C1

62
CƠ SỞ TỰ ĐỘNG Giảng viên: Nguyễn Đức Hoàng Bộ môn Điều Khiển Tự Động Khoa Điện – Điện Tử Đại Học Bách Khoa Tp.HCM Email: [email protected] MÔN HỌC

Transcript of C1

Page 1: C1

CƠ SỞ TỰ ĐỘNG

Giảng viên: Nguyễn Đức HoàngBộ môn Điều Khiển Tự Động

Khoa Điện – Điện TửĐại Học Bách Khoa Tp.HCM

Email: [email protected]

MÔN HỌC

Page 2: C1

Nội dung môn học (10 Nội dung môn học (10 chương)chương)

(14 tuần = 42 tiết LT + 14 tiết BT)(14 tuần = 42 tiết LT + 14 tiết BT)Chương 1: Giới thiệu về hệ thống điều khiển tự động

Chương 2: Mô hình toán học hệ thống liên tục

Chương 3: Đặc tính động học

Chương 4: Khảo sát tính ổn định của hệ thống

Chương 5: Chất lượng hệ thống điều khiển

Chương 6: Thiết kế hệ thống tuyến tính liên tục

Chương 7: Mô hình toán học hệ rời rạc

Chương 8: Phân tích hệ rời rạc

Chương 9: Thiết kế hệ rời rạc

Chương 10: Ứng dụng

Page 3: C1

Tài liệu tham khảoTài liệu tham khảo

Giáo trình: Giáo trình: Lý thuyết điều khiển Lý thuyết điều khiển

tự độngtự độngNguyễn Thị Phương Hà – Huỳnh Thái HoàngNguyễn Thị Phương Hà – Huỳnh Thái Hoàng

NXB Đại Học Quốc Gia TpHCMNXB Đại Học Quốc Gia TpHCM

Bài tập: Bài tập: Bài tập điểu khiển tự Bài tập điểu khiển tự

độngđộngNguyễn Thị Phương HàNguyễn Thị Phương Hà

Tài liệu: Tài liệu:

Automatic Control SystemAutomatic Control System

Modern Control System Theory Modern Control System Theory

and Designand Design

Page 4: C1

Đánh giáĐánh giá

Thi giữa kỳ : 20%Thi cuối kỳ : 80%Có cộng điểm BT vào điểm thi cuối kỳ (≤1.0đ)

Page 5: C1

GIỚI THIỆU VỀ HỆ THỐNG GIỚI THIỆU VỀ HỆ THỐNG ĐIỀU KHIỂN TỰ ĐỘNGĐIỀU KHIỂN TỰ ĐỘNG

CHƯƠNG 1

Page 6: C1

Control Systems 6

1769

• James Watt’s steam engine and governor developed.The Watt steam engine is often used to mark the beginning of the Industrial Revolution in Great Britain. During the Industrial Revolution, great strides were made in the development of mechanization, a technology preceding automation.

Page 7: C1
Page 8: C1
Page 9: C1

Control

• Control is a sequence of decisions aimed at the attainment of specified objectives in an environment of uncertainty and presence of disturbances.

Page 10: C1

Control system

• A control system is an arrangement of physical components connected or related in such a manner as to command, direct, or regulate itself or another system.

Page 11: C1
Page 12: C1

Input

• The input is the stimulus, excitation or command applied to a control system.

• Typically from external energy source, usually in order to produce a specified response from the control system.

Page 13: C1

Output

• The output is the actual response obtained from a control system.

• It may or may not be equal to specified response implied by the input.

Page 14: C1

History of Automatic Control

Page 15: C1

Prior to World War II

A main impetus for the use of feedback in the United States was the development of the telephone system and electronic feedback amplifiers by Bode, Nyquist, and Black at Bell Telephone Laboratories.

Page 16: C1

Prior to World War II

The Russian theory tended to utilize a time-domain formulation using differential equations.

Page 17: C1

World War II

Design and construct:• automatic airplane pilots, • gun-positioning systems, • radar antenna control systems.

Page 18: C1

Sputnik and space age

The time-domain methods developed by Liapunov, Minorsky, and others have met with great interest in the last two decades.

Page 19: C1

Recent time

Recent theories of optimal control developed by L.S. Pontryagin in the former Soviet Union and R. Bellman in the United States, and studies of robust systems, have contributed to the interest in time-domain methods.

