Building Enclosure Fundamentals - Building...
Embed Size (px)
Transcript of Building Enclosure Fundamentals - Building...

BuildingEnclosureFundamentals:AconciseintroductionDrJohnStraube,P.Eng.UniversityofWaterloo&RDHBuildingScience
Thisshortdocumentintroducesthetechnicalaspectsofbuildingenclosures,witha
focusonhigh-performancewalls.Thefunctionsrequiredofallbuildingenclosures,
commercialandresidential,arepresentedfollowedbyconcisedescriptionsof
controlfunctions.
IntroductionThebuildingenclosureisdefinedasthephysicalcomponentofabuildingthat
separatestheinteriorfromtheexterior:itisanenvironmentalseparator.In
practisethebuildingenclosuremustprovidethe“skin”tothebuilding,i.e.,notjust
separationbutalsothevisiblefaçade.Unlikethesuperstructureortheservice
systemsofbuildings,theenclosureisalwaysseenandisthereforeofcritical
importancetoowners,theoccupants,andthepublic.Theappearanceandoperation
oftheenclosurehaveamajorinfluenceontheinteriorenvironmentandonfactors
suchascomfort,energyefficiency,durability,andoccupantproductivityand
satisfaction.
Todesignafunctionalenclosure,thedesignermustunderstandwhatthe
environmentalconditionsoneithersideoftheenclosureare.Climate,ameasureof
long-termweather,andextremeweatherevents(hurricanes,extremecolddays,
etc.)canbequantifiedandclassified.Twomapsareprovidedbelow(Figure1)for
combinedtemperatureandhumidityandannualrainfall.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
2
Figure 1: Climate and Rainfall Maps
EnclosureFunctionsIngeneralthephysicalfunctionofseparationrequiredofthebuildingenclosure
maybefurthergroupedintothreesub-categoriesasfollows:
1.Supportfunctions,i.e.,tosupport,resist,transferandotherwiseaccommodateallthestructuralformsofloadingimposedbytheinteriorandexteriorenvironments,
bytheenclosure,andbythebuildingitself.Theenclosureorportionsofitcanbean
integralpartofthebuildingsuperstructure,usuallybydesignbutsometimesnot.
2.Controlfunctions,i.e.,tocontrol,block,regulateand/ormoderatealltheloadingsduetotheseparationoftheinteriorandexteriorenvironments.Thislargelymeans
theflowofmass(air,moisture,etc.)andenergy(heat,sound,fire,light,etc.).
3.Finishfunctions,i.e.,tofinishthesurfacesattheinterfaceoftheenclosurewiththeinteriorandexteriorenvironments.Eachofthetwointerfacesmustmeetthe
relevantvisual,aesthetic,wearandtearandotherperformancerequirements.
Afourthbuilding-relatedcategoryoffunctionscanalsobeimposedonthe
enclosure,namely:
4.Distributionfunctions,i.e.,todistributeservicesorutilitiessuchaspower,communication,waterinitsvariousforms,gas,andconditionedair,to,from,and
withintheenclosureitself.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
3
Almostallenclosuresmustsatisfysupport,control,finishanddistributionfunctions.
However,onlythesupportandcontrolfunctionsmustbeprovidedovertheentiresurfaceoftheenclosure:controlandsupportfunctionsmustcontinueacrossevery
penetration,everyinterface,andeveryassembly.Thelackofthisrequired
continuityisthecauseofthevastmajorityofenclosureperformanceproblems.The
needforfinishanddistributionvariesovertheextentoftheenclosure.Itisrather
unlikelytofindanenclosurethatrequiresafinishontheinteriorandexterior
everywhere.Itisevenmoreunlikelytofindabuildingthatimposesthedistribution
functionontheenclosureoveritsentiresurface.
Thesupportfunctionisofprimaryimportance.Withoutstructuralintegrity,theremainingfunctionsareuseless.However,theindustryhasreachedahighlevelof
understandingandaccomplishmentinthisarea.Supportsystemshaveevolvedfrom
massiveelementspiercedatafewlocationstoefficientprimarystructuralsystems
(suchassteelorconcreteframes)withlightweightframedinfillandsheathing.The
trendtolightweightenclosuresislikelytocontinueasthedemandformore
resource-efficientbuildingsgrows.
Forphysicalperformance,themostcommonrequiredenclosurecontrolfunctionsinclude
• rain,• air,• heat,• vapour,• fire&smoke,• sound,• light(includingview,solarheat,anddaylight),• insects,• particulates,and• access.
Buttherearemanymore.Likesupport,thesecontrolfunctionsarerequired
everywhereforacceptableorgoodperformanceandhencecontinuityofthese
controlfunctions,especiallyatpenetrationsandconnections,iscriticaltoa
successfulenclosure.Themostimportantcontrolfunctionwithrespecttodurability
israincontrolfollowedbyairflowcontrol,thermalcontrol,andvapourcontrol.The
leveloffireandsoundcontrolrequiredvarieswithcoderequirementsandthe
owner’sdesires.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
4
Unlikethecontrolandsupportfunctions,whichrelyoncontinuitytoachieve
performance,thefinishfunctionisoptional,andmaynotbeneededinsomeareas.Forexample,abovesuspendedceilingsorinserviceorindustrialspaceswherethe
finishisoftendeemedunimportant.Exteriorfinishisoftentermed“cladding”,but
thetermisimprecise,sincecladdingsystemsandmaterialsoftenincludessome
controlfunctions(suchasUVcontrol,solarcontrol,impactresistance,etc.)while
alsodeliveringthefinishfunction.
