + + + +

0 1 2 12 2 2 n na a a a aβˆ’= + + + + +

8. True: 100 100 100

1 1 1(2 1) 2 1

i i ii i

= = =βˆ’ = βˆ’βˆ‘ βˆ‘ βˆ‘

2(100)(100 1) 100 10,0002

+= βˆ’ =

9. True: 10 10 10 100

2 2

1 1 1 1( 1) 2 1i i i

i i i ia a a

= = = =+ = + +βˆ‘ βˆ‘ βˆ‘ βˆ‘

= 100 + 2(20) + 10 = 150

10. False: f must also be continuous except at a finite number of points on [a, b].

11. True: The area of a vertical line segment is 0.

Page 41: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.7 289

12. False: 11 x dxβˆ’βˆ« is a counterexample.

13. False: A counterexample is

( )0, 01, 0

xf x

xβ‰ βŽ§

= ⎨ =⎩

with ( )1 21

0f x dxβˆ’

=⎑ ⎀⎣ ⎦∫ .

If ( )f x is continuous, then 2[ ( )] 0f x β‰₯ , and if 2[ ( )]f x is greater

than 0 on [a, b], the integral will be also.

14. False: ( ) ( )x

x aD f z dz f x⎑ ⎀ =⎒ βŽ₯⎣ ⎦∫

15. True: sin cosx x+ has period 2Ο€ , so 2

(sin cos )xx

x x dx+ Ο€

+∫

is independent of x.

16. True: lim ( ) lim ( )x a x a

kf x k f x→ →

= and

[ ]lim ( ) ( )x a

f x g x→

+

lim ( ) lim ( )x a x a

f x g x→ →

= + when all the

limits exist.

17. True: 13sin x is an odd function.

18. True: Theorem 4.2.B

19. False: The statement is not true if c > d.

20. False: 2

2 201 2

1 1

xx

xD dtt x

⎑ ⎀=⎒ βŽ₯

+ +⎒ βŽ₯⎣ ⎦∫

21. True: Both sides equal 4.

22. True: Both sides equal 4.

23. True: If f is odd, then the accumulation

function ( ) ( )0

xF x f t dt= ∫ is even,

and so is ( )F x C+ for any C.

24. False: 2( )f x x= is a counterexample.

25. False: 2( )f x x= is a counterexample.

26. False: 2( )f x x= is a counterexample.

27. False: 2( )f x x= , v(x) = 2x + 1 is a counterexample.

28. False: 3( )f x x= is a counterexample.

29. False: ( )f x x= is a counterexample.

30. True: All rectangles have height 4, regardless of ix .

31. True: ( ) ( ) ( )ba

F b F a F x dxβ€²βˆ’ = ∫

( ) ( ) ( )ba

G x dx G b G aβ€²= = βˆ’βˆ«

32. False: 0

( ) 2 ( )a aa

f x dx f x dxβˆ’

=∫ ∫ because f

is even.

33. False: 2( )z t t= is a counterexample.

34. False: 0

( ) ( ) (0)b

f x dx F b F= βˆ’βˆ«

35. True: Odd-exponent terms cancel themselves out over the interval, since they are odd.

36. False: a = 0, b = 1, f(x) = –1, g(x) = 0 is a counterexample.

37. False: a = 0, b = 1, f(x) = –1, g(x) = 0 is a counterexample.

38. True: 1 2 3 na a a a+ + + +

1 2 3 na a a a≀ + + + + because any negative values of ia make the left side smaller than the right side.

