C. W. Kim KIAS The Johns Hopkins

51
C. W. Kim KIAS The Johns Hopkins Neutrinos in Cosmology October 27, 2008

description

Neutrinos in Cosmology. C. W. Kim KIAS The Johns Hopkins. October 27, 2008. - PowerPoint PPT Presentation

Transcript of C. W. Kim KIAS The Johns Hopkins

Page 1: C. W. Kim KIAS The Johns Hopkins

C. W. Kim

KIAS

The Johns Hopkins

Neutrinos in Cosmology

October 27, 2008

Page 2: C. W. Kim KIAS The Johns Hopkins

It is truly remarkable that we should have come so far in determining, from the passive collection of a small fraction of the photons that chance to come our way, the properties of neutrinos better than nuclear/particle physics has ever attempted in many decades. (Charles Bennett in Nature in 2006) 1

Page 3: C. W. Kim KIAS The Johns Hopkins

Pauli to his friend Baade:1930

“Today I did something a physicist should never do. I predicted something which will never be observed experimentally…”

Neutrino : Pauli’particle

2

Page 4: C. W. Kim KIAS The Johns Hopkins

Fundamental Building Blocks

Quarks u c t

d s b (3 Colors )

Leptons

e μ τ

ν ν νe μ τ Neutrinos

3

Page 5: C. W. Kim KIAS The Johns Hopkins

4

Page 6: C. W. Kim KIAS The Johns Hopkins

Important Issues

1. Mass

2. Mixing

3. Number of flavors

4. CP violation

Oscillations

Lepto-genesis

5

Page 7: C. W. Kim KIAS The Johns Hopkins

From present evidences of oscillations from experiments measuring

atmospheric, solar, reactor and accelerator neutrinos

We know that flavour neutrino oscillations exist

Weak e.s.Mass e.s.

6

Page 8: C. W. Kim KIAS The Johns Hopkins

Neutrinos are mixed.

Production and detection

via Weak eigenstates

Propagation (Equ. Of motion)

via Mass eigenstates

νν

νµ

e

τ

=

U U Ue1 e2 e3

U U Uµ1 µ2 µ3

U U Uτ1 τ2 τ3

νν

ν2

1

3

(( They are massive. )

7

Page 9: C. W. Kim KIAS The Johns Hopkins

Mixing Matrix : Nuclear/Particle Physics

3

√2 2

2 22

sin θ13 ei δ

U≈

θ θθ ≈ ≈ < 35 4512 23 13

13o oo

Bi-large mixing with U =0, θ = θ , θ = θ = π /6e3 ATM23 12 SOL

√21

1

√2

√3 1

√22√21

√2

√3 1

2

8

Page 10: C. W. Kim KIAS The Johns Hopkins

• Tritium beta decay: measurements of endpoint energy

m(νe) < 2.2 eV (95% CL) Mainz

Future experiments (KATRIN) m(νe) ~ 0.2-0.3 eV

• Neutrinoless double beta decay: if Majorana neutrinos

experiments with 76Ge and other isotopes: ImeeI < 0.4hN eV

Laboratory mass measurement experiments

e -33 eHe H

-2e2)Z(A, Z)(A,

9

Page 11: C. W. Kim KIAS The Johns Hopkins

m ( ν ) < 0.17 Mev (95%CL)

from π → μ + ν

m ( ν ) < 18.2 MeV (95%CL)

from τ → 3 π + 2 π + ν

μ

μ

τ

Particle Physics

10

Page 12: C. W. Kim KIAS The Johns Hopkins

11

Page 13: C. W. Kim KIAS The Johns Hopkins

If ∑ m j < 8 x 10 eV, the inverted hierarchy is ruled out !!

There are at least two neutrinos which are heavier than 8 X 10 eV .

-2

-3

No lower bound for the lightest neutrino !! 12

Page 14: C. W. Kim KIAS The Johns Hopkins

Tritium β

decay< 2.2 eV

2/1

22

iiei mUm

e

Neutrinoless

double betadecay<0.4-1.6 eV

i

ieiee mUm 2

<0.3-1.5 eV Cosmology

iim~

Absolute Mass Searches

13

Page 15: C. W. Kim KIAS The Johns Hopkins

T < eVT ~ MeV

Formation of Large Scale Structures

LSS

Cosmic Microwave Background

CMB

PrimordialNucleosynthesis

BBN

No flavour sensitivity Neff & mννevs νμ,τ Neff

Relic neutrinos influence several cosmological epochs

14

Page 16: C. W. Kim KIAS The Johns Hopkins

15

Page 17: C. W. Kim KIAS The Johns Hopkins

photons

neutrinos

cdm

baryons

Λ

Evolution of the background densities

m3=0.05 eV

m2=0.009 eV

m1≈ 0 eV

16

Page 18: C. W. Kim KIAS The Johns Hopkins

Number of Neutrino Flavors

17

Page 19: C. W. Kim KIAS The Johns Hopkins

Number of Neutrino flavors(in the Universe)