Theservicedistributionfunction,abuildingfunctionoftenimposedontheenclosure,largelyservicestheadjacentinteriorspacesandonlyneedstobemet
wherethereisaserviceorutilitytobedistributed–largeproportionsofmost
enclosuresdonotneedtofulfillthisbuildingfunction.Thedistributionfunctionof
thebuildinghoweverusuallyimpactsthecontrol-relatedfunctions.Forexample,
serviceentrancespenetratetheentireenclosure,andpipes,ductsandwiresthat
runthroughinsulatedstudspacescanseriouslyreducetheperformanceof
insulationinstalledhere.
Confusionabouttheclassificationofthefunctionalrolesofenclosurecomponents
andmaterialsisfartoocommon,andthisconfusioncancauseseriousperformance
anddurabilityproblems.Forexample,
• vinylwallpaperisoftenappliedasafinish,butinfactfulfillsthecontrol-
relatedfunctionofvapourdiffusioncontrolandactsasalow-permeance
ClassIvapourcontrollayer.Thisunintentionalcontrolofdiffusioncan,and
toooftendoes,createseriousmouldproblemsinair-conditionedbuildings.
• drywallisoftenseenasfulfillingafinishfunction,butinfact,thepaintis
moreoftenthefinishandthedrywalloftenservesasacontrollayerforfire,
sound,andairflow.Ifadesignerorbuilderstopsthedrywallabovea
suspendedceilingbecauseafinishfunctionisnotneededhere,therequired
fire,sound,andairflowcontrolwillalsobemissing.
• athick,self-adhered,bituminousmembraneisoftenusedtodrainwaterand
controlairflowinhigh-performanceassemblies.However,thismembraneis
alsoaverylowpermeancevapourcontrollayer,andlocatingitonthe
outsideofallormostoftheinsulationinacoldclimatecanleadtodamaging
coldweathercondensation.
Fromamorepracticalpointofviewitisusefultodividethefunctionsofthe
enclosureintovarioussub-categoriestowhichwecanassignactualproductsand

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
5
sub-systemassemblies.Withrespecttothecontrolfunction,thesearetermed
controllayers.
Themostimportantandcommonlydefinedenclosurecontrolfunctionlayersare,in
approximateorderofimportance:
1. water/raincontrollayer(e.g.,drainageplane&gaporwaterproofing),
2. airflowcontrollayer(e.g.,anairbarriersystem),
3. thermalcontrollayer(e.g.,insulation,radiantbarriers,etc.),and
4. vapourcontrollayer(e.g.,vapourretarderorvapourbarrierasrequired).
Eachcontrol“layer”maybeasinglematerial,orasub-assemblyofmaterialsthat
togetherprovidethecontroldesired.Inmanycases,twoormoreofthecontrol
functionsareprovidedbyasinglematerialorlayer(e.g.,amembranemayprovide
waterandaircontrol,orsprayfoaminsulationmayprovidevapor,air,andthermal
control).
The“Perfect”EnclosureFigure2showsanidealizedenclosurewiththefourcontrollayerslabelled,along
withcladding,supportandinteriorfinishfunctionlayers.
Figure 2: Idealized enclosure showing the four primary control layers

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
6
Thewater,airandvaporcontrollayersareshownasthinlinestoindicatethatthey
can,inreality,bequitethin(e.g.lessthan1/16”or1mm)andstillperformtheir
functionsverywell.Somematerials,suchasprecastconcrete,canbeusedasa
water,airandvapourcontrollayeronlyiftheyarethicker,e.g.,4”or100mm.
Thesupportandthethermalcontrollayerareshownasthickercomponents,
becauseinpractisetheselayersneedtobethicker(e.g.,wellover1”or25mm)to
performtheirfunction.Dependingonthespanandtoalesserextentthemagnitude
oftheloads(snow,wind,dead,etc.),thesupportstructurewillusuallybeinthe
rangeof3”to8”(75to200mm)forwallswithaspanheightof8’to20’(2.4to6m).
Dependingonitsmaterialproperties,theclimate,andbuildingdesign,thethermal
controllayerwillusuallybe2”to10”thick(50-250mm).
Figure3depictsthespecial,butcommonandpractical,caseofanassemblythat
collapsesthewater,air,andvaporcontrollayersintoasinglephysicalmaterial
(typicallyapolymersuchasaplasticorbituminousmembrane),andprovidesan
optionalservicedistributionspaceandinteriorfinish.
Figure 3: Idealized enclosure with service distribution and finishes
RainControlRaincontrolisthemostimportantpracticalcontrolfunctiontoprovide.Thereis
littleacceptanceorforgivenessforfailure.
