Cajal BNHC keynote speakers - FENS.org Gallery/CAJAL programme/2… ·...

8
The CAJAL Advanced Neuroscience Training Programme www.cajaltraining.org 1 Cajal course on Biosensors and Actuators for Cellular and Systems Neuroscience Keynote Speakers Ryohei Yasuda, PhD (Max Planck Florida Institute for Neuroscience) Dr. Ryohei Yasuda received his Ph.D. in physics in 1998 from Keio University Graduate School of Science and Technology in Yokohama, Japan. In his Ph.D. study, he demonstrated that the enzyme ATP synthase is a rotary motor made of single molecule and that its energy conversion efficiency is close to 100%. From 2000 to 2005, he was a postdoctoral fellow at the Cold Spring Harbor Laboratory, where he built an imaging device to monitor protein interactions in living cells with high sensitivity and resolution. From 2005 to 2012, he was an assistant professor of the Neurobiology department at the Duke University Medical Center, where he developed a number of techniques to visualize signaling activity in single synapses. From 2009 to 2012, he also served as an Early Career Scientist at the Howard Hughes Medical Institute. In 2012, Dr. Yasuda was named Scientific Director of the Max Planck Florida Institute for Neuroscience. His current focus is to elucidate molecular mechanisms underlying synaptic plasticity and ultimately, learning and memory. He has received a number of awards for his research accomplishments including: the Career Award at the Scientific Interface from the Burroughs Wellcome Fund; the Alfred P. Sloan Fellowship; the New Investigator Award from the Alzheimer's Association; and the Research Award for Innovative Neuroscience from the Society for Neuroscience. Selected Publications: - PKCα integrates spatiotemporally distinct Ca2+ and autocrine BDNF signaling to facilitate synaptic plasticity. Colgan, L.A., et al (2018). Nature Neuroscience. Online Publication. - An opensource tool for analysis and automatic identification of dendritic spines using machine learning. Smirnov, M.S., et al. (2018). PLOS ONE. Online Publication. - RGS14 Restricts Plasticity in Hippocampal CA2 by Limiting Postsynaptic Calcium Signaling. Evans, P.R., et al. (2018). ENeuro ENEURO.035317.2018. - Biophysics of Biochemical Signaling in Dendritic Spines: Implications in Synaptic Plasticity. Yasuda, R. (2017). Biophysical Journal 113, 18. Scott Sternson, PhD (Janelia farm, HHMI) Scott received his PhD in Chemistry from Harvard University, working with Stuart Schreiber on the synthesis and development of new probes to manipulate cellular function. After realizing a desire to work on a fundamental behavioral problem using molecular genetics integrated with neurophysiology, he did a postdoc with Jeff Friedman at Rockefeller University and also worked in Karel Svoboda’s lab (then at Cold Spring Harbor) to map molecularlydefined neural circuits regulating feeding behavior. At Janelia, Scott has been focused on understanding the circuit mechanisms underlying basic motivations such as hunger.

Transcript of Cajal BNHC keynote speakers - FENS.org Gallery/CAJAL programme/2… ·...

Page 1: Cajal BNHC keynote speakers - FENS.org Gallery/CAJAL programme/2… · TheCAJAL$AdvancedNeuroscienceTrainingProgramme$! ! ’training.org.!

 

The  CAJAL  Advanced  Neuroscience  Training  Programme       www.cajal-­‐training.org    

1  

Cajal  course  on  Biosensors  and  Actuators  for  Cellular  and  Systems  Neuroscience  

Keynote  Speakers  

 