Decay of Z : data) (LEP 008.0984.2 N

N influences H :

Slow expansion ⇒ less He. Fast expansion ⇒ more He

+ 1.4- 1.2

4

4

(Particles such as sterile neutrinos are not included. m < 45 GeV).

BBN : N = 3.1 95% CL ( He + D data)

(Neutron life time = 14.76 minutes)

eff

eff

N = 3 ⇒ N = 3.046 (standard value)

(SM and neutrino oscillations : ν v.s. ν )

4

ν ν

e μ,τ

*

( Not relic!)*

18

Page 20: C. W. Kim KIAS The Johns Hopkins

N

inv

( Z → l l )

= 2.9840 ± 0.0082

This is valid for m < 45 GeV.

Particle Physics

Γ = Nν Γ( Z → ν ν )

= νinvΓ

ν

( Z → )ΓΓ ν ν

l l( Z → )

Z boson:

SM

19

Page 21: C. W. Kim KIAS The Johns Hopkins

Number of Neutrino flavors(in the Universe)

Decay of Z : data) (LEP 008.0984.2 N

N influences H :

Slow expansion ⇒ less He. Fast expansion ⇒ more He

+ 1.4- 1.2

4

4

(Particles such as sterile neutrinos are not included. m < 45 GeV).

BBN : N = 3.1 95% CL ( He + D data)

(Neutron life time = 14.76 minutes)

eff

eff

N = 3 ⇒ N = 3.046 (standard value)

(SM and neutrino oscillations : ν v.s. ν )

4

ν ν

e μ,τ

*

( Not relic!)*

20

Page 22: C. W. Kim KIAS The Johns Hopkins

T ( ) ~ 2 MeV : CC & NC

T ( ) ~ 3 MeV : NC only

No μ & τ in plasma

dec

dec νe

νμ ,τ

Neutrino Oscillations in plasma before decoupling

21

Page 23: C. W. Kim KIAS The Johns Hopkins

311

4

8

71

158

73

15

3/44

24

2

r TT

Ω Ω Ω Ω = 1 Λ m γ ν+ + +

*

To be determined22

Page 24: C. W. Kim KIAS The Johns Hopkins

1/3

411

T

T

ν

γ

23

Page 25: C. W. Kim KIAS The Johns Hopkins

311

4

8

71

158

73

15

3/44

24

2

r TT

Ω Ω Ω Ω = 1 Λ m γ ν+ + +

*

To be determined 24

Page 26: C. W. Kim KIAS The Johns Hopkins

Effect of Neff at later epochsNeff modifies the radiation content: Changes the epoch of matter-radiation equivalence

Galaxy Mass SpectrumAnisotropy Spectrum

25

Page 27: C. W. Kim KIAS The Johns Hopkins

WMAP 3b

26

Page 28: C. W. Kim KIAS The Johns Hopkins

m

WMAP 5

27

Page 29: C. W. Kim KIAS The Johns Hopkins

Results: WMAP 5-year data

N eff = 4.4 + 1.5 (68%C.L.)_

1.9 < N < 7.8 (95%C.L.)eff

even after breaking degeneracy using

BAO, SN and HST28

Page 30: C. W. Kim KIAS The Johns Hopkins

Neutrino Mass Values

29

Page 31: C. W. Kim KIAS The Johns Hopkins

eV 93.2

mh Ω i

i2

ν

eV 15 m 0.3Ω Ω

eV 46 m 1 Ω eV 93.2

mhΩ

iimν

iiν

ii

MpceV 30

m 41

-1

ν

Neutrino Free Streaming

Φ

b, cdm

ν

30

30

Page 32: C. W. Kim KIAS The Johns Hopkins

Page 33: C. W. Kim KIAS The Johns Hopkins

32

Page 34: C. W. Kim KIAS The Johns Hopkins

33

Page 35: C. W. Kim KIAS The Johns Hopkins

5

34

Page 36: C. W. Kim KIAS The Johns Hopkins

Parameter degeneracy: Neutrino mass and wIn cosmological models with more parameters the neutrino mass bounds can be relaxed.