Page 20: C1

Terms and Concepts

Page 21: C1

Two Types of Control Systems

• Open Loop– No feedback– Difficult to control

output with accuracy

• Closed Loop– Must have feedback– Must have sensor on output– Almost always negative

feedback

Page 22: C1

Open-loop and closed-loop systems

Page 23: C1

Open-loop control

An open-loop control system utilizes an actuating device to control the process directly without using feedback.

A common example of an open-loop control system is an electric toaster in the kitchen.

Page 24: C1
Page 25: C1

Closed-loop control

A closed-loop control system uses a measurement of the output and feedback of this signal to compare it with the desired output.

Page 26: C1
Page 27: C1

A person steering an automobile by looking at

the auto’s location on the road and making the appropriate adjustments.

Control Systems

Page 28: C1
Page 29: C1

Manual control system

Goal: Regulate the level of fluid by adjusting the output valve.

The input is a reference level of fluid and is memorized by operator.The power amplifier is the operator.The sensor is visual.Operator compares the actual level with the desired level and opens or closes the valve ( actuator).

29

Page 30: C1

The level of fluid in a tank control.

30

Page 31: C1

Multivariable control system

Page 32: C1
Page 33: C1
Page 34: C1

A robot is a computer-controlledmachine.

Industrial robotics is a particular field of automation in which the robot is designed to substitute for human labor.

The Honda P3 humanoid robot.

Page 35: C1

The Control System Design Process

Page 36: C1

• Design is the process of conceiving or inventing the forms, parts, and details of a system to achieve a specified purpose.

Engineering design

Page 37: C1

Engineering design

Trade-off The result of making a judgment about how to

compromise between conflicting criteria.

Page 38: C1

Given a process, how to design a feedback control system?

Three steps:

• Modeling. Obtain mathematical description of the systems.

• Analysis. Analyze the properties of the system.

• Design. Given a plant, design a controller based on performance specifications.

Page 39: C1

Design examples

Page 40: C1

Rotating disk speed control

Control Systems

Page 41: C1

Step 1. Control goal

• Design a system that will held a rotating disk at a constant speed. Ensure that the actual speed of rotation is within a specified percentage of desired speed.

Control Systems

Page 42: C1

Step 2. Variable to be controlled

• Speed of rotation disc

Control Systems

Page 43: C1

Step 3. Control design specification

• Design a system that will ensure that the actual speed of rotation is within a specified percentage of desired speed.

Control Systems

Page 44: C1

Step 4 Preliminary system configuration

Control Systems

Page 45: C1

Step 4 Preliminary system configuration

Control Systems

Page 46: C1

Insulin delivery system

Page 47: C1

The blood glucose and insulin concentrations for a healthy person.

Control Systems

Page 48: C1

Step 1. Control goal

• Design a system to regulate the blood sugar concentration of a diabetic by controlled dispensing of insulin.

Control Systems

Page 49: C1

Step 2. Variable to be controlled

• Blood glucose concentration

Control Systems

Page 50: C1

Step 3. Control design specification

• Provide a blood glucose level for the diabetic that closely approximates the glucose level of a healthy person.

Control Systems

Page 51: C1

Step 4 Preliminary system configurations

Control Systems

Page 52: C1

Disk drive read system

Control Systems

Page 53: C1

Control Systems

Page 54: C1

Step 1. Control goal

• Design a system that will held the position the reader head to read the data stored on a track on the disk.

Control Systems

Page 55: C1

Step 2. Variable to be controlled

• Position of the reader head

Control Systems

Page 56: C1

Step 3. Control design specification

• Design a system that will ensure that the head : - “flies” above the disk at a distance of less than 100 nm, - with the position accuracy is 1 m,- with speed from track to track 50 ms

Control Systems

Page 57: C1

Step 4 Preliminary system configuration

Control Systems

Page 58: C1

P1.8 Student-teacher learning process

• Construct a feedback model of the learning process and identify each block of the system.

Control Systems

Page 59: C1

P1.8 Student-teacher learning process

Page 60: C1

Inverted pendulum control

• E1.11 Sketch the block diagram of a feedback control system. Identify the process, sensor, actuator, and controller.The objective is keep the pendulum in the upright position ( = 0), in the presence of disturbances.

Control Systems

Page 61: C1

Control Systems

Page 62: C1

Inverted pendulum control