Therearethreerecognizeddesignstrategiestocontrolrainpenetrationwithinand
throughtheenclosure(Straube&Burnett1999,CMHC1999):

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
7
1. Drained/Screen2. Mass/Storage3. PerfectBarrier
Thecategorizationdescribedisindependentofmaterialsordesignintentandis
basedsolelyonthemethodbywhichawallsystemcontrolsrainpenetration.
Figure 4: Examples of Drained/Screen Assemblies
Historically,thebestperformanceforwaterpenetrationcontrolhasbeenfrom
drained/screenassemblies.Someexamplesofdrainedwallsystemsincludecavity
walls,brickandstoneveneer,vinylsiding,metalpanels,two-stagejoints,and
drainedEIFS.Screened/drainedwallsassumesomerainwaterwillpenetratethe
outersurface(hencethecladding“screens”rain)andremovethiswaterby
designinganassemblythatprovidesdrainagewithinthewall.
Alldrained(aka“rainscreen”)systemsmusthavefivecomponents:
1. arainscreenorcladding(onethatleaksrain)
2. adrainagegap(oftenaclearairspace),
3. adrainageplane(watercontrollater,awaterrepellentplane,WRB.),
4. flashingatthebasetodirectwateroutwards(waterproof),and
5. drainholes(weepholes)toallowwateroutofthedrainagegap.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
8
Figure 5: Examples of Mass/Storage Wall Assemblies
Masswallsrequiretheuseofanassemblyofmaterialswithenoughsafestorage
capacityandmoisturetolerancetoabsorballrainwaterthatisnotdrainedor
otherwiseremovedfromtheoutersurface.Theinfiltrationoccursthroughmicro
cracksandporesintheassemblyandisdrivenpredominantlyfromgravityand
capillaryforces.Windisgenerallynotasmuchofafactorduetothesizeofthe
cracksandtherelativemagnitudeofthecapillaryforces.Inafunctionalmassor
storagewall,evaporativedryinganddiffusioneventuallyremovesmoisturebefore
itreachestheinnersurfaceofthewall.
Figure 6: Examples of Perfect Barrier Assemblies

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
9
Perfectbarriers,thethirdtypeofraincontrolstrategy,stopallwaterpenetrationat
asingleplane.Suchperfectcontrolrequiredtheadventofmodernmaterials.Some
examplesofperfectbarrierwallsaresomewindowframes,andsomemetaland
glasscurtainwallsystems.Becauseitisdifficulttobuildandmaintainaperfect
barrierwall,mostwallsaredesignedas,orperformas,imperfectbarrierwall
systemsofeitherthemasstypeorthescreenedtype.However,somesystems,
usuallyfactorybuilt,providewallelementsthatarepracticalperfectbarriers,and
whilethepanelsthemselvescanbeconsideredperfectbarriers,thejointsareoften
susceptibletoinfiltration.
Thejointsbetweenperfectbarrierelementsmaybealsodesignedasperfect
barriers(e.g.asinglelineofcaulking).Suchjointshaveapoorrecordof
performanceandshouldnotbeusedtocontrolrainentry.Alternately,forlarge
panels,suchasprecastpanelsandwindow-walljointsitbecomespracticaltodesign
thejointsdrainedsystems.
Figure 7: Examples of Perfect Barrier Assemblies
Themostimportantjointisoftenthejointbetweenwindows,doors,curtainwalls
andthewallinwhichtheyareinstalled.Thisjointshouldbedesignedasatwo-
stagedrainedjointwithflashingatthebottomtocollectandrejectwateroutward.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
10
Figure 8: Examples of Perfect Barrier Assemblies
MasonryVeneer,MetalPanel,andEIFSCladdings
Masonryveneer,metalpanelsanddrainedEIFSsystemsareverycommonlyused
drainedassembliesthathavedemonstratedreliableperformanceformanagingrain
water.However,sincetheassembliesaremadeupofmultiplelayersandaresite
constructed,certainelementscanaffecttheperformanceoftheassemblies.
Ithaslongbeenknownthatwaterisabletopenetratethroughmasonryveneersdue
toacombinationofgravity-drivenwaterleakageandcapillaryforces.Thewater
controllayerinadrainedsystemiscalledthedrainageplaneorwaterresistivebarrier(WRB).Itisthelastlayeravailabletoresistfurtherwaterpenetrationintotheassemblyandisintendedtoexcludeallthewatertowhichitisexposed.The
WRBismostcommonlymadeofengineeredbuildingwraps,asphaltimpregnated
buildingpaper,fluidorsheet-appliedmembranes,orwater-resistivesheathingwith
tapedorsealedjoints.Thewaterresistivebarrierneedstobeinstalledwithno
discontinuitiesand/orallseams,joints,andpenetrationsshinglelappedtodrain
liquidwateroutandawayfromtheassembly..
