BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ......

21
BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO SELECTION PROBLEMS: COMONOTONIC APPROXIMATIONS J. Mar´ ın-Solano (UB), M. Bosch-Pr´ ıncep (UB), J. Dhaene (KUL), C. Ribas (UB), O. Roch (UB), S. Vanduffel (KUL) Buy & Hold Strategies Comonotonic Approximations

Transcript of BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ......

Page 1: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

BUY AND HOLD STRATEGIES INOPTIMAL PORTFOLIO SELECTION PROBLEMS:

COMONOTONIC APPROXIMATIONS

J. Marın-Solano (UB), M. Bosch-Prıncep (UB), J. Dhaene (KUL),C. Ribas (UB), O. Roch (UB), S. Vanduffel (KUL)

Buy & Hold Strategies Comonotonic Approximations

Page 2: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

MULTIPERIOD OPTIMAL PORTFOLIO SELECTIONPROBLEM

1. Investment strategies.

2. Buy and hold strategy. Terminal wealth.

3. Upper and lower bounds for the terminal wealth.

4. Optimal portfolio.

Buy & Hold Strategies Comonotonic Approximations

Page 3: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

1. INVESTMENT STRATEGIES

There are (m+1) securities. One of them is riskfree:dP 0(t)P 0(t)

= rdt.

There are m risky assets:dP i(t)P i(t)

= µidt +d∑

j=1

σijdW j(t).

By defining Bi(t) =1σi

d∑

j=1

σijWj(t),

dP i(t)P i(t)

= µidt + σidBi(t) , i = 1, . . . , m .

Buy & Hold Strategies Comonotonic Approximations

Page 4: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

From the solution to this equation,

P i(t) = pi exp[(

µi − 12σ2

i

)t + σiB

i(t)],

we obtain that the random yearly returns of asset i in year k, Y ik ,

are independent and have identical normal distributions with

E [Y ik ] = µi − 1

2σ2

i ,

Var [Y ik ] = σ2

i , and

Cov [Y ik , Y j

l ] =

0 if k 6= l,

σij if k = l .

Buy & Hold Strategies Comonotonic Approximations

Page 5: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

Let Π(t) = (Π0(t), Π1(t), . . . , Πm(t)) denote the vector describingthe proportions of wealth invested in each asset at time t.

In general, a vector Π(t) will define an investment strategy.

If one unit of a security is constructed according to the investmentstrategy Π(t), let P (t) be the price of that unit at time t. Then,

dP (t)P (t)

=m∑

i=0

Πi(t)dP i(t)P i(t)

=

[m∑

i=1

Πi(t)(µi − r) + r

]dt+

m∑

i=1

Πi(t)σidBi(t) .

If Π(t) is prefixed, P (t) can be obtained by solving the stochasticdifferential equation above (constantly rebalanced portfolio).

Buy & Hold Strategies Comonotonic Approximations

Page 6: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

2. BUY AND HOLD STRATEGY. TERMINAL WEALTH

• The new amounts of money α(t) are invested at timet = 0, 1, . . . , n− 1 in some prefixed proportionsπ(t) = (π0(t), π1(t), . . . , πm(t)).

• Fractions πi(t) are always the same. Denoting πi(0) = πi, then(π0(t), . . . , πm(t)) = (π0, . . . , πm), for every t = 0, 1, . . . , n− 1.

• New quantities are invested once in a period of time (typically,once in a year), i.e.,

α(t) =

αi if t = i , for i = 0, 1, . . . , n− 1 ,

0 otherwise .

• The decision maker follows a buy and hold strategy, i.e., nosecurities are sold.

Buy & Hold Strategies Comonotonic Approximations

Page 7: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

Objective: To compute the terminal wealth Wn(π) for a givenbuy and hold strategy π = (π0, π1, . . . , πm).

Let Zij be the sum of returns of 1 unit of capital invested at time

t = j of asset i from time t = j to the final time t = n,

Zij =

n∑

k=j+1

Y ik .

The terminal wealth invested in asset i is

W in(π) =

n−1∑

j=0

πiαjeZij ,

whereas the terminal wealth will be given by

W (π) =m∑

i=0

W i(π) =m∑

i=0

n−1∑

j=0

πiαjeZij .