39. True: Note that ( ) ( ) ( )f x f x f xβˆ’ ≀ ≀ and use Theorem 4.3.B.

40. True: Definition of Definite Integral

41. True: Definition of Definite Integral

42. False: Consider ( )2cos x dx∫

43. True. Right Riemann sum always bigger.

44. True. Midpoint of x coordinate is midpoint of y coordinate.

45. False. Trapeziod rule overestimates integral.

46. True. Parabolic Rule gives exact value for quadratic and cubic functions.

Page 42: Capitulo 4 Soluciones Purcell 9na Edicion

290 Section 4.7 Instructor’s Resource Manual

Sample Test Problems

1. 1

4 3 3/ 2

0

1 524 4

x x x⎑ βŽ€βˆ’ + =⎒ βŽ₯⎣ ⎦

2. 2

3

1

2 1 1333 6

x xx

⎑ βŽ€βˆ’ βˆ’ =⎒ βŽ₯⎣ ⎦

3. 3

3

1

1 26 50 269cos 9cos13 3 3

y yy

ππ

Ο€βŽ‘ ⎀

+ βˆ’ = βˆ’ + βˆ’βŽ’ βŽ₯⎣ ⎦

4. 9

2 3/ 2

4

1 77 77( 4) 8 33 3

y⎑ βŽ€βˆ’ = βˆ’ +⎒ βŽ₯⎣ ⎦

5. ( )38

2 4 / 3

2

15 125 53 (2 3)16 16

zβˆ’ βˆ’ +⎑ βŽ€βˆ’ =⎒ βŽ₯⎣ ⎦

6. / 2

5

0

1 1cos5 5

xΟ€

⎑ βŽ€βˆ’ =⎒ βŽ₯⎣ ⎦

7. 2 2 2tan(3 6 ), (6 6)sec (3 6 )u x x du x x x= + = + +

2 31 16 18

u du u C= +∫

3 2 3 20

1 1tan (3 6 ) tan (3 6 )18 18

x x ππ

⎑ ⎀+ = Ο€ +⎣ ⎦

8. 4 39, 4u t du t dt= + = 2525 1/ 2 1/ 2

9 9

1 1 14 2

u du uβˆ’ ⎑ ⎀= =⎣ ⎦∫

9. 2

5 5 / 3 5 / 3 5 / 3

1

1 3 3( 5) 37 6 46.95 5 25

t⎑ ⎀ ⎑ ⎀+ = βˆ’ β‰ˆβŽ’ βŽ₯ ⎣ ⎦⎣ ⎦

10. 3

32

1 4279 3y y

⎑ ⎀=⎒ βŽ₯

βˆ’βŽ’ βŽ₯⎣ ⎦

11. ( )( )( )

( )

2

2

2

( 1)sin 2 3

1 sin 2 3 2 221 sin2

1 cos 2 32

x x x dx

x x x dx

u du

x x C

+ + +

= + + +

=

= βˆ’ + + +

∫

∫

∫

12. 3 2 22 3 6 , (6 6 6)u y y y du y y dy= + + = + +

( )

( )

2 15 355 1/ 51 113 25 2 3 6

3554 / 5 4 / 5 4 / 5

11

16

1 5 5 355 116 4 24

y y

y y ydy u du

u

+ +βˆ’

+ +=

⎑ ⎀= = βˆ’βŽ’ βŽ₯⎣ ⎦

∫ ∫

13. 24

1

1 712 2 4i

i

=

⎑ βŽ€βŽ› ⎞ βŽ› ⎞⎒ βˆ’ βŽ₯ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎒ βŽ₯⎣ ⎦

βˆ‘

14. 1 1( ) , (7)3 10

f x fx

β€² β€²= =+

15. 3 20

(2 1)x dxβˆ’ +∫

( )30

5 4 1x x dx= + βˆ’ +∫

32 3 / 2

0

1 8 55 ( 1)2 3 6

x x x⎑ ⎀= + βˆ’ + =⎒ βŽ₯⎣ ⎦

16. 55 2 3 3 3/ 2

2 2

1 1 23 4 ( 4)5 2 3 3

x x dx x⎑ βŽ€βˆ’ = βˆ’βŽ’ βŽ₯βˆ’ ⎣ ⎦∫

= 294

17. 44

22 2

1 1 395 54

dx xxx

βŽ› ⎞ ⎑ βŽ€βˆ’ = + =⎜ ⎟ ⎒ βŽ₯⎣ ⎦⎝ ⎠∫

18. 1

1(3 3 )

ni i

i

βˆ’

=βˆ’βˆ‘

2 3 2 1(3 1) (3 3) (3 3 ) (3 3 )n nβˆ’= βˆ’ + βˆ’ + βˆ’ + + βˆ’

