Calibration of Solar Magnetograms and 180 degree ambiguity resolution

25
Calibration of Solar Magnetograms and 180 degree ambiguity resolution Moon, Yong-Jae ( 文 文 文 ) (Korea Astronomy and Space Science Institute)

description

Calibration of Solar Magnetograms and 180 degree ambiguity resolution. Moon, Yong-Jae ( 文 鎔 梓 ) (Korea Astronomy and Space Science Institute). Acknowledgement. 1994 : Huairou, Dr. Ai, Dr. J. Wang, Dr. Zhang 1997 : Mitaka, Dr. Ichimoto, Dr. Sakurai 1999 : M EES , HSP, Dr. Mickey - PowerPoint PPT Presentation

Transcript of Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Page 1: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Moon, Yong-Jae ( 文 鎔 梓 )

(Korea Astronomy and Space Science Institute)

Page 2: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Acknowledgement

• 1994 : Huairou, Dr. Ai, Dr. J. Wang, Dr. Zhang

• 1997 : Mitaka, Dr. Ichimoto, Dr. Sakurai

• 1999 : MEES, HSP, Dr. Mickey

• 2001 : BBSO, Dr. H. Wang

• 2002 : ASP, Dr. Pevtsov, Dr. Skumanich

• 2005 : talk2.ppt from WWW by Dr. J. Wang

(srg.bao.ac.cn/weihailect/wangjx/TALK2.PPT )

Page 3: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Outline • Introduction• Calibration of filter-based magnetograms : non-linear calibration, k-factor problem• Calibration of spectrometer-based magnetograms : Stokes V signal anomaly• Comparison of magnetograms • A new 180 ambiguity resolution method : Uniform Shear Method• Conclusions

Page 4: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Introduction • Magnetic field is the source of solar explosions• Routine observations available at the photosphere • We need 4 dimensional data (x,y,wavelength, Stokes

Vector) at a given time• Two types of solar magnetographs 1) filter-based : MSFC, BBSO, Huairou, Mitaka, IVM - narrow band filtergram (2D spatial, Stokes) - high time res., wide field of view 2) Spectrometer-based : ASP, HSP …… - Spectrometer (1D spatial +Stokes, spatial scan) - accurate field measurements with fill fraction

Page 5: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Radiative Transfer of Stokes Parameters(Weak Field Approximation, Jefferies et al. 1989)

21

41221

22122

22

)()()(

sincos

),(2tan)2

sin()(

2sin)2

sin(2cos)

2

sin(

),(cos

IUQB

IVB

BB

AzimuthQ

UIUQ

IU

IQ

nInclinatioI

V

l

blb

b

bb

d

bbb

Page 6: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

where are calibration coefficients for line-of-sight and transverse components, respectively, and

41

2

2

2

2

////

I

Q

I

UCB

I

VCB

//

arctanarctan2

1

B

B

Q

U

CandC//

2. Calibration of Filter-based Magnetograms

Page 7: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Hagyard and Kineke(1995) developed an iterative procedure to improve the calibration using analytic solution of Stokes radiative equations

Fe 5250 line

Page 8: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Moon et al.(1999) : Fe I 6302.5 line

Page 9: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

k-factor problem : Underestimation of magnetic field strength Gary et al(1987) : 8.1 to match Mount Wilson data Gary et al.(1991) : instrumental depolarization MSFC usually adopt k=4. Chae(1996) : seeing corrected fields still require a k-factor (k=2.2 ) Mitaka : to match both Bot and Bpt Huairou : non-linear calibration curves

kI

Q

I

UCB

kI

VCB

41

2

2

2

2

////

Page 10: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Lites et al.(1994)

The k-factor seems to be due to magnetic fill fraction: k=1/f

Page 11: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Non-linear Least square method (Skumanich and Lites 1987) :

ijii

ijii

jiii

jiii

fitaIobsIfitaVobsV

fitaUobsUfitaQobsQ

iIiV

iUiQ

2121

21212

)];()([)];()([

)];()([)];()([

22

22

Magnetic fields vectors and thermodynamical parameters are simultaneously determined.Basic assumption : Milne Eddington Atmosphere (All parameters do not depend on optical depth)

3. Calibration of Spectrometer -based Magnetograms

Page 12: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

ASP data, Bt=688 G, Bl= 971 G, i=35 degree

Page 13: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Bt=436 G, Bl= -10 G, i=89 degree

Page 14: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Community Inversion Code http://www.hao.ucar.edu/public/research/cic/

1. Melanie : Milne Eddington line analysis

2. Lilia : LTE inversion, stratification, individual lines

3. Dianne (beta) : Direct inversion using Neural Network

Page 15: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

4. Comparison of different magnetograms

Wang et al.(1992)

Page 16: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Ronan et al.(1992)

Page 17: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Two anti-parallel polarization signals of the transverse fields are identical.

The only way to remove the ambiguity is to employ a new constraint from other physical or observational assumptions which are independent from Zeeman effect.

Importance : for a meaningful understanding of several important physical parameters such as vertical current density, shear angle etc.

5. A new 180 ambiguity resolution method

Page 18: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

- Potential field assumption Best assumption : Minimize the difference betw

een observation and extrapolation - Magnetic charge method : Wang (1993)- Synthesized Method : Wang and Lin (1993) - Multi-step method : Canfield et al.(1993)- Functional Minimization (J or ): Metcalf(1994), Gary and Demoulin (1995) Georgoulis et al.(2004)-H observations : fibril alignment and/or chirality

00 ptot BBB

0 B

Page 19: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

1) Potential Field Method

2) : vector with most probable shear

0 stot BB

Uniform Shear Method (Moon et al. 2003, Solar Physics, 217, 79)

0 mtot BB

3)

: mean neighboring

transverse vector

Shear Angle Distribution

Page 20: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Potential Field

Uniform Shear

Page 21: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Canfield et al.(1993)

Moon et al.(2003)

AR5747

Page 22: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Uniform Shear

Canfield et al.(1993)

Page 23: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Moon et al.(2003)

Canfield et al.(1993)

AR6233

Page 24: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

Shear Angle DistributionAR5747

AR6233

Page 25: Calibration of Solar Magnetograms and 180 degree ambiguity resolution

1. Filter-based and Spectrometer-based magnetographs are complementary each other : Imaging Vector Magnetograph (MEES, BBSO)

2. Cross-comparison is recommended :

ASP data for quantitative measurements

MDI data for seeing effect

3. New missions : NST, SDO, Solar-B, ATST ….

4. What is a reasonable criterion to determine which ambiguity resolution method is correct.

: current minimization, Jz comparison

6. Concluding Remarks