Ryohei  Yasuda,  PhD  (Max  Planck  Florida  Institute  for  Neuroscience)      Dr.   Ryohei   Yasuda   received   his   Ph.D.   in   physics   in   1998   from   Keio  University   Graduate   School   of  Science  and  Technology   in  Yokohama,  Japan.   In  his  Ph.D.  study,  he  demonstrated  that  the  enzyme  ATP  synthase  is  a  rotary  motor  made  of  single  molecule  and  that  its  energy  conversion  efficiency  is  close   to   100%.   From   2000   to   2005,   he   was   a   post-­‐doctoral   fellow   at   the   Cold   Spring   Harbor  Laboratory,  where  he  built  an  imaging  device  to  monitor  protein  interactions  in  living  cells  with  high  sensitivity   and   resolution.   From  2005   to   2012,   he  was   an   assistant   professor   of   the  Neurobiology  department  at  the  Duke  University  Medical  Center,  where  he  developed  a  number  of  techniques  to  visualize  signaling  activity   in  single  synapses.  From  2009  to  2012,  he  also  served  as  an  Early  Career  Scientist  at  the  Howard  Hughes  Medical  Institute.  In  2012,  Dr.  Yasuda  was  named  Scientific  Director  of   the  Max   Planck   Florida   Institute   for   Neuroscience.   His   current   focus   is   to   elucidate   molecular  mechanisms  underlying  synaptic  plasticity  and  ultimately,   learning  and  memory.  He  has  received  a  number   of   awards   for   his   research   accomplishments   including:   the   Career  Award   at   the   Scientific  Interface  from  the  Burroughs  Wellcome  Fund;  the  Alfred  P.  Sloan  Fellowship;  the  New  Investigator  Award  from  the  Alzheimer's  Association;  and  the  Research  Award  for  Innovative  Neuroscience  from  the  Society  for  Neuroscience.    Selected  Publications:    

- PKCα   integrates   spatiotemporally   distinct   Ca2+   and   autocrine   BDNF   signaling   to   facilitate  synaptic  plasticity.  Colgan,  L.A.,  et  al    (2018).  Nature  Neuroscience.  Online  Publication.  

- An   open-­‐source   tool   for   analysis   and   automatic   identification   of   dendritic   spines   using  machine  learning.  Smirnov,  M.S.,  et  al.  (2018).  PLOS  ONE.  Online  Publication.  

- RGS14   Restricts   Plasticity   in   Hippocampal   CA2   by   Limiting   Postsynaptic   Calcium   Signaling.  Evans,  P.R.,  et  al.  (2018).  ENeuro  ENEURO.0353-­‐17.2018.  

- Biophysics  of  Biochemical  Signaling  in  Dendritic  Spines:  Implications  in  Synaptic  Plasticity.    Yasuda,  R.  (2017).  Biophysical  Journal  113,  1-­‐8.  

   Scott  Sternson,  PhD  (Janelia  farm,  HHMI)    Scott  received  his  PhD   in  Chemistry  from  Harvard  University,  working  with  Stuart  Schreiber  on  the  synthesis  and  development  of  new  probes  to  manipulate  cellular  function.  After  realizing  a  desire  to  work   on   a   fundamental   behavioral   problem   using   molecular   genetics   integrated   with  neurophysiology,  he  did  a  postdoc  with  Jeff  Friedman  at  Rockefeller  University  and  also  worked   in  Karel   Svoboda’s   lab   (then   at   Cold   Spring   Harbor)   to   map   molecularly-­‐defined   neural   circuits  regulating   feeding   behavior.   At   Janelia,   Scott   has   been   focused   on   understanding   the   circuit  mechanisms  underlying  basic  motivations  such  as  hunger.  

Page 2: Cajal BNHC keynote speakers - FENS.org Gallery/CAJAL programme/2… · TheCAJAL$AdvancedNeuroscienceTrainingProgramme$! ! ’training.org.!

 

The  CAJAL  Advanced  Neuroscience  Training  Programme       www.cajal-­‐training.org    

2  

 Selected  Publications:    

- Chemogenetic  tools  for  causal  cellular  and  neuronal  biology.  Atasoy  D,  et  al.  (2017)  Physiological  Reviews.  Dec  12  

- Raphe  circuits  on  the  menu.  Yang  H,  Sternson  SM.  (2017)  Cell.  Jul  27;170(3):409-­‐10.  

- Three  pillars  for  the  neural  control  of  appetite.  Sternson  SM,  Eiselt  A  (2016)  Annual  Review  of  Physiology.  2016  Nov  28;79:401-­‐23.  

- Near-­‐perfect  synaptic  integration  by  Nav1.7  in  hypothalamic  neurons  regulates  body  weight.  Branco  T,  et  al.  (2016)    Cell.  Jun  16;165(7):1749-­‐61.      