3 1n= βˆ’

19. 10 10 10

2 2

1 1 1(6 8 ) 6 8

i i ii i i i

= = =βˆ’ = βˆ’βˆ‘ βˆ‘ βˆ‘

10(11)(21) 10(11)6 8 18706 2

⎑ ⎀ ⎑ ⎀= βˆ’ =⎒ βŽ₯ ⎒ βŽ₯⎣ ⎦ ⎣ ⎦

Page 43: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Section 4.7 291

20. a. 1 1 1 132 3 4 12

+ + =

b. 1 + 0 + (–1) + (–2) + (–3) + (–4) = –9

c. 2 21 0 1 02 2

+ + βˆ’ βˆ’ =

21. a. 78

2

1

n n=βˆ‘

b. 50

2

1

n

nnx

=βˆ‘

22.

2

1

3 3lim 16n

n i

iAn nβ†’βˆž =

⎑ βŽ€βŽ› ⎞ βŽ› ⎞= ⎒ βˆ’ βŽ₯⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎒ βŽ₯⎣ ⎦

βˆ‘

23

1

48 27limn

n ii

n nβ†’βˆž =

⎧ ⎫⎑ ⎀βŽͺ βŽͺ= βˆ’βŽ¨ ⎬⎒ βŽ₯⎣ ⎦βŽͺ βŽͺ⎩ ⎭

βˆ‘

23

1 1

48 27lim 1n n

n i ii

n nβ†’βˆž = =

⎧ ⎫βŽͺ βŽͺ= βˆ’βŽ¨ ⎬βŽͺ βŽͺ⎩ ⎭

βˆ‘ βˆ‘

327 ( 1)(2 1)lim 48

6n

n n nnβ†’βˆž

⎧ + + ⎫⎑ ⎀= βˆ’βŽ¨ ⎬⎒ βŽ₯⎣ ⎦⎩ ⎭

29 3 1lim 48 22n n nβ†’βˆž

⎧ ⎫⎑ ⎀= βˆ’ + +⎨ ⎬⎒ βŽ₯

⎣ ⎦⎩ ⎭

= 48 – 9 = 39

23. a. 2 0 2

1 1 0( ) ( ) ( )f x dx f x dx f x dx= +∫ ∫ ∫

= –4 + 2 = –2

b. 0 1

1 0( ) ( ) 4f x dx f x dx= βˆ’ = βˆ’βˆ« ∫

c. 2 20 0

3 ( ) 3 ( ) 3(2) 6f u du f u du= = =∫ ∫

d. [ ]20

2 ( ) 3 ( )g x f x dxβˆ’βˆ«

2 20 0

2 ( ) 3 ( )g x f x dx= βˆ’βˆ« ∫

= 2(–3) – 3(2) = –12

e. 2 2

0 0( ) ( ) 2f x dx f x dx

βˆ’βˆ’ = βˆ’ = βˆ’βˆ« ∫

24. a.

40

1 11 (1)(1) (3)(3) 52 2

x dxβˆ’ = + =∫

b.

40

1 2 3 6x dx = + + =∫

c. 4 4 40 0 0

( )x x dx x dx x dxβˆ’ = βˆ’βˆ« ∫ ∫

42

0

1 62

x⎑ ⎀ βˆ’βŽ’ βŽ₯⎣ ⎦ = 8 – 6 = 2

25. a. 2 22 0

( ) 2 ( ) 2( 4) 8f x dx f x dxβˆ’

= = βˆ’ = βˆ’βˆ« ∫

b. Since ( ) 0f x ≀ , ( ) ( )f x f x= βˆ’ and

( ) ( )

( )

2 2

2 22

02 8

f x dx f x dx

f x dx

βˆ’ βˆ’= βˆ’

= βˆ’ =

∫ ∫

∫

c. 22

( ) 0g x dxβˆ’

=∫

d. [ ]22

( ) ( )f x f x dxβˆ’