Asignificantamountofforgivenessisbuiltintothesystemduetotheairspace
betweenthebrickandthebackupwallconstruction.Thisairspaceactsacapillary
breakanddrainagegap.Mostoftherainwaterthatpenetratesthroughthecladding
drainsdownthebacksideofthecladdingandoutattheweepholelocationssothe
actualmoistureloadontheWRBisminimalinmostcases.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
11
AirFlowControlAirmovementthroughanenclosureassemblyisdrivenbyairpressuredifferences
betweentheinteriorandtheexterior.Theseairpressuredifferencesarecausedby
acombinationofwind,stackeffect(naturalbuoyancyofair),andmechanical
pressurization.Thecombinedeffectoftheseforcescanbequitesignificantandlead
toalargevolumeofairmovement.Tocontrolairmovementthroughtheassembly,
acontinuousbarriertoairmovementisrequired(theaircontrollayer).The
locationoftheairbarrierintheassemblyisnotstrictlyimportant(thisisnotthe
caseforconvectiveloopsdiscussedlater).Theairbarriercanbeontheinterior,
exterior,atalocationinthemiddle,ormadeupofanentirecompositeassembly.In
orderfortheairbarriertobeeffectiveitmustbecontinuousinthefieldofthewall
aswellasattheconnectionstoothercomponents(suchasatfoundation,roof,and
windowsanddoors).Thelast30yearsofpracticalfieldexperiencewithairbarrier
performancehasresultedintwooutcomes,difficulttoproveinthelab,but
repeatedlydemonstratedinthefield:airbarriersinstalledtotheexteriorofthe
primarysupportstructureandinteriorpartitionsarefareasiertobuildreliablyair
tight,andfully-adheredorclamped(e.g.notloose)membranesaresuperiorto
loose-appliedmembranes.Alltypesofsystemscanwork,butthosetwolessons
resultineitherhigherperformance,lowerriskoffailure,orlowercostforthesame
performancerelativetootherapproaches.
Figure 9: Air barriers on the exterior of the primary framing are preferred for practical reasons, especially in light-framed wall systems.
Theairbarriercanbeasinglematerialoralayerofmaterialsactingtogetherasa
compositetoresisttheimposedairpressureloadswithoutrupturing.Materials,
suchassheetpolyethyleneortapedfoil-orkraft-paperfacings,whichhistorically
wereintroducedasvaporbarriers,havedemonstratedpoorperformanceasanair
barrier(duetotheirinabilitytoresistairpressureloads).Masonrymaterials(such

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
12
asmasonryblock)donotfunctionasairbarriersbecausetheyaretooairporous,
butthickelastomericpaintscanrendermasonryairtightandprecastconcreteis
denseandexceptionallyairtight.Materialssuchasfluid-appliedorsheet
membranesfully-adheredtoasolidsubstrate(exteriorgypsum,masonry,concrete)
havedemonstratedhighlevelsofperformanceinpractice(duetothestructural
natureofthecombinedmembraneandsolidsubstrate).
Itiscriticalthattheairbarrierbecontinuousfromoneassemblytoanother(roofto
wall,walltofoundation,andwindow/doortowall).Iftheairbarrierisnot
continuous,thenleakageofairwilloccur.Thepathofairmovementwilldependon
thedesignoftheassembliesandthelocationofthediscontinuity.Condensation
withintheassemblywilloccurifmoisture-ladenairmovingthroughtheassembly
comesintocontactwithacoldsurface(surfacetemperaturebelowthedewpoint
temperatureoftheair).Theremustbeairmovement(overallairtightness)and
coldsurfacesalongthepathofflowforinterstitialcondensationproblemstooccur.
Figure 10: A mechanically –attached membrane air-water barrier held tightly to the wall with furring strips provides good performance. Nails or screws through the furring are self-sealing, unlike nails
and screws driven through the thin membrane.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
13
ThermalControlAcontinuousandeffectivethermalcontrollayerisrequiredtoprovidegood
thermalcomfort,reducetheriskofcondensation,andreduceoperatingenergy
consumption.
Allmaterialsandlayersinabuildingassemblyhavesomeresistancetoheatflow.
However,materialswithanR-valueofabout2/inchormore(k-valuelessthan0.07
W/m∙K)aredeliberatelyusedinbuildingassembliesfortheirabilitytoretardthe
flowofheat.Thesebuildingproductsarecalledthermalinsulations.Threematerial
categories,polymericfoams,mineralfibre(i.e.,glass,slag,orrockwool),andorganic
fiber(e.g.,cellulose,cotton,polyester,etc.),areusedtoproducealmostallcommon
buildinginsulationproducts(Table1).Insulationsareusuallysolidmaterials,but
radiantbarriersthatcontrolonlyradiationheattransferacrossairspacesarealso
sometimesused,especiallyinglazingsystems(thelow-ecoatingsthat
commonplace).
Insulationproductscanbeproducedinatleastfivecommonphysicalforms:loose,
batt,roll,board,andspray(Table2).Eachformhasadvantagesanddisadvantages,
andsomematerialscanbepurchasedinallfiveforms,andsomeonlyinone.