 Olivier  Griesbeck,  PhD  (Max-­‐Planck-­‐Institute  of  Neurobiology,  Martinsried)  

 Oliver   Griesbeck   got   his   Degree   in   Genetics   and   Biochemistry   from  Ludwig-­‐Maximilian-­‐University,Munich   in   1993.   He   finished   his   PhD   in  1997   in   Neurobiology   at   Max-­‐Planck-­‐Institute   for   Psychiatry   at   the  Department   of   Neurochemistry   in   Martinsried.   He   was   a   Research  Associate   of   the   Howard   Hughes   Medical   Institute,   University   of  California,  San  Diego,  with  Roger  Y.  Tsien  from  1997-­‐2001.  Since  2011  he  is   a   Research   Group   leader   at   the   Department   of   Systems   and  Computational   Neurobiology,   Max-­‐Planck-­‐Institute   of   Neurobiology,  Martinsried.    His   research   is  an  example  of  cross  disciplinary   innovation  which  pushes  

neuroscience  forward.  One  of  the  greatest  challenges  in  neuroscience  has  been  to  monitor  activity  and  biochemistry  in  populations  of  identified  neurons  in  vivo  and  to  relate  their  activity  patterns  to  behaviour.  Previous  work  on  new  microscopy  techniques  has  moved  the  field  considerably  further  in  that   direction.   In   particular   the   combination   of   modern   imaging   technology   and   genetic   labeling  methods  heralds  a  bright  future  for  neuronal  circuit  analysis.  His  work  complements  these  efforts  on  the   “indicator   side”   by   providing   probes   for   key   events   crucial   for   an   understanding   of   neuronal  function   and   plasticity   and   aims   at   overcoming   long-­‐standing   limitations   in   the   ability   to  monitor  neuronal  activity  and  biochemistry   in   intact   tissues.  His  approach   is   the  design  and  engineering  of  genetically   encoded   biosensors,   from   the   cuvette   via   imaging   of   single   cells   in   culture   to   the  generation  of  whole  transgenic  indicator  organisms  which  harbor  the  biosensor  of  choice  in  the  cells  and  tissues  that  one  wishes  to  study.  This  opens  up  new  avenues  for  the  study  of  structure-­‐function  relationships  of  intact  neuronal  circuits.    Selected  Publications:    

- Imaging-­‐based  screening  platform  assists  protein  engineering    Fabritius  A,  et  al  (2018).  Cell  Chem.  Biol.  25:  1-­‐8  

- Color  Processing  in  the  Early  Visual  System  of  Drosophila.    Schnaitmann  C,  (2018).  Cell  172:  318-­‐330.  

- Brain  tumor  cells  interconnect  to  a  functional  and  resistant  network    Osswald  M,  et  al.  (2015)..  Nature  528:  93-­‐98.  

- Transmembrane  proteoglycans  control  stretch-­‐activated  channels  to  set  cytosolic  calcium  levels    Gopal  S,  et  al.  (2015)..  J  Cell  Biol  210:1199-­‐211  

 

Page 3: Cajal BNHC keynote speakers - FENS.org Gallery/CAJAL programme/2… · TheCAJAL$AdvancedNeuroscienceTrainingProgramme$! ! ’training.org.!

 

The  CAJAL  Advanced  Neuroscience  Training  Programme       www.cajal-­‐training.org    

3  

 

Haruhiko   Bito,   PhD   (Department   of   Neurochemistry,   University   of  Tokyo)  

Haruhiko  Bito  graduated  from  the  University  of  Tokyo  with  an  MD  in  1990  and   a   PhD   in   Biochemistry   in   1993.   After   a   postdoctoral   training   at  Stanford  University  as  an  HFSP  long-­‐term  fellow  with  Richard  W  Tsien,  he  became  an  Assistant  Professor  in  1997,  and  then  after  a  Senior  Lecturer  in  Pharmacology   at   Kyoto   University   in   1998,   before   moving   to   head   the  Department  of  Neurochemistry  at   the  University  of  Tokyo   in  2003  as  an  Associate  Professor.  Dr  Bito  is  a  Professor  and  Chair  of  Neurochemistry  at  the  University  of  Tokyo  Graduate  School  of  Medicine  since  2013.  He  has  deciphered   many   novel   functions   of   a   family   of   molecules   called   Ca2+-­‐

calmodulin  kinases,   and  elucidated   the  bidirectional  neuronal   signaling  between   the   synapses  and  the  nucleus,  both  of  which  are  essential  for  establishing  long-­‐term  memory.  Dr  Bito  is  also  known  for  inventing  powerful  molecular  tools  (E-­‐SARE,  R-­‐CaMP2,  and  XCaMPs)  that  help  control  and  measure  neuronal  ensemble  activity  critical  for  cognition.    Selected  Publications:    

- Critical  Neurodevelopmental  Role  for  L-­‐Type  Voltage-­‐Gated  Calcium  Channels  in  Neurite  Extension  and  Radial  Migration    Kamijo  S,  et  al.  (2018)    Neurosci.  38:  5551-­‐5566.  