+ βˆ’βˆ«

2 20 0

2 ( ) 2 ( )f x dx f x dx= +∫ ∫

= 4(–4) = –16

Page 44: Capitulo 4 Soluciones Purcell 9na Edicion

292 Section 4.7 Instructor’s Resource Manual

e. [ ]20

2 ( ) 3 ( )g x f x dx+∫

2 20 0

2 ( ) 3 ( )g x dx f x dx= +∫ ∫

= 2(5) + 3(–4) = –2

f. 0 22 0

( ) ( ) 5g x dx g x dxβˆ’

= βˆ’ = βˆ’βˆ« ∫

26. 100 3 5100

( sin ) 0x x dxβˆ’

+ =∫

27. 1 2 24

3 3 ( 1 4)x dx cβˆ’

βˆ’= βˆ’ +∫

13 24

9x cβˆ’

βˆ’βŽ‘ ⎀ =⎣ ⎦

2 7c = 7 2.65c = βˆ’ β‰ˆ βˆ’

28. a. 21( )

1G x

xβ€² =

+

b. 42( )

1xG x

xβ€² =

+

c. 2

6 23 1( )

1 1xG x

x xβ€² = βˆ’

+ +

29. a. 2( ) sinG x xβ€² =

b. ( ) ( 1) ( )G x f x f xβ€² = + βˆ’

c. 2 01 1( ) ( ) ( )

xG x f z dz f x

xxβ€² = βˆ’ +∫

d. 0

( ) ( )x

G x f t dtβ€² = ∫

e. ( ) ( )

00( )( ) [ ( )]

g x g xdg uG x du g udu

= =∫

( ( )) (0)g g x g= βˆ’ ( ) ( ( )) ( )G x g g x g xβ€² β€² β€²=

f. 0 0

( ) ( ) ( )( )x x

G x f t dt f u duβˆ’

= βˆ’ = βˆ’βˆ« ∫

0( )

xf u du= βˆ’βˆ«

( ) ( )G x f xβ€² = βˆ’

30. a. 44 3/ 2

0 0

2 163 3

x dx x⎑ ⎀= =⎣ ⎦∫

b. 33 2 3

1 1

1 263 3

x dx x⎑ ⎀= =⎣ ⎦∫

31. 5 5 22 1 1

1 1 1( )x x xx

f x dt dt dtt t t

= = βˆ’βˆ« ∫ ∫

1 1( ) 5 2 05 2

f xx x

β€² = β‹… βˆ’ β‹… =

32. Left Riemann Sum: 2

0 1 7411 0.125[ ( ) ( ) ( )] 0.2319

1dx f x f x f x

xβ‰ˆ + +…+ β‰ˆ

+∫

Right Riemann Sum: 2

1 2 8411 0.125[ ( ) ( ) ( )] 0.1767

1dx f x f x f x

xβ‰ˆ + +…+ β‰ˆ

+∫

Midpoint Riemann Sum: 2

0.5 1.5 7.5411 0.125[ ( ) ( ) ( )] 0.2026

1dx f x f x f x

xβ‰ˆ + +…+ β‰ˆ

+∫

33. 2

0 1 7 8411 0.125[ ( ) 2 ( ) 2 ( ) ( )] 0.2043

21dx f x f x f x f x

xβ‰ˆ + +…+ + β‰ˆ

+∫

( )

( )

2 42 4

4 3 34

(4)(2 ) (5)(2 ) 34 (5 3)''( ) 154(1 ) 1 1

c cf cc

βˆ’βˆ’= ≀ =

+ +

3

2(2 1) 1 154''( ) ''( ) 0.2005

(12)(64) 768(12)8nE f c f cβˆ’

= βˆ’ = ≀ β‰ˆ

Remark: A plot of ''f shows that in fact ( )'' 1.5f c < , so 0.002nE < .