Ex: quintessence-like dark energy with ρDE=w pDE

WMAP Coll, astro-ph/0603449

Λ

35

Page 37: C. W. Kim KIAS The Johns Hopkins

WMAP 5 year Data

WMAP -5

WMAP5 plus

BAO + SN

36

Page 38: C. W. Kim KIAS The Johns Hopkins

Neutrino Mass from Cosmology

1. CMB alone: Σm < 1.5 eV (95% CL)

2. With BAO and SN:

Σm < 0.61 eV (95% CL) with w = 1

Σm

ν

ν

ν < 0.66 eV (95% CL) without w = 1

( Remember that Σm and H are degenerate for CMB

but no degeneracy between w and Σ m )

ν o

3. To go beyond, we need SDSS, Lyman-α, … But bias, …

ν

37

Page 39: C. W. Kim KIAS The Johns Hopkins

Neutrinos as HDM

● As long as HDM is relativistic, HDM perturbations within the horizon

are erased by “ Free – Streaming”.

● Free-streaming stops when HDM becomes

non-relativistic at Zn-r .→ If HDM dominates, top-down structure

formation but, observation → bottom-up.

→ limit on Σ m j j

P(k)ΔP(k)

~ (1 eV

Σ m j j) (

ΩM h2 )0.10● _

Reduces small scale amplitude of Mass Fluctuations38

Page 40: C. W. Kim KIAS The Johns Hopkins

Horizon distance at matter = radiationEnters in matter dominated era

Enters in rad. Dominated era

Σ m = 1 eVi

39

Page 41: C. W. Kim KIAS The Johns Hopkins

13

40

Page 42: C. W. Kim KIAS The Johns Hopkins

Neutrino Mass from Cosmology

1. CMB alone: Σm < 1.5 eV (95% CL)

2. With BAO and SN:

Σm < 0.61 eV (95% CL) with w = 1

Σm

ν

ν

ν < 0.66 eV (95% CL) without w = 1

( Remember that Σm and H are degenerate for CMB but

no degeneracy between w and Σ m )ν o

3. To go beyond, we need SDSS, Lyman-α, sdFGRs … But galaxy bias, … :Non-linear effects

ν

Let’s pull it down to 0.08 eV

(Two ν are heavier than this value)

Page 43: C. W. Kim KIAS The Johns Hopkins

Star Gazer

Page 44: C. W. Kim KIAS The Johns Hopkins

m ν

WMAP

Page 45: C. W. Kim KIAS The Johns Hopkins
Page 46: C. W. Kim KIAS The Johns Hopkins

Lyman-α forest data

Absorption lines in the spectrum of distant quasars due to intermediate H clouds which absorb Lyman-α lines at

λα = 1215.67 Ao

Page 47: C. W. Kim KIAS The Johns Hopkins

Lyman-α forest data

Absorption lines in the spectrum of distant quasars due to intermediate H clouds which absorb Lyman-α lines at

λα = 1215.67 Ao

Layers of H Clouds ⇒ forest

Page 48: C. W. Kim KIAS The Johns Hopkins

Lyman-α forest spectrum from Q2139-4434 (z= 3.23)

Page 49: C. W. Kim KIAS The Johns Hopkins

Lyman-α forest data

Absorption lines in the spectrum of distant quasars due to intermediate H clouds which absorb Lyman-α lines at

λα = 1215.67 Ao

Layers of H Clouds ⇒ forest

Absorption lines ⇒ Study of change of power spectrum of δρ/ρ for small λ

But this is very difficult and model dependent ( bias ).

ΔP(k)/P(k) ~ -10 Ω / Ω : a factor of 2 suppression for Σm = 1 eV(7% of CDM)

νo

Mo

j

Page 50: C. W. Kim KIAS The Johns Hopkins
Page 51: C. W. Kim KIAS The Johns Hopkins

WMAP3

* m < 0.7 eV (95% CL)

*H and m degeneracy

νO

Unknown m ⇒ one of the largest systematic errors for estimating cosmological parameters from CMB

* m > 0.3 eV favors smaller Hubble constant.

ν

( Clean and Robustν

ν

*To improve the limit, need data other than WMAP !

SDSS, 2dFGRS, Lyman-α forest, Gravitational lensing,…

But inherent systematic errors need to be understood.

Conclusions

even with WMAP1 alone)