- Rational  design  of  a  high-­‐affinity,  fast,  red  calcium  indicator  R-­‐CaMP2.    Inoue  M,  et  al.  (2015)  Nature  Methods,  12:  64-­‐70.  

- Region-­‐specific  activation  of  CRTC1-­‐CREB  signaling  mediates  long-­‐term  fear  memory.    Nonaka  M,  (2014).  Neuron,  84:  92-­‐106,  2014.    

- Functional   labeling  of  neurons  and  their  projections  using   the  synthetic  activity-­‐dependent  promoter  E-­‐SARE.    Kawashima  T,  et  al.  (2013)  Nature  Methods.  10:  889-­‐895.    

 

 Mark  Scnitzer,  PhD  (Stanford  University,  USA)    Mark  J.  Schnitzer  is  an  HHMI  Investigator  and  a  faculty  member  in  Stanford’s  Departments   of   Biology  &   Applied   Physics.   Starting  with   his   early  work   at  Bell   Laboratories,  his   research   has   focused   on   the   innovation   and  application   of   novel   optical   imaging   technologies   for   brain   science   and  understanding  how  large  neuronal  ensembles  control  animal  behavior.  The  Schnitzer  lab  has  innovated  several  technologies  that  are  now  commercially  available,   including   tiny   fluorescence   microscopes  small   enough   to   be  mounted   on   the   head   of   a   freely   moving   mouse   and   microendoscopes  capable   of   monitoring   single   neuronal   motor   units   in   human   patients  

(Neuron,  2015).  The  former  technology  won  The  Scientist’s  Top  Innovation  of  2013,  was  a  finalist  for  the  2013  Israel  Brain  Prize,  was  Nature  Method's  "2018  Method  of  the  Year",  is  now  available  from  Inscopix   Inc.,   and   is   presently   used   by   >500   neuroscience   labs   worldwide   in   the   USA,   Asia   and  Europe.   Schnitzer's  work   on   brain   imaging  was   recognized   by   the   2010   Young   Investigator  Award  from  the  Biophysical  Society.  He  was  also  a  member  of  the  NIH  BRAIN  Initiative  Advisory  Committee  that  wrote  the  BRAIN  2025  report.  His   lab   is  using   its  optical  inventions  extensively  to  study  neural  

Page 4: Cajal BNHC keynote speakers - FENS.org Gallery/CAJAL programme/2… · TheCAJAL$AdvancedNeuroscienceTrainingProgramme$! ! ’training.org.!

 

The  CAJAL  Advanced  Neuroscience  Training  Programme       www.cajal-­‐training.org    

4  

circuits  in  behaving  mice  and  flies.  Schnitzer's  biological  interests  center  on  understanding  the  large-­‐scale   circuit   dynamics  underlying   cognition,   long-­‐term   memory   and   brain   disease  (e.g.  Nat.  Neurosci.  2013;  Neuron  2015;  Nature  2015;  Nature  2017a;  Nature  2017b;  Nature  2017c;  Nature  2018,  Science  2019),  including  across  multiple  brain  areas  (Nat.  Neurosci.  2014a,  Cell  2019).  Recently,   Schnitzer   has   been   investigating   different   classes   of   optical   voltage-­‐indicators   (Nature  Comm.   2014;  Nat.Neurosci.2014b;   Science   2015;   Cell   2016,   Nature   Methods   2018).   Schnitzer's  trainees  have  had  noteworthy  successes  and  fourteen  now  are  principal  investigators.        Selected  Publications:    

-­‐  An  amygdalar  neural  ensemble  that  encodes  the  unpleasantness  of  pain.  Corder  G,  et  al.  (2019)  Science.  363(6424):276-­‐281.  