Buy & Hold Strategies Comonotonic Approximations

Page 8: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

3. UPPER AND LOWER BOUNDS FOR THE TERMINALWEALTH

Let X = (X1, X2, . . . , Xn) and let S = X1 + X2 + · · ·+ Xn.

It can be shown that

Sl ≤cx

n∑

i=1

Xi ≤cx Sc,

where Sc =n∑

i=1

F−1Xi

(U) and Sl =n∑

i=1

E [Xi | Λ].

Buy & Hold Strategies Comonotonic Approximations

Page 9: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

If S =n∑

i=1

αi eZi with αi ≥ 0,

Sc =n∑

i=1

F−1

αi eZi(U) =

n∑

i=1

αi eE [Zi]+σZiΦ−1(U) .

For a given Λ =n∑

j=1

γjZj ,

Sl =n∑

i=1

αi E [eZi | Λ] =n∑

i=1

αi eE [Zi]+

12 (1−r2

i )σ2Zi

+riσZiΦ−1(U)

.

We need values of γj that minimize of the “distance” between S

and Sl.

Buy & Hold Strategies Comonotonic Approximations

Page 10: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

‘Maximal Variance’ lower bound approach. As we have thatVar[S] = Var[Sl] + E[Var[S | Λ]], it seems reasonable to choose thecoefficients γj such that the variance of Sl is maximized:

γk = αk eE [Zk]+ 1

2 σ2Zk .

‘Taylor-based’ lower bound approach. Λ is a lineartransformation of a first order approximation to S:

γk = αk eE [Zk].

Buy & Hold Strategies Comonotonic Approximations

Page 11: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

Comonotonic Upper Bound B&H strategy:

W c(π) =m∑

i=0

n−1∑

j=0

πiαj e(n−j)(µi− 12 σ2

i )+√

n−jσiΦ−1(U) .

Note that W c(π) is a linear combination of fractions πi,i = 0, . . . , m.

Comonotonic Lower Bound B&H strategy:

W l(π) =m∑

i=0

n−1∑

j=0

πiαj e(n−j)(µi− 12 r2

ijσ2i )+rij

√n−jσiΦ

−1(U)

where the correlation coefficients rij are given by

rMVij =

∑mk=0

∑n−1l=0 πkαl(n−max(j, l))σike(n−l)µk

σi

[(n− j)

∑ms,k=0

∑n−1t,l=0 πsπkαtαl(n−max(t, l))σske(n−t)µs+(n−l)µk

]1/2.

Buy & Hold Strategies Comonotonic Approximations

Page 12: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

and

rTij =

∑mk=0

∑n−1l=0 πkαl(n−max(j, l))σik e(n−l)[µk− 1

2 σ2k]

σi(n− j)1/2·

·

m∑

s,k=0

n−1∑

t,l=0

πsπkαtαl(n−max(t, l))σsk e(n−t)[µs− 12 σ2

s]+(n−l)[µk− 12 σ2

k]

−1/2

Buy & Hold Strategies Comonotonic Approximations

Page 13: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

Numerical illustration: 2 risky, 1 risk-free. µ1 = 0.06, µ2 = 0.1,σ1 = 0.1, σ2 = 0.2, Pearson’s correlation: 0.5, r = 0.03.

Every period αi = 1, invested in proportions: 19% risk-free asset,45% first risky asset, 36% in the second risky asset. This amount isinvested for i = 0, ..., 19, whereas in i = 20 the invested amount isα20 = 0. The simulated results were obtained with 500,000 randompaths.

Buy & Hold Strategies Comonotonic Approximations

Page 14: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

p MC LBMV LBT UB

0.01 20.018 +2.39% +1.46% -20.01%

0.025 23.072 +1.49% +0.79% -18.54%

0.05 25.056 +1.07% +0.57% -16.80%

0.25 33,488 +0.00% -0.00% -10.14%

0.5 42.307 -0.11% +0.09% -3.92%

0.75 55.161 +0.12% -0.34% +3.32%

0.95 86.258 +0.24% +0.10% +14.49%

0.975 101.5 +0.11% -0.27% +18.07%

0.99 123.99 -0.23% -0.93% +22.08%

Buy & Hold Strategies Comonotonic Approximations

Page 15: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

4. OPTIMAL PORTFOLIO

Possible criteria: maximizing an expected utility, Yaari’s dualtheory of choice under risk:

maxπ

ρf [Wn(π)] = maxπ

∫ ∞

0

f(Pr(Wn(π) > x))dx ,

risk measures (some of them correspond to distorted expectationsρf [Wn(π)] for appropriate choices of the distorsion function f).