MaterialCategory
Examples Moisture
Fire VaporPermeance
AirPermeance
Mineralfiber Fiberglass,stone,slag Tolerant
Non-combustible high high
OrganicFiber Cellulose,cotton,wool,straw Sensitive
Combustible high high
Plasticfoam Polystyrene,polyurethane,polyisocyanurate
Tolerant
Combustible Low-medium
low
Mineralfoam Foamglass,pumice,airkrete,aerogel
Tolerant
Non-combustible low low
Table 1: Four material categories, with a range of physical attributes, describe most insulation products used in buildings
Highperformancebuildingenclosuresgenerallyrequirecontinuousthermalcontrol
layersontheexteriorofthestructuretoensurecontinuity.Thislayercanbeboard
orsprayfoamaswellassemi-rigidfiberglassorrockwoolinsulation.Iforganic-fiber
productsareused,theycanonlybeusedinsideoftheenclosureassembly’swater
controllayerortheywillbedamagedin-service.
Locatingallinsulationasacontinuouslayerontheexteriorofthestructure
effectivelyeliminateslow-costfibrousbattandloose-fillinsulationsfroma
designer’spalette.Suchlow-densityfibrousinsulationsarestillimportanttofill

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
14
interiorvoidsandcansupplement(neverreplace)theexteriorinsulationlayer,especiallyforwood-framedassemblies.Toensureallspacesandvoidsinframing
cavitiesarefilledproperly(tocontrolconvectiveloops),sprayorblowninsulationis
preferredwhencavityfillsareappropriate.Wheneverairandvapour-permeable
insulationisaddedtoacavity,extracareisrequiredinthelocationandselectionof
thevapourcontrollayerandthelocationoftheaircontrollayer.
Cellularfoamplasticsareoftenusedwhenairimpermeableand/ormoisture
tolerantmaterialsarerequired.Theyarethemostcommontypeofsemi-rigid
insulation.Productssuchasexpandedpolystyrene(EPS),extrudedpolystyrene
(XPS),andfacedpolyisocyanurate(“polyiso”orPIR)havelongbeenusedbehind
claddingsandoutboardofthewatercontrollayer.Polyisoshouldnotbeusedin
applicationswhereitcanbeimmersedinwaterforlongperiodsoftime:thisisnota
concernforabove-gradewalls,butdoeslimititsusebelowgrade.Extruded
polystyreneisthematerialthathasthehighestresistancetowater,andshouldbe
usedwhenrepeatedorextendedwaterimmersionand/orlong-termhighvapour
pressuredrivesareexpectedinservice.
Form Installation LimitstouseLoose pouredorblown maysettle,easilycompressedBatt frictionfit heldinplacebyfriction,easilycompressedRoll frictionfit/mechanicallyattached asforbatts
Board mechanically,adhesivelyattached resistanttomechanicalpressure
Spray sprayinplace stickstoadjoiningsurfaces,resilient
Table 2: Insulations of can take on a wide range of forms, which may limit how they are used.
Expandedpolystyrene(EPS,sometimescalled“beadboard”)isverysimilarto
extrudedpolystyrene(XPS)especiallyathigherdensities,althoughithasalower
thermalresistance,andabsorbsmorewater.Widelyusedoutsidethewatercontrol
layerinabove-gradewallassemblies,itcanalsobeusedveryeffectivelybelow
gradeandhaslongbeenacceptedintheCanadianbuildingcodeforthisuse.
Experiencehasshownthanitcannotbeusedinprotectedmembraneroofs(i.e.,
abovealowsloperoofmembrane)withoutabsorbingtoomuchwater.
Medium-densityclosed-cellspraypolyurethane(ccSPF)isanincreasinglycommon
productthatisspray-appliedtoappropriatesubstrates.Ithasevenbeenusedunder
slabsbysprayingitdirectlytotheearth.Thisproductcanactaspartoftherain,air,
vapour,andheatflowcontrollayersofanassemblyifcareistakentomaintain

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
15
continuityattransitionsandthepotentialcracksduetomovement(duringservice)
orcoolingshrinkage(duringinitialcuring).
Insulationproductsareoftenselectednotjustonthebasisoftheirfireandmoisture
resistance,butalsobecausetheymayassist,ortaketheprimaryrole,incontrolling
airandvapourflow.