-­‐  Fast,  in  vivo  voltage  imaging  using  a  red  fluorescent  indicator.    Kannan  M,  et  al.  (2018)  Nat  Methods.  15(12):1108-­‐1116.  

-­‐ Long-­‐Term  Consolidation  of  Ensemble  Neural  Plasticity  Patterns   in  Hippocampal  Area  CA1.  Attardo  A,  et  al.  (2018)  Cell  Rep.  25(3):640-­‐650.e2.  

-­‐ Three-­‐photon  imaging  of  mouse  brain  structure  and  function  through  the  intact  skull.    Wang  T,  et  al.  (2018)  Nat  Methods.  15(10):789-­‐792.    

 Karl  Deisseroth,  PhD  (  Stanford  University,  USA)    Karl  received  his  bachelor's  degree  from  Harvard  in  1992,  his  PhD  from  Stanford  in  1998,  and  his  MD  from  Stanford  in  2000.  He  completed  postdoctoral  training,  medical  internship,  and  adult  psychiatry  residency  at  Stanford,  and  he  was  board-­‐certified  by  the  American  Board  of  Psychiatry  and  Neurology  in  2006.  He  tries  to  find  spare  time  for  flyfishing.    Selected  Publications:    

-­‐ Crystal  structure  of  the  natural  anion-­‐conducting  channelrhodopsin  GtACR1.    Kim  YS,  et  al.  (2018)  Nature.    

-­‐ Structural  mechanisms  of  selectivity  and  gating  in  anion  channelrhodopsins.    Kato  HE,  et  al.(2018)    Nature.    

-­‐ Three-­‐dimensional  intact-­‐tissue  sequencing  of  single-­‐cell  transcriptional  states.    Wang  Xiao,  et  al.  (2018)  Science.    

-­‐ 5-­‐HT  release  in  nucleus  accumbens  rescues  social  deficits  in  mouse  autism  model.    Walsh  JJ,  et  al.(2018)    Nature.    

   Peter  Hegemann,  PhD  (Humboldt  University  of  Berlin,  Germany)    Peter   Hegemann   is   head   of   the   working   group   for   experimental   biophysics   and   Hertie   Senior  Professor  of  Neuroscience  at  the  Humboldt  University  of  Berlin.  The  world’s   leading   expert   in   photobiology   is   one   of   the   founding   fathers   of   optogenetics,  which  combines   the   methods   of   optics   and   genetics   to   create   a   form   of   non-­‐invasive   stimulation   of  neurons.   His   research  with   photoreceptors   of   algae   has   led   to   the   discovery   of   light-­‐sensitive   ion  compositions   in   cells.   The   protein   involved   (“channelrhodopsin-­‐2”)   enables   a   precise   control   of  genetically  modified   cells   through   light   pulses,   which   leads   to   a   new   possibility   to   treat   neuronal  illnesses.  Peter  Hegemann  has  been  awarded   the  Gairdner  Prize,   the  Gottfried  Wilhelm  Leibniz  Prize  of   the  German  Research  Foundation  (DFG),  the  Grete  Lundbeck  European  Brain  Research  Prize,  the  Harvey  

Page 5: Cajal BNHC keynote speakers - FENS.org Gallery/CAJAL programme/2… · TheCAJAL$AdvancedNeuroscienceTrainingProgramme$! ! ’training.org.!

 

The  CAJAL  Advanced  Neuroscience  Training  Programme       www.cajal-­‐training.org    

5  

Prize   and   the   Otto   Warburg   Medal.   He   is   a   member   of   the   National   Academy   of   Science   and  Engineering   (acatech),   the   Berlin-­‐Brandenburg   Academy   of   Sciences   and   Humanities   (BBAW),   the  European   Molecular   Biology   Organization   and   the   German   National   Academy   of   Sciences  (Leopoldina).    Selected  Publications:  

-­‐ Tracking  pore  hydration  in  channelrhodopsin  by  site-­‐directed  infrared-­‐active  azido  probes.  Krause  BS,  et  al.  (2019)    Biochemistry.  Jan  31.  

-­‐ Crystal  structure  of  the  red  light-­‐activated  channelrhodopsin  Chrimson.  Oda  K,  et  al.  (2018)  Nat  Commun.  Sep  26;9(1):3949.    

