BS31013 Biomembranes Handbook 2015-2016_docx

13
 SCHOOL OF LIFE SCIENCES Li fe and Biomedical Sciences Education Module Handbook BS31013 Biomembranes 2015/16 Module Manager: Prof. John A. Peters  j .a.p et er s @du n d ee.ac .u k Teaching Support: [email protected] This handbook belongs to: _____________________________ Email: ______________________________________________

Transcript of BS31013 Biomembranes Handbook 2015-2016_docx

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 1/13

 

SCHOOL OF LIFE SCIENCES

Life and Biomedical SciencesEducation

Module Handbook

BS31013 Biomembranes 2015/16

Module Manager: Prof. John A. Peters [email protected] 

Teaching Support: [email protected]

This handbook belongs to: _____________________________

Email: ______________________________________________

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 2/13

BS31013 Biomembranes Module Handbook 2015/16

TABLE OF CONTENTSTable of Contents ............................................................................................. 1 

Module teaching staff ....................................................................................... 1 

 Aims .......................................................................................................... 1 

Intended learning outcomes (ILOs) ........................................................... 1 

Learning resources & coursework.................................................................... 2 

Workshops ................................................................................................ 2 

Essay ........................................................................................................ 2 

Lecture notes ............................................................................................ 2 

Intended learning outcomes (ILOs) ........................................................... 2 

Personal private study .............................................................................. 2 

Compulsory classes and assessed elements .................................................. 3 

Consequences of poor attendance or failure to submit coursework ......... 3 

Penalties for late submission of course work ............................................ 3 

Module assessment scheme ........................................................................... 3 

Criteria for passing this module ................................................................ 4 

Format of the degree examination ............................................................ 4 

Recommended reading .................................................................................... 4 

Core texts ................................................................................................. 4 

 Additional Reading .................................................................................... 4 

Schedules for workshops etc* .......................................................................... 6 

Membrane Transport - Workshop 1 .............................................................. 7 

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 3/13

BS31013 Biomembranes Module Handbook 2015/16

1

MODULE TEACHING STAFF

Module manager:Prof. John A. Peters  [email protected] 

Other teaching staff:Dr. Sheriar Hormuzdi  [email protected] Prof. Hari Hundal  [email protected] Prof. Jerry Lambert  [email protected] 

Teaching Support: [email protected]

 Aims  To provide the student with an understanding of the regulation of

normal membrane function and the physiological principles underlyingthis 

  To show how our current understanding of membrane function hasbeen arrived at, using examples from the current literature 

  To provide an understanding of some basic cellular and molecularphysiological and pharmacological techniques and their application toinvestigate membrane function 

  To enable the acquisition of skills, attitudes and techniques useful inthe pursuit of modern biology 

Intended learning outcomes (ILOs)

 After successful completion of this module students should be able todemonstrate the following items of knowledge and understanding.

Knowledge & understanding

  Description of the structure and function of cell membranes

  Explain characteristics such as: specificity of membrane transportsystems; generation of electrochemical gradients and their utilization;electrical events e.g. action and synaptic potentials

  Identify processes that allow, or regulate, the movement of substancesacross cell membranes and between cells

  Discriminate between ion channel processes and those ofsymport/antiport, active transport, passive diffusion and diffusion

  Understand how ion distributions are achieved across membranes andtheir implications for the resting membrane potential

  Describe the origin and the physiological impact of the ‘cableproperties’ of excitable cells

  Give the evidence that provided current models for excitablemembrane function

  Describe the modulation of neurotransmitter release and action

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 4/13

BS31013 Biomembranes Module Handbook 2015/16

2

SkillsStudents will be expected to perform complex data analysis and problemsolve.

Other attributes

Students will develop self-reliance and reinforce their independent study skills.

LEARNING RESOURCES & COURSEWORK

Workshops

There is one workshop in this module. It is intended (amongst other things) tofacilitate your understanding of the relevant lecture material. The workshop isspecifically designed to ensure that you gain understanding through activeparticipation, so please consult the workshop schedule in advance of the

session and arrive fully prepared to participate.

Essay

You are required to write one essay in this in this module. The essay titles willbe published with detailed instructions for its completion as an announcementon MY DUNDEE in week 1. The subject of the essay will be related to thelecture content. A Powerpoint file giving a ‘Guide to Good Essay Writing’ willbe posted in the Study Materials content area of the module to assist you. Theessay will account for 15% of the module assessment.

