BS EN 10088-1

25
Licensed Copy: lbocvzr lbocvzr, March 24, 2002, Uncontrolled Copy, (c) BSI

Transcript of BS EN 10088-1

Page 1: BS EN 10088-1

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 2: BS EN 10088-1

BRITISH STANDARD BS EN10088-1:1995

Stainless Steels —

Part 1: List of stainless steels

The European Standard EN 10088-1:1995 has the status of aBritish Standard

ICS 77.140.20

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 3: BS EN 10088-1

BS EN 10088-1:1995

This British Standard, having been prepared under the direction of the Engineering Sector Board, was published under the authority of the Standards Board and comes into effect on15 November 1995

© BSI 10-1998

The following BSI references relate to the work on this standard:Committee reference ISE/31Draft for comment 93/305485 DC

ISBN 0 580 24657 4

Committees responsible for this British Standard

The preparation of this British Standard was entrusted to Technical Committee ISE/31, Wrought steels, upon which the following bodies were represented:

British Chain Manufacturers’ AssociationBritish Engineers Cutting Tools AssociationBritish Forging Industry AssociationBritish Industrial Fasteners FederationBritish Iron and Steel Producers’ AssociationBritish Stainless Steel AssociationDepartment of Trade and Industry (National Physical Laboratory)Lloyd’s Register of ShippingMinistry of DefenceNational Association of Steel StockholdersRoad Vehicle Spring SocietySociety of Motor Manufacturers and Traders LimitedSpring Research and Manufacturers’ Association

Amendments issued since publication

Amd. No. Date Comments

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 4: BS EN 10088-1

BS EN 10088-1:1995

© BSI 10-1998 i

Contents

PageCommittees responsible Inside front coverNational foreword ii

Foreword 2Text of EN 10088-1 3

List of references Inside back cover

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 5: BS EN 10088-1

BS EN 10088-1:1995

ii © BSI 10-1998

National foreword

This Part of BS EN 10088 has been prepared by Technical Committee ISE/31 and is the English language version of EN 10088-1 Stainless steels — Part 1: List of stainless steels published by the European Committee for Standardization (CEN).Together with BS EN 10088-2 and BS EN 10088-3, this Part of BS EN 10088 partially supersedes BS 970-1:1991, which has been amended.This Part of BS EN 10088 should be used in preference to BS 970-1 whenever applicable.Work is continuing in Europe to prepare standards covering boron steels and surface quality.

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Cross-reference

Publication referred to Corresponding British Standard

EN 10079:1992 BS EN 10079:1993 Definition of steel products

Summary of pagesThis document comprises a front cover, an inside front cover, pages i and ii,the EN title page, pages 2 to 18, an inside back cover and a back cover.This standard has been updated (see copyright date) and may have had amendments incorporated. This will be indicated in the amendment table on the inside front cover.

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 6: BS EN 10088-1

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

EN 10088-1

April 1995

ICS 77.140.20

Descriptors: Stainless steels, austenitic steels, ferritic steels, martensitic steels, lists, designation, chemical composition, grades, quality, rolled products, physical properties, data

English version

Stainless steels — Part 1: List of stainless steels

Aciers inoxydables — Partie 1: Liste des aciers inoxydables

Nichtrostende Stähle — Teil 1: Verzeichnis der nichtrostenden Stähle

This European Standard was approved by CEN on 1995-03-03. CEN membersare bound to comply with the CEN/CENELEC Internal Regulations whichstipulate the conditions for giving this European Standard the status of anational standard without any alteration.Up-to-date lists and bibliographical references concerning such nationalstandards may be obtained on application to the Central Secretariat or to anyCEN member.This European Standard exists in three official versions (English, French,German). A version in any other language made by translation under theresponsibility of a CEN member in to its own language and notified to theCentral Secretariat has the same status as the official versions.CEN members are the national standards bodies of Austria, Belgium,Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy,Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland andUnited Kingdom.

CENEuropean Committee for Standardization

Comité Européen de NormalisationEuropäisches Komitee für Normung

Central Secretariat: rue de Stassart 36, B-1050 Brussels

© 1995 All rights of reproduction and communication in any form and by any means reserved in all countries to CEN and its members

Ref. No. EN 10088-1:1995 ELice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 7: BS EN 10088-1

EN 10088-1:1995

2 © BSI 10-1998

Foreword

This European Standard has been prepared by SC 1, Stainless steels, of Technical CommitteeECISS/TC 23, Steels for treatment, alloy steels and free-cutting steels — Qualities, of which the secretariat is held by DIN.This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by October 1995, and conflicting national standards shall be withdrawn at the latest by October 1995.According to the CEN/CENELEC Internal Regulations, the following countries are bound to implement this European Standard: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom.