-­‐ Electrical  properties,  substrate  specificity  and  optogenetic  potential  of  the  engineered  light-­‐driven  sodium  pump  eKR2.  Grimm  C,  et  al.  (2018)  Sci  Rep.  Jun  18;8(1):9316.  

-­‐ Rhodopsin-­‐cyclases  for  photocontrol  of  cGMP/cAMP  and  2.3 Å  structure  of  the  adenylyl  cyclase  domain.  Scheib  U,  et  al.  (2018)  Nat  Commun.  May  24;9(1):2046.    

   

Stephane  Dieudonne,  PhD,  (IBENS,  Ecole  Normale  Supérieure,  Paris,  France)    Stéphane  Dieudonné   is  a  cellular  and  systems  neurobiologist  with  expertise  in   both   electrophysiology   and   imaging   of   neuronal   activity.   During   his   PhD  thesis   under   the   supervision   of   Philippe   Ascher   (Paris,   France),   he   studied  glycinergic   transmission   and   produced   the   first   patch-­‐clamp   recordings   of  Golgi   interneurons   and   Lugaro   interneurons   in   the   cerebellum.   Following   a  short   postdoc   in   the   laboratory   of   K.   Delaney   (SFU,   Vancouver,   Canada),  where   he   learned   calcium   imaging,   he   was   recruited   as   a   permanent  researcher   by   INSERM   in   2001.   Anticipating   the   neurophotonics   revolution,  Stéphane  Dieudonné  has  been  an  important  contributor  to  the  development  of   Random-­‐Access   Multiphoton   microscopy,   as   a   strategy   for   fast   optical  

recording  and  actuation  of  neuronal  activity.  He  is  involved  in  several  international  training  courses  in  optics   for   the  neurosciences  and  acts   as   scientific  director  of   the   imaging   facility   at   the  Biology  Institute  of  the  Ecole  Normale  Supérieure  (IBENS).  Since  2005,  he  has  been  heading  a  research  team  at  IBENS,  investigating  the  function  of  inhibitory  neurons  in  neuronal  homeostasis  and  computation.  The   group   has   identified   functional   organizing   principles   of   mixed   GABA/glycine   inhibitory  transmission  at  the  molecular  and  microcircuit  levels  and  described  long-­‐range  inhibitory  pathways  involved   in   motor   control.   The   team   is   now   combining   molecular   and   cellular   expertise   in  optogenetics  with   the   implementation  of  Random-­‐Access   imaging  and  actuation   technology   in   the  behaving  animal   to  answer   fundamental  questions  on  the  role  of  cerebellar  microcircuits   in  motor  learning  and  motor  control.      Selected  publications:  

-­‐ Optogenetic  stimulation  of  complex  spatio-­‐temporal  activity  patterns  by  acousto-­‐optic  light  steering  probes  cerebellar  granular  layer  integrative  properties.    Hernandez  O,  et  al.  (2018)  Sci  Rep.  Sep13;8(1):13768.  

-­‐ Mechanisms  and  functional  roles  of  glutamatergic  synapse  diversity  in  a  cerebellar  circuit.  Zampini  V,  et  al.  (2016)  Elife.  2016  Sep  19;5.  pii:  e15872.  

-­‐ A  subcortical  inhibitory  signal  for  behavioral  arrest  in  the  thalamus.    Giber  K,  et  al.  (2015)    Nat  Neurosci.  18:562-­‐8.  

Page 6: Cajal BNHC keynote speakers - FENS.org Gallery/CAJAL programme/2… · TheCAJAL$AdvancedNeuroscienceTrainingProgramme$! ! ’training.org.!

 

The  CAJAL  Advanced  Neuroscience  Training  Programme       www.cajal-­‐training.org    

6  

-­‐ Activity-­‐dependent   gating   of   calcium   spikes   by   A-­‐type   K+   channels   controls   climbing   fiber  signaling  in  Purkinje  cell  dendrites.    Otsu  Y,  et  al.  (2014)  Neuron.  84  :  137-­‐51.    