Lecture notes

The lectures for this module are available in outline as PowerPoint files,accessible via the Lectures content area of this module. You may find ithelpful to download and print these files (3 slides to a page) in advance ofattending the lecture so that you can make additional notes on the printout.This is a most effective way to ensure that you understand and retain thelecture material. DO NOT rely on these files as your sole source ofinformation!

Intended learning outcomes (ILOs)

ILOs for the lectures are included in the outline Powerpoint files (see above)which can be found in the Lectures content area of the module on MYDUNDEE. ILOs for practical classes and other elements of the courseworkare included in the schedules. You should make use of them to identify thekey elements that you are expected to understand and the skills that you areexpected to acquire.

Personal private study

BS31013 is a 15 credit module which corresponds to 150 hours of studenteffort. Since there are ~30 hours of contact time (lectures, workshops, and

examinations), this leaves you with roughly 120 hours for preparation,completion of formative and summative assessments and personal private

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 5/13

BS31013 Biomembranes Module Handbook 2015/16

3

study (which should include study of the relevant sections of your textbooksand any other recommended reading).

COMPULSORY CLASSES AND ASSESSED ELEMENTSPlease note that, for this module, attendance at all scheduled classes andsubmission of all coursework exercises listed in the module assessmentscheme is COMPULSORY.

These correspond to:

1. THE WORKSHOP

2. ALL COURSEWORK SUBMISSIONS(Sequence numbers 002 to 003 in the table below)

 All coursework must be handed in to the Level 3 black box in theCarnelley Building on City Campus, or submitted via ‘Turnitin’ asinstructed. 

Consequences of poor attendance or failure to submit coursework

More than one unexplained or uncertified absence from any of the compulsoryclasses and/or non-submission of coursework will result in you beingsummoned for interview to identify the underlying reasons. Thereafter, anyfurther unexplained or uncertified absences may result in your Duly Performed(DP) status being withdrawn. This would mean that you would not be allowedto sit the Degree examination in the December diet OR the resit diet in Augustand therefore could not pass the module.

Penalties for late submission of course work

 Any unauthorised late submission may incur penalties of one numerical pointper day for up to a maximum of 5 days following the published deadline. Notethat Saturday and Sunday will each count as one of these 5 days if they fall inthe 5 days following the deadline. For example, if your assignment wassubmitted 5 days late and was rated as an A5 grade, then this would bedowngraded to C2 for late submission.

 All submissions which are more than a working week late will be marked forfeedback purposes but you will be awarded a BF grade towards the overallmodule mark for the associated coursework. Non-submission will be gradedas AB. Requests for extensions to deadlines must be made to the modulemanager.

MODULE ASSESSMENT SCHEME

 Assessed Element No. %

WeightDeadline

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 6/13

BS31013 Biomembranes Module Handbook 2015/16

4

Degree examination 001 80December exam diettimetable

Workshop 002 5 12 noon - Fri 16th Oct

Essay 003 15 12 noon - Fri 23th Oct

Criteria for passing th is moduleIn order to pass this module, you must fulfil the following criteria:

1. You must achieve a minimum of a D3 grade* for the overall modulewhich is calculated as a weighted average of all the assessed elementsin the table above.

*Note that progression to the next level in your chosen degree programmemay require you to achieve a higher grade average than D3 at first sittingacross your core modules. Please see the official degree regulations for youryear of entry in the Information for Life Sciences student’s module on MyDundee.

Further explanation of the criteria for passing Life Sciences modules and ofthe regulations governing resit or reassessment in the event of failure can befound in the Life Sciences Study Guide.

Format of the degree examination

The degree exam at the end of the semester takes the form of a 2 hourwritten exam using computer submission of answers. The exam will containtwo sections; one section will contain four short answer questions of which

you must answer two, and the second will consist of thirty MCQs, all of whichmust be attempted. MCQs will typically be in the format of identifying one validoption from a list of five. A period of one hour will be allocated to each of theabove sections.

RECOMMENDED READINGCore texts are considered to be absolutely essential and can be purchasedonline, or at the campus bookshop, during Welcome week. You may also beable to obtain used copies from previous students. These may be advertised

on noticeboards in the Student’s Union, or elsewhere on campus.