Mostrigidfoamboardproducts,especiallythosewithfacers(e.g.thealuminum
faceronpolyisointendedforwalls,facedEPSboard),canactaspartofthewater
and/orvapour,and/orairflowcontrolsolongasotherrequirements,suchas
structuralsupport,durability,andcontinuityatjoints,aremet.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
16
Material Form UsesVapor
PermeanceAir
Permeance
Fiberglass loose packedintospaces,laidonceilings high high
batt
frictionfitbetweencloselyspacedframing,laidonceilings high high
spray
partiallyfillingirregularlyshapedvolumes high high
semi-rigidboard ductinsulation high high
Stonewool loose
high high
batts asforFG high high
spray
partiallyfillingirregularlyshapedvolumes high high
semi-rigidboard
cavityinsulaton,coveringinteriorsurface,roofs high high
Polyisocyanurate(PIC) board,foil-faced
sheathing,coverssurfaces,cavitywalls,insideroofs,ontopofroof low low
glassorpaper-faced med low
ExtrudedPolystyrene(XPS) board
sheathing,coverssurfaces,cavitywalls,insideroofs,ontopofroof,underslab,wetzones low-med low
faced low low
ExpandedPolystyrene(EPS) board
sheathing,coverssurfaces,cavitywalls,insideroofs,ontopofroof med low
faced low lowCellulose loose packedintospaces,laidonceilings high high
sprayorpacked
partiallyfillingirregularlyshapedvolumes high med
Fiberboard board drysheathingroofingfloors high med
Straw balesself-supportingwhendense,andsupportscladding high med
open-cellspraypolyurethane(ocSPF) spray
partiallyfillingirregularlyshapedvolumes,adheredtoundersidepouredontoceilings high low
closed-cellspraypolyurethane(ccSPF) spray AsocSPF,butmorewaterresistant med low
Table 3: Different Insulation Products, Their Uses, and Air-Vapor Permeance Properties

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
17
Figure 11: Extruded Polystyrene (XPS) insulated used as continuous insulated sheathing for a
house. Note the red tape used to create a continuous water-air control layer
Semi-rigidfibrousinsulationboardscanonlyactasheatflowcontrollayers,
althoughtheycanprovideadrainagepath(i.e.,theyprovideadrainagegapinthe
largeairvoidsbetweenfibers)forrainwater,eitherbydesignorinactuality1.In
manyapplications,air-andvapour-permeablemineral-fibresemi-rigidinsulations
(MFI),suchasfiberglassandrockwoolcanbeusedasexteriorcontinuousinsulation
andhaveaverylongtrackrecordofgoodperformance.Toperforminunsupported
applications,fiberglassproductsgenerallyrequireaminimumdensityintherange
of2.5-4poundspercubicfoot(40-70kg/m3),whereasrockwoolshouldhavea
densityofoverabout3pcf(50kg/m3).SuchMFIproductstendtobelessexpensive,
andarealwaysmorefireresistant,thanfoamedplastics.
1 Semi-rigid mineral fiber insulation (MFI), particularly rockwool, provides a drainage path in the fibers of the outer 1/8” – ¼” (3-6 mm) without materially affecting its thermal resistance. MFI have been used in drained masonry cavity walls with great success for over 50 years in most parts of the world and have been widely deployed as below-grade drainage layers with some insulating value.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
18
Figure 12: Closed-cell spray polyurethane foam (ccSPF) has been used for decades as a combined
thermal insulation, air barrier material, drainage plane, and vapor control product. Note the extensive use of transition membranes at penetrations.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
19
Figure 13: Rockwool semi-rigid board insulation used as continuous exterior insulation in an
institutional building over a fluid-applied asphaltic air-water barrier over CMU

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
20
Layer R-value RSI(m2K/W)Emptystudspace0.75”-6”(20-140mm) 0.85–1.4 0.15–0.25m2K/W
Emptyspace(3.5”/90mm) 1 0.18m2K/W
Emptyspace(5.5”/140mm) 1 0.18m2K/W
CMU8”/200mmnormalweight 2.0 0.35m2K/W
Insulationmaterial R-value/inch k(W/mK)
Batt(mineralfiber) 3.4-4.3 0.032-0.042
Extrudedpolystyrene(XPS) 5.0 0.029
Polyisocyanurate(PIC) 5.5-6.0 0.024-0.027
Expandedpolystyrene(EPS) 3.6-4.4 0.033-0.040
Semi-rigidmineralfiber(MFI) 3.6-4.4 0.033-0.040
Sprayfiberglass 3.8-4.3 0.034-0.040
Closed-cellsprayfoam(2pcf)ccSPF 5.8-6.2 0.023-0.025
Open-cellsprayfoam(0.5pcf)ocSPF 3.6 0.040
Aerogel 10 0.015
VacuumInsulatedPanels(VIP) 18-30 0.005-0.008
Table 4: Representative Insulation Material Properties and their R-values
RadiantBarriersandLow-ECoatingsSomethermalcontrolproductsaredesignedtoprimarilycontrolradiationheat
transfer.Radiantbarriersheetscanbeprovidedasasheet,beadheredtosheathing
andinsulationproducts,orbepartofarooforsheathingmembrane.Transparent
metalliccoatingsarecanbeappliedtoanyofthesurfacesofglazing.
Inallcasestheefficacyofradiationcontrolcanbemeasuredintheinfra-redregion
byemissivity.Lowemissivity,low-e,surfacesneitheremitnorabsorbenergy
effectivelyintheinfra-redtemperature(from-40°F/-40°Ctoover200°F/90°C).
Normalbuildingmaterialshaveanemissivityofaround0.90,or90%.Low-e
surfaces,almostalwaysbasedonsomemetalliccompound,haveemissivitiesofwell
below0.20,andthebestcoatingshavevaluesof0.03orevenlower.Alow-e
surfacewillreducetheradiationthattransfersacrossanairspaceregardlessof
whichsideoftheairspaceitisapplied.Applyingalow-ecoatingtobothsideswill
haveonlyaverysmalladditionalbenefit.Inallcases,aradiantbarriermusthavean
airspaceassociatedwithittohaveanybenefittothermalcontrol.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
21
Themostpowerfulapplicationofradiationcontrolisintheformoftransparent
coatingsonglass,theubiquitouslow-ecoating.Thecoatingisusuallyappliedtoone
ofthesurfacesfacingasealedairgapinaninsulatedglazingunit(IGU).Inthis
location,thesurfaceisprotectedfromcorrosion,condensation,dust,anddirt,and
thereforetheemissivityofthecoatingisprotectedfromchange.Low-ecoatings
increasetheapparentthermalresistanceofa½”(13mm)airgapinasealedIGUby
fromR1toR2.Whenthegapisfilledwithalessconductivegassuchasargon,the
benefitisevenlarger,boostingtheR-valueofadouble-glazedIGUfromaroundR2
toaroundR4.Somenewerglazingsystemsareaddingalow-ecoatingtotheinside
faceoftheglassaswell:thisimprovesR-valueandoccupantradiantcomfortbut
doesresultincolderglasssurfacetemperatures.