Thomas  Oertner,  PhD  (Hamburg  Eppendorf  University,  Germany)    Thomas  Oertner  studied  Biology  at  the  University  of  Freiburg  in  Germany,  spending  a  year  abroad  (1993)  in  Scotland  at  the  University  of  Edinburgh.  For   his   Diploma   and   PhD   thesis,   he   joined   Axel   Borst’s   group   at   the  Friedrich   Miescher   Laboratory   of   the   Max-­‐Planck-­‐Society   in   Tübingen   in  1996,   working   on   calcium   signaling   in   the   visual   system   of   the   blowfly.  From  2000   to   2003,   he   studied   glutamate   release   and   calcium   signals   in  dendritic   spines   with   Karel   Svoboda   in   Cold   Spring   Harbor,   NY.   In   2003,  Thomas  Oertner  started  his  own  research  group  at  the  Friedrich  Miescher  Institute   in  Basel,   Switzerland,  part  of   the  Novartis  Research  Foundation.  

Since   2011,   he   is   Professor   for   Neuroscience   at   the   University   of   Hamburg   and   Director   of   the  Institute   for   Synaptic   Plasticity   at   the   ZMNH.   For   many   years,   Thomas   Oertner   has   been   on   the  faculty  of  summer  courses   in  Woods  Hole,  Cold  Spring  Harbor  and  Lausanne,  teaching  two-­‐photon  microscopy  and  optogenetics.  His   research   is   centered   on   the   synaptic   mechanisms   of   learning   and   memory,   connecting   the  activity  and  plasticity  of  identified  synapses  to  their  long-­‐term  stability.  The  primary  model  system  is  the   rodent   hippocampus;   experiments   typically   involve   a   combination   of   two-­‐photon  microscopy,  optogenetic  excitation  and  electrophysiological  recordings.  To  investigate  the  links  between  synaptic  plasticity,  spatial  learning  and  memory  recall,  he  studies  how  precisely  timed  optogenetic  inhibition  interferes  with  mouse  behavior  in  spatial  memory  tasks.    Selected  publications:    

-­‐ The  fate  of  hippocampal  synapses  depends  on  the  sequence  of  plasticity-­‐inducing  events.  Wiegert  JS,  et  al.  (2018)  eLife  2018;7:e39151.  

-­‐ Ultrafast  glutamate  sensors  resolve  high-­‐frequency  release  at  Schaffer  collateral  synapses.  Helassa  N,  et  al.  (2018)  PNAS  115:5594-­‐9.  

-­‐ Conversion  of  channelrhodopsin  into  a  light-­‐gated  chloride  channel.    Wietek  J,  et  al.  (2014)  Science  344:  409-­‐12.  

-­‐ Long-­‐term  depression  triggers  the  selective  elimination  of  weakly  integrated  synapses.    Wiegert  JS,  Oertner  TG  (2013)  PNAS  110:  E4510-­‐9.  

   

Valentina  Emiliani,  PhD  (Paris  Descartes,  France)    Valentina  Emiliani  after  having  obtained  her  PhD  in  Physics  in  Rome,  joined  in  1998  the  Max  Born  Institute  (Berlin),  to  investigate   carrier   transport   in   quantum   wire   by   low  temperature   scanning   near   field   optical   microscopy  (SNOM).   In   2002   she   was   offered   a   position   at   the  European  Laboratory  for  Nonlinear  Spectroscopy  (LENS)  to  lead  a  research  group  focused  on  the  investigation  of  light  propagation  in  disordered  structure  by  SNOM.  In  2002  she  moved   to   Paris   at   the   Institute   Jacques  Monod   to   start   a  

new  interdisciplinar  activity  at  the  interface  between  physics  and  biology.  Her  interest  was  to  study  the  role  of  mechanical  forces  on  the  establishment  of  cell  polarity  by  optical  tweezers.  In  2004  she  

Page 7: Cajal BNHC keynote speakers - FENS.org Gallery/CAJAL programme/2… · TheCAJAL$AdvancedNeuroscienceTrainingProgramme$! ! ’training.org.!