Core texts

Medical Physiology (Updated 2nd. international ed.) Boron WF, Boulpaep EL.(2012). Elsevier Saunders ISBN-978-0-8089-2449-4.

 Addit ional Reading

From Neuron to Brain (5th. ed.) Nicholls JG, Martin RA, Fuchs PA, Brown DA,Diamond ME, Weisblat DA. (2012). Sinauer ISBN 978-0-87893-609-0.

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 7/13

BS31013 Biomembranes Module Handbook 2015/16

5

Neuroscience: Exploring the Brain (4th. ed.) Bear MF, Connors BW, ParadisoMA. (2016). Wolters Kluwer. ISBN 978-1-4511-0954-2.

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 8/13

BS31013 Module Handbook 2015/16

6

SCHEDULES FOR WORKSHOPS ETC*The following section includes the schedules of the workshops, tutorials andstudy exercises associated with this module.

Please ensure that you read these schedules and complete any pre-classexercises BEFORE attending the class and/or completing any associatedworksheet. You should bring the schedule to the class along with anycompleted worksheets (if required). Spare copies of the schedule WILL NOTbe provided in the class.

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 9/13

 

7

Membrane Transport - Workshop 1

This workshop will take the form of a manual exercise that

demonstrates, in a simple manner, several key concepts in membranetransport. 

A ‘Hands on’ Approach to Biomembrane Transport 

Introduction 

In this workshop, we will  investigate the basic principles of  biomembrane transport 

using a  simple manual model  system.  In  this  system,  trays  represent  the aqueous 

compartments  (ECF and  ICF) on  the  two sides of   the membrane and  the coloured 

counters represent solute molecules that a “transporter” (a member of  your group) 

transfers  by  hand‐to‐hand  movements  across  the  (virtual)  membrane  from  one 

compartment (tray A) to the other (tray B). 

The team member designated as the “transporter” moves coloured counters from one 

tray to another, with eyes closed, over a timed period of  10 seconds. This experiment 

can be repeated with different numbers (concentration) and colour (different solute) 

combinations of   counters, allowing  investigation of   factors  such as  saturation and 

competition (between solutes). 

The following

 diagram

 shows

 a simple

 mechanism

 of 

 uniport:

‐can

 you

 identify

 the

 

steps in the diagram within your system models? 

Consider the following questions: 

1.  What  factors  limit  the  transport  rate? What  happens when  you  add more 

solute (S) to a system working at full capacity? 

2.  What  is  the  rate  constant  for  an  individual  transporter  (solute moved  per 

second)? 

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 10/13

 

8

3.  How might you model in increase in the maximum rate of  transport (Vmax)? 

4.  Would  a  transport event  occur every  time  a  solute was  “bound”  from  the 

starting tray? (i.e. is the transporter 100% efficient?). 

Theoretical background 

In the simple situation of  uniport described above, the rate (V  ) at which a solute (S) is 

transported across the membrane is a function of  solute concentration in the ECF ([S ]). 

The  process  overall  follows  first  order  kinetics  and  can  be  described  in  terms  of  

Michaelis‐Menton kinetics as written below: 

 

 

 

Where V    is rate of  transport, V  max   is maximal rate of  transport at saturating solute 

concentration, [S ] is solute concentration and K m  is the Michaelis constant at which 

the rate of  transport is half  maximal. Expressed as above, it is easy to see that V    is half  

maximal when [S  ] equals K m . The equation may be alternatively stated as: 

 

 

Graphically, 

plot 

of  

(ordinate, 

y‐

axis) 

versus 

(abscissa, 

x‐

axis), 

both 

on 

linear 

axes, 

yields a semi‐rectangular hyperbola, as illustrated below (labelled facilitated diffusion; 

aka facilitative transport): 

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 11/13

 

9

Note that in contrast to simple diffusion in which V   is a simply directly proportional to 

S , facilitated is characterised by saturation at concentrations of  S that greatly exceed 

K m .  Saturation  occurs when  all uniporters  (in  this  case) within  the population  are 

occupied by solute. The translocation step then becomes rate limiting. 

Using appropriate equation  fitting  software,  it  is possible  to calculate K m  and V  max  

from the plot as shown above. An alternative is to perform a simple transformation 

that results in a linear relationship from which these parameters may be estimated. 