Page 45: Capitulo 4 Soluciones Purcell 9na Edicion

Instructor’s Resource Manual Review and Preview 293

34. 4

0 1 2 7 801 0.5[ ( ) 4 ( ) 2 ( ) 4 ( ) ( )] 1.1050

1 2 3dx f x f x f x f x f x

xβ‰ˆ + + +…+ + β‰ˆ

+∫

( ) ( )( )

( ) ( ) ( )

45

5 54

4 4

384 3841 2

4 0 4 384 815180 8 180 8

n

f cc

E f c

= ≀+

βˆ’ β‹…= βˆ’ β‹… ≀ =

β‹… β‹…

35. ( )

( )

2 42 4

4 3 34

(4)(2 ) (5)(2 ) 34 (5 3)''( ) 166(1 ) 1 1

c cf cc

+βˆ’= ≀ =

+ +

3

2 2 2(2 1) 1 166''( ) ''( ) 0.000112 12 12

nE f c f cn n n

βˆ’= βˆ’ = ≀ <

2 166 138,333 so 138,333 371.9(12)(0.0001)

n n> β‰ˆ > β‰ˆ Round up to 372n = .

Remark: A plot of ''f shows that in fact ( )'' 1.5f c < which leads to 36n = .

36. ( ) ( )( )

( ) ( ) ( )

45

5 54

4 4

384 3841 2

4 0 4 384 0.0001180 180

n

f cc

E f cn n

= ≀+

βˆ’ β‹…= βˆ’ β‹… ≀ <

β‹… β‹…

( )5

4 4 384 21,845,333180 0.0001

n β‹…> β‰ˆ , so 68.4n β‰ˆ . Round up to 69n = .

37. The integrand is decreasing and concave up. Therefore, we get: Midpoint Rule, Trapezoidal rule, Left Riemann Sum

Review and Preview Problems

1. 21 1 1 1 1

2 2 2 4 4βŽ› βŽžβˆ’ = βˆ’ =⎜ ⎟⎝ ⎠

2. 2x xβˆ’

3. the distance between ( ) 3 31,4 and ( 4, 4) is 4 -1

4. the distance between

( )3, and , is4y y y yβŽ› ⎞

⎜ ⎟⎝ ⎠

34yy βˆ’

5. the distance between (2,4) and (1,1) is 2 2(2 1) (4 1) 10βˆ’ + βˆ’ =

6. ( ) ( )( )( )

22 2 2

22 22

x h x x h x

h xh h

+ βˆ’ + + βˆ’

= + +

7. 2( 2 )0.4 1.6V Ο€ Ο€= β‹… =

8. 2 2[ (4 1 )]1 15V Ο€ Ο€= βˆ’ =

9. 2 22 1[ ( )]V r r xΟ€= βˆ’ Ξ”

10. 2 2[ (5 4.5 )]6 28.5V Ο€ Ο€= βˆ’ =

Page 46: Capitulo 4 Soluciones Purcell 9na Edicion

294 Review and Preview Instructor’s Resource Manual

11. ( )25 42 4 3

11

2 2 25 2x xx x dx x

βˆ’βˆ’

⎑ βŽ€βˆ’ + = βˆ’ +⎒ βŽ₯

⎒ βŽ₯⎣ ⎦∫

12 27 515 10 10

βŽ› ⎞= βˆ’ βˆ’ =⎜ ⎟⎝ ⎠

12. 33 2 3 5 3 5 3

0 0

3 3 3 3.745 5

y dy y= β‹… = β‹… β‰ˆβˆ«

13. 22 4 3 52

00

1612 16 6 80 15x x x xdx x

βŽ› ⎞ ⎑ βŽ€βˆ’ + = βˆ’ + =⎜ ⎟ ⎒ βŽ₯⎜ ⎟ ⎒ βŽ₯⎝ ⎠ ⎣ ⎦

∫

14. 9 94 4Let 1 ; then andu x du dx= + =

329 4 4 21

4 9 9 3x dx u du u C+ = = +∫ ∫

328 91

27 4x CβŽ› ⎞= + +⎜ ⎟

⎝ ⎠

4324

11

9 8 9Thus, 1 14 27 4

x dx x⎑ βŽ€βŽ› ⎞⎒ βŽ₯+ = +⎜ ⎟⎒ βŽ₯⎝ ⎠⎣ ⎦

∫

3 23 28 1310 7.63

27 8

βŽ› ⎞= βˆ’ β‰ˆβŽœ ⎟⎜ ⎟

⎝ βŽ