 

The  CAJAL  Advanced  Neuroscience  Training  Programme       www.cajal-­‐training.org    

7  

was  recruited  at  the  CNRS,  to  begin  her  project  on  optical  control  of  neuronal  activities  with   light.  This  project  was  awarded  in  2005  by  a  European  Young  Investigator  grant.  In  2005  she  moved  at  the  university  Paris  Descartes  where   she   formed   the  “Wave   front  engineering  microscopy”  group.  The  team   has   pioneered   the   use   of   wave-­‐front   engineering   for   neuroscience.   In   particular,   they  demonstrated  a  number  of  new  techniques   for  efficient  photoactivation  of   caged  compounds  and  optogenetics  molecules,   techniques   based   on   computer   generated   holography,   generalized   phase  contrast  and  temporal  focusing1–7.    She   became   research   director   in   2011   and   since   2014,   she   has   been   appointed   Director   of   the  

Neurophotonics  laboratory.  On  April  2018,  she  moved  the  wave  front  engineering  microscopy  group  at  the  Vision  Insitut  in  Paris  where  she  has  also  taken  the  head  of  the  photonics  department.  In  2015  she   has   been   awarded   with   the   Prix   “Coups   d’élan   pour   la   recherche   française”   from   the  Bettencourt-­‐Shueller   foundation   and   in   2017   she   has   been   awarded   with   the   Axa   chair  “Investigation  of  visual  circuits  by  optical  wave  front  shaping  “.    Selected  Publications:    

-­‐ Thermal  model  of  temperature  rise  under  in  vitro  and  in  vivo  two-­‐photon  optogenetics  brain  stimulation.    Picot,  A.  et  al.  (2018)  Cell  Rep.  24,  1243–1253.  

-­‐ Temporally  precise  single-­‐cell-­‐resolution  optogenetics.    Shemesh,  O.  A.  et  al.  (2017)  Nat.  Neurosci.  20,  1796–1806.    

-­‐ Three-­‐dimensional  spatiotemporal  focusing  of  holographic  patterns.    Hernandez,  O.  et  al.  (2016)  Nat.  Commun.  7,  11928.  

-­‐ Spatially  selective  holographic  photoactivation  and  functional  fluorescence  imaging  in  freely  behaving  mice  with  a  fiberscope.      Szabo,  V.,  et  al.  (2014)  Neuron  84,  1157–1169.    

 Tom  Kash,  PhD  (University  of  North  Carolina  ,  USA)    My  broad   scientific   goal   is   to   understand  how  modulation  of   discrete  neuronal   circuits   can   shape  behavior  and  to  deconstruct  the  molecular  mechanisms  that  underlie  this  modulation.  Research   in  my   lab   is   focused   on   understanding   how   stress   and   alcohol   abuse   can   alter   neuronal   function   in  brain   regions   that   regulate   emotional   behavior.   These   topics   are   fascinating   from   a   basic   science  standpoint,  but  also  absolutely  critical  from  the  public  health  standpoint,  as  these  disorders  exert  a  tremendous   economic   impact   on   our   society.   These   investigations   are   performed   using   a  multidisciplinary   approach,   ranging   from   behavioral   analysis   to   detailed   mechanistic   signaling  analysis   in   individual  neurons.   This   integrative   approach  has  been  exciting   and  has   allowed  me   to  move   my   science   beyond   correlation   to   explore   causative   relationships.   I   have   multiple   active  projects  and  grants  related  to  discovering  different  aspects  of  stress  and  alcohol  induced  behavioral  pathologies.      Selected  publications:    

-­‐ Fear  extinction  requires  infralimbic  cortex  projections  to  the  basolateral  amygdala.    Bloodgood  DW,  et  al  (2018).  Transl  Psychiatry.  Mar  6;8(1):60.  

-­‐ The   bed   nucleus   of   the   stria   terminalis   in   drug-­‐associated   behavior   and   affect:   A   circuit-­‐based  perspective.    Vranjkovic  O,  et  al.  (2017)  Neuropharmacology  Aug  1.    

-­‐ Chronic  EtOH  effects  on  putative  measures  of  compulsive  behavior  in  mice.    Radke  AK,  et  al  (2017).  Addict  Biol.  Mar;22(2):423-­‐434.  

Page 8: Cajal BNHC keynote speakers - FENS.org Gallery/CAJAL programme/2… · TheCAJAL$AdvancedNeuroscienceTrainingProgramme$! ! ’training.org.!

 

The  CAJAL  Advanced  Neuroscience  Training  Programme       www.cajal-­‐training.org    

8  

-­‐ Acute   engagement   of   Gq-­‐mediated   signaling   in   the   bed   nucleus   of   the   stria   terminalis  induces  anxiety-­‐like  behavior.    Mazzone  CM,  et  al.  (2016)  Mol  Psychiatry.  Dec  13.