One of  several is the Eadie‐Hoftsee Plot which in which the velocity of  solute transport 

(V  ) is plotted against V   divided by [S ] (i.e. (V  /[S ]) as shown below: 

Note,  this  results  from  a  simple  rearrangement  of   the  equations  written  above, 

namely: 

      

which has the form of: 

 

The workshop 

Part  1 

1.  Please divide into six groups (three to four students per group). 

2.  Within  each  group  allocate  a  ‘transporter’,  a  ‘timer’  and  a  ‘feeder’.  The 

‘transporter’  translocates solute molecules  from plate A  to plate B  ‐ rapidly 

(but at as steady a rate as possible) within a set time of  10 seconds without 

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 12/13

 

10

visual guidance. Pass the solute from left to right hand (or  vice versa) during 

this exercise and do not have more than one solute in your hands at the same 

time.  The  ‘timer’  starts  and  finishes  the  translocation  period.  The  ‘feeder’ 

replenishes the plate from which solute molecules are being removed on a one 

per one

 basis

 (why

 do

 you

 think

 this

 is

 necessary

 from

 examination

 of 

 the

 

equations above?). Both  ‘feeder’ and  ‘transporter should wear gloves  if  you 

wish to consume the solute in a hygienic manner at the end of  the workshop! 

3.  The  feeder allocates  solute molecules  to plate A  in  a  randomly distributed 

fashion and replenishes as necessary. At  this stage  the colour  (i.e. chemical 

structure)  of   the  solute  can  be  one  of   any  of   those  provided.  Use 

concentrations (S ) of  1, 2, 5, 10, 20 and 40 solute molecules for each period of  

transport. 

4.  For each concentration, record the number of  solute molecules transported 

for each

 time

 period.

 

5.  All groups attending on one day should collate  their data  in an Excel sheet 

(during  the workshop)  to determine  the mean  rate of   transport  (in units of  

solutes transported per second) for each concentration of  solute. 

6.  Following the workshop, construct plots of  transport rate (V  ) versus substrate 

concentration  (S )  using  graphics  packages  such  as  found within  Excel.  This 

should be performed using the mean data obtained by all groups on one day 

(i.e.  the Monday, Tuesday  etc .  sheets as posted  in  the  Excel  file  and  the 

Summary data sheet for all groups which is also posted. 

Part  

1.  Please remain within groups. 

2.  Chose one colour that represents solute X and one that represents solute Y. 

Solute X  and  Y  compete  for  transport  via  a  common  transporter  (i.e.  their 

binding is mutually exclusive). 

3.  Place twenty molecules of  solute X and an equal number of  solute Y on plate 

A. 

4.  Perform a period of  transport of  20 seconds, replenishing as required with the 

appropriate solute.

 

5.  All groups should collate their data in an Excel sheet (during the workshop) to 

determine the mean rate of  transport (in units of  solutes per second) of  solute 

X and solute Y. 

6.  Following the workshop, comment upon the effect of  solute X upon the rate 

of  transport of  solute Y, or vice versa. 

Report 

As  hard  copy,  submit  a  report  by  the  specified  date  (i.e.  Friday  of   week  5,  17th. 

October) that

 includes

 all

 of 

 the

 following:

 

7/24/2019 BS31013 Biomembranes Handbook 2015-2016_docx

http://slidepdf.com/reader/full/bs31013-biomembranes-handbook-2015-2016docx 13/13

 

11

1.  Plots of  the relationship between solute concentration and transport rate as 

specified  in  part  1,  including  your  approximate  estimate  of   K m   and  V  max

obtained from examination of your plots. It is not required that you include 

error bars. Please include tables of  the data from which the plots are derived. 

(40 %)

 

2.  An Eadie‐Hoftsee plot (see above) to determine K m  and V  max  with improved 

accuracy using the idealised data provided. (20%). State the values of  K m  and 

V  max so obtained. 

3.  In no more than two sentences, a description of  how you would anticipate 

solute X  to  influence  the K m   for  solute  Y  given  that  they  are present at  a 

submaximal concentration that is the same for both and that they have equal 

affinity for the transporter. (10%) 

4.  A calculation of  the K m  for a substrate given the following information: 

[S ] = 20

 µM

 

V   = 2500 s‐1 

V  max  = 10000 s‐1 

(15%) 

5.  A calculation of  the V  max   for a substrate given the following information: 

[S ] = 50 µM 

V   = 5000

 s‐1 

K m  = 100 µM 

(15%)