Buy & Hold Strategies Comonotonic Approximations

Page 16: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

Value at Risk at level p:Qp[X] = F−1

X (p) = inf{x ∈ R | FX(x) ≥ p}. If FX is an strictlyincreasing function, then it coincides with the related risk measureQ+

p [X] = sup{x ∈ R | FX(x) ≤ p} , p ∈ (0, 1).

Additive for sums of comonotonic risks.

Conditional Left Tail Expectation at level p (CLTEp[X]):

CLTEp[X] = E[X | X < Q+

p [X]]

, p ∈ (0, 1) .

Buy & Hold Strategies Comonotonic Approximations

Page 17: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

For the upper and lower bounds in B&H strategy:

Qp[W c(π)] =m∑

i=0

n−1∑

j=0

πiαj e(n−j)(µi− 12 σ2

i )+√

n−jσiΦ−1(p) ,

Qp[W l(π)] =m∑

i=0

n−1∑

j=0

πiαj e(n−j)(µi− 12 r2

ijσ2i )+rij

√n−jσiΦ

−1(p) ,

CLTEp[W c(π)] =m∑

i=0

n−1∑

j=0

πiαjeµi(n−j) 1− Φ(

√n− jσi − Φ−1(p))

p,

CLTEp[W l(π)] =m∑

i=0

n−1∑

j=0

πiαjeµi(n−j) 1− Φ(

√n− jrijσi − Φ−1(p))

p.

Buy & Hold Strategies Comonotonic Approximations

Page 18: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

Maximizing the Value at Risk: for a given probability p and a giveninvestment strategy, let Kp(π) be the p-target capital defined as the(1− p)-th order ‘+’-quantile of terminal wealth,Kp(π) = Q+

1−p[W (π)].

For the optimal case:

K∗p = max

πQ+

1−p[W (π)] .

Alternatives:

Kc∗p = maxπ Q+

1−p[Wc(π)] or Kl∗

p = maxπ Q+1−p[W

l(π)].

Buy & Hold Strategies Comonotonic Approximations

Page 19: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

≥ r MC LBMV LBT UB

π0 100% 100% 100% 100%

π1 0% 0% 0% 0%

π2 0% 0% 0% 0%

K∗ 27.817 27.817 27.817 27.817

≥ 6% MC LBMV LBT UB

π0 33.24% 33.83% 34.36% 57.14%

π1 41.82% 40.79% 39.87% 0%

π2 24.94% 25.38% 25.77% 42.86%

K∗ 25.718 25.914 25.805 22.78

Buy & Hold Strategies Comonotonic Approximations

Page 20: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

Maximizing the CLTE: maxπ CLTE1−p[W (π)]. This optimizationproblem describes decisions of risk averse investors.

The CLTE1−p has the following nice property (lacking with theVaR):

CLTE1−p[W c(π)] ≤ CLTE1−p[W (π)] ≤ CLTE1−p[W l(π)] .

Alternative: maxπ CLTE1−p[W l(π)].

Buy & Hold Strategies Comonotonic Approximations

Page 21: BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO … · 2014. 5. 15. · h (n ¡ j) Pm s;k=0 Pn ... 0.975 101.5 +0.11% -0.27% +18.07% 0.99 123.99 -0.23% -0.93% +22.08% Buy & Hold Strategies

≥ r MC LBMV LBT UB

π0 100% 100% 100% 100%

π1 0% 0% 0% 0%

π2 0% 0% 0% 0%

K∗ 27.817 27.817 27.817 27.817

≥ 6% MC LBMV LBT UB

π0 37.70% 37.36% 38.44% 57.14%

π1 34.12% 34.62% 32.74% 0%

π2 28.18% 28.02% 28.82% 42.86%

K∗ 23.431 24.089 23.962 21.163

Buy & Hold Strategies Comonotonic Approximations