Low-emissivitycoatingsorfilmsareoftenappliedtocarriersheets,insulation
boards,orsheathing.Thesecoatingmayinitiallyhaveemissivitiesaslowas0.05,
butthevaluetendstoriseinserviceasdust,corrosion,andagingincreasesthe
emissivity.Somelow-epaintsandcoatingsmayhaveemissivitiesashighas0.30:
thebenefitofthesecoatingsareprettysmall.
Asradiationemissionincreaseswiththefourpowerofabsolutetemperature,
radiationismoreimportantathightemperaturesthanatcoldtemperatures.Hence,
radiantbarriers/low-ecoatingsareslightlymoreimportantathightemperatures
thanlowtemperatures.Asheatiscarriedbyrisingair,heatflowupwardacrossa
horizontalairspaceisdominatedbyconvection,whereasheatflowdownwardis
dominatedbyradiation:theimpactoflow-ecoatingswillbeveryimportantinthe
lattercaseandnottheformer.Allofthesevariedfactorsmeansthereisnoone
correctapparentthermalresistanceforanairspacewithlow-ecoating,oraradiant
barrierproductexposedtoanairspace.
ThermalBridging
Whenheatflowsatamuchhigherratethroughonepartofanassemblythan
another,thetermthermalbridgeisusedtoreflectthefactthattheheathasbridgedover/aroundthethermalinsulation.Thermalbridgesbecomeimportantwhen:
• theycausecoldspotswithinanassemblythatmightcauseperformance(e.g.,
surfacecondensation),durabilityorcomfortproblems.Thisisparticularily
importantinbuildingswithhigherinteriorhumidityduringwinter.
• theyareeitherlargeenoughorintenseenough(highlyconductive)thatthey
affectthetotalheatlossthroughtheenclosure.Thiseffecthasbecomerather

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
22
significantashigherR-valuesintherestoftheenclosureincreaseinhigh
performancebuildings.
Thermalbridging,especiallybysteelframing,orattheintersectionofwallcorners
withroofsandfloors,projectingstructuralelementslikecantilveredbalconiesand
perimeterconcreteslabsoftencausescoldinteriorsurfacetemperaturesandthus
condensationaswellasunwantedenergylossandgain.Attachedfiguresprovidea
schematicofhowtemperaturesatstudsandnearcornerscancauselowsurface
temperatures.Inthecaseofthesteelframingshown,anexteriortemperatureof–
10ºCcanresultininteriorsurfacetemperaturesof5to10ºCatstuds,andbelow
freezingatfloortowallcorners.
Allenclosuresshouldbedesignedtoavoidalargenumberandextremethermal
bridges.Themosteffectivesolution,exteriorcontinuousinsulation(e.g.,insulating
wallsheathingssuchassemi-rigidstonewoolandrigidfoam),arequiteusefulfor
“blunting”thermalbridgesandalsoofferenergysavingbenefits,andimprove
resistancetoexfiltrationcondensation.Claddingattachmentsandwindowframes
requirethermalbreaks,whereasmoststructuralframingsuchassteelstudsand
beams,concretewallsandframes,andwoodshouldbecoveredwithinsulation.For
conditionssuchasbalconies,andbrickshelfanglesandcanopyprojections,either
structuralthermalbreaksshouldbeusedortheareaofhighlyconductivematerials
penetratingtheinsulationshouldbestrictlylimited.
High-PerformanceEnclosuresThekeytohighperformanceisthatthefourcontrollayersbeprovidedandthat
theybeascontinuousandunbrokenaspossibleacrosspenetrationsandtransitions.
Thedesignandconstructionteammustbeabletoidentifywhichmaterials/sub-
assembliesareprovidingeachofthefourcontrolfunctions.Oncethecontrollayers
ineachenclosurecomponent(e.g.,window,roof,wall)areidentifiedorspecified,
continuityanalysisisconductedbydrawingalineforeachcontrollayeraroundthe
entireenclosurethroughallpenetrationsandtransitions.Anyinterruptioninaline
isadefectthatmustberectified.
Figure14providesanexampleofacommontypeofbuildingenclosurefor
commercialandinstitutionalconstruction:asteel-framedprimarysuperstructure,
withlight-gaugesteelstudinfill,andabrickveneercladding.High-performance
aspectsinclude

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
23
• acontinuousair-water-vaporcontrollayerappliedtotheexterioroftheprimarystructureandenclosuresupport(toensureitiseasyandpracticalto
achievecontinuity),and
• acontinuouslayerofthermalcontrolontheexterioroftheair-watercontrol
layer,uninterruptedbythermalbridges(especiallythesteelstructure).The
insulationwithintheframingisoptional,andoftennotworththeriskof
moistureproblemsforthesmallperformancegainprovided.
Figure 14: Steel-Framed, steel-stud infill enclosure with brick cladding
Differentcladdings,insulations,andcontrollayermaterialchoicesareminor
relativetotherobusttechnicalandpracticaladvantagesofthelayering.Ofcourse,
differentsolutionswillappeardifferent,e.g.,woodframingislessconcernedwith
thermalbridging,andconcretemasonryinfillwillalwayslocateallofitsthermal
controlontheexterior.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
24
CommonWood-FramedAssembliesLoad-bearingwoodframedenclosuresarewidelyusedforlow-risehousing,and
increasinglybeappliedtobuildingsof4storeysandmore.High-risesteel,concrete
frameorevenheavytimberbuildingsof6to30storieshaveorarebeingbuiltwith
infill,non-loadbearingwoodframewalls,oftenprefabricatedpanelshungfromthe
framemuchlikeprecastconcreteorcurtainwallassemblies.
Becausewoodframingisthermallyfarsuperiortosteelframingorconcreteblocks,
itiscommontofillthestudspacewithinsulation.Forhigh-performanceenclosures,
theairandwatercontrollayersshouldinmostcasesbelocatedoutboardofthe
woodframingandsheathing—thisprotectsthemoisture-sensitivewoodandhas
theverysignificantpracticalbenefitofmakingcontinuityatpartitionwalls,floors,
andservicedistributionpenetrationsmucheasiertoachieve.
Acommonandflexibleformofahigh-performancewood-framedenclosure:thecontrollayersareallidentifiedandcontinuous,allmaterialsarewidelyavailable,andconstructionissimple.Increasingthethermalperformanceoftheassemblytomeetdifferentclimatechallengesandenergyperformancetargetsisachievedsimplybychangingthethicknessoftheexteriorinsulation.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
25
CommonCommercialAssembliesThecontrollayerscanbeidentifiedinallfunctionalbuildingenclosures:thequality
ofthecontrolmaybemarginal,orthecontrolmaybeprovidedbyacollectionof
materials,butitmustbepresentortheenclosureisnotfunctional.Thefigurebelow
providesexamplesofnumeroussystemsalongwiththeidentifiedcontrollayers.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
26
HistoricandAlternateConstructionAlthoughcontrollayersarecommonlydefinedandevenlabeledassuchinmodern
enclosuredesigns,theyareoftenmoredifficulttoidentifyinexistingandhistoric
buildingsandsomealternatemodernapproachestobuilding.Olderbuildingsused
masonryastheprimarywatercontrollayers(i.e.,thestorageormassapproachto
raincontrol)aswellasthesupportfunction(Figure15).Airflowcontrolwasoften
alayerofinteriorplasterorexteriorstucco,althoughsufficientlythickand
impermeablemasonrycouldfulfillthatrole.
Amasonrywallretrofitforimprovedthermalcontroloftenusessprayfoamasboth
athermalcontrollayerandaircontrol,andrequiresanewinteriorfinish/fire
controllayerintheformofgypsumboardonsteelstuds(Figure16).Alternatively,a
higherperformancelower-moisture-riskretrofitthatchangestheexterior
appearancecoulduseEIFSontheexterior,andemptysteelstudsontheinterior
(Figure17).Labelingthecontrollayersactsasadesignqualitycontroltool,aswell
asameansofeffectivecommunicationinconstructiondocumentation.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
27
Figure 15: Historic solid masonry wall showing control layers
Figure 16: Interior retrofit of solid masonry wall showing control layers

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
28
Figure 17: Exterior retrofit of solid masonry wall showing control layers
Oneofthemorecommonmodernalternativesystemsthatisroutinelyandsuccessfullyusedinmodern,higherperformancebuildingsisarchitecturalprecast.Theuseofhighqualityconcreteallowsthesupportandprimaryairandwatercontrolfunctionstobelocatedontheexterior,andstillprovidegoodlong-termdurability.Fordurablehighperformancethechallengeremainstoensurethermalcontrol,avoidingcondensation,andproperjointdetailing.Anexampleofasuccessfuldesignofaprecastconcreteenclosuresystemisshowninthefigurebelow.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly
29
Figure 18: Examples of Architectural Precast
Numerousothersystemsexistthatmaybemoredifficulttoanalyze.InsulatedConcreteForms(ICF),StructuralInsulatedPanelSystems(SIPS),InsulatedMetalPanels(IMP),etc.However,eachofthesesystemsprovidessome,orallinthecaseofIMPs,ofthesupport,controlandfinishfunctions.
1 ReferencesStraube, J.F. and Burnett, E.F.P., "Rain Control and Design Strategies". J. Of
Thermal Insulation and Building Envelopes, July 1999, pp. 41-56.
Straube, J.F., High Performance Enclosures: Design Guide for Institutional
Commercial and Industrial Buildings in Cold Climates. Building Science Press,
Somerville,Massachusetts,2012. 320 pp.