Contents

Page1 Scope 32 Normative references 33 Definitions 33.1 Stainless steels 33.2 Product forms 34 Chemical composition 3Annex A (informative) Reference data on some physical properties 12Annex B (informative) Classification of grades 12Table 1 — Chemical composition (cast analysis) of ferritic stainless steels 4Table 2 — Chemical composition (cast analysis) of martensitic andprecipitation hardening stainless steels 6Table 3 — Chemical composition (cast analysis) of austenitic stainless steels 8Table 4 — Chemical composition (cast analysis) of austenitic-ferritic stainless steels 11Table A.1 — Reference data on some physical properties of ferritic stainless steels 14Table A.2 — Reference data on some physical properties of martensitic and precipitation hardening stainless steels 15Table A.3 — Reference data on some physical properties of austenitic stainless steels 16Table A.4 — Reference data on some physical properties of austenitic-ferritic stainless steels 18

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 8: BS EN 10088-1

EN 10088-1:1995

© BSI 10-1998 3

1 ScopeThis European Standard lists:

— the chemical composition of stainless steels (see Table 1 to Table 4);— reference data on some physical properties (see Table A.1 to Table A.4).

NOTE A CEN report covering information on the forms of wrought products in which the grades are standardized and the application of the grades is identified is in course of preparation.

2 Normative referencesThis European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies.EN 10079, Definition of steel products.

3 Definitions3.1 stainless steels

for the purposes of this standard, steels with at least 10,5 % Cr and max. 1,2 % C are considered as stainless steels if their resistance to corrosion is of primary importanceNOTE It is intended to include into this standard at a later stage creep resisting and heat resisting steel grades.

3.2 product forms

for the form of products the definitions in EN 10079 apply

4 Chemical compositionThe chemical composition is given

— in Table 1, for ferritic steels;— in Table 2, for martensitic and precipitation-hardening steels;— in Table 3, for austenitic steels;— in Table 4, for austenitic-ferritic steels.

They apply for all product forms including ingots and semi-finished material.

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 9: BS EN 10088-1

EN

10088-1:1995

BS

I 10-1998

Table 1 — Chemical composition (cast analysis)a of ferritic stainless steels

Steel designation % by mass

Name Number C max.

Simax.

Mnmax.

P max.

S N max.

Cr Mo Nb Ni Ti Others

X2CrNi12 1.4003 0,030 1,00 1,50 0,040 ≤ 0,015 0,030 10,50 to 12,50

0,30 to 1,00

X2CrTi12 1.4512 0,030 1,00 1,00 0,040 ≤ 0,015 10,50 to 12,50

6 × (C + N) to 0,65

X6CrNiTi12 1.4516 0,08 0,70 1,50 0,040 ≤ 0,015 10,50 to 12,50

0,50 to 1,50

0,05 to 0,35

X6Cr13 1.4000 0,08 1,00 1,00 0,040 ≤ 0,015b 12,00 to 14,00

X6CrAl13 1.4002 0,08 1,00 1,00 0,040 ≤ 0,015b 12,00 to 14,00

Al: 0,10 to 0,30

X2CrTi17 1.4520 0,025 0,50 0,50 0,040 ≤ 0,015 0,015 16,00 to 18,00

0,30 to 0,60

X6Cr17 1.4016 0,08 1,00 1,00 0,040 ≤ 0,015b 16,00 to 18,00

X3CrTi17 1.4510 0,05 1,00 1,00 0,040 ≤ 0,015b 16,00 to 18,00

4 × (C + N) + 0,15 to 0,80c

X3CrNb17 1.4511 0,05 1,00 1,00 0,040 ≤ 0,015 16,00 to 18,00

12 × C to 1,00

X6CrMo17-1 1.4113 0,08 1,00 1,00 0,040 ≤ 0,015b 16,00 to 18,00

0,90 to 1,40

X6CrMoS17 1.4105 0,08 1,50 1,50 0,040 0,15 to 0,35

16,00 to 18,00

0,20 to 0,60

X2CrMoTi17-1 1.4513 0,025 1,00 1,00 0,040 ≤ 0,015 0,015 16,00 to 18,00

1,00 to 1,50

0,30 to 0,60

X2CrMoTi18-2 1.4521 0,025 1,00 1,00 0,040 ≤ 0,015 0,030 17,00 to 20,00

1,80 to 2,50

4 × (C + N) + 0,15 to 0,80c

X2CrMoTiS18-2d 1.4523d 0,030 1,00 0,50 0,040 0,15 to 0,35

17,50 to 19,00

2,00 to 2,50

0,30 to 0,80 (C + N) ≤ 0,040

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 10: BS EN 10088-1

EN

10088-1:1995

© B

SI 10-1998

5

Table 1 — Chemical composition (cast analysis)a of ferritic stainless steels

Steel designation % by mass

Name Number C max.

Simax.

Mnmax.

P max.

S N max.

Cr Mo Nb Ni Ti Others

X6CrNi17-1d 1.4017d 0,08 1,00 1,00 0,040 ≤ 0,015 16,00 to 18,00

1,20 to 1,60

X6CrMoNb17-1 1.4526 0,08 1,00 1,00 0,040 ≤ 0,015 0,040 16,00 to 18,00

0,80 to 1,40

7 × (C + N) + 0,10 to 1,00

X2CrNbZr17d 1.4590d 0,030 1,00 1,00 0,040 ≤ 0,015 16,00 to 17,50

0,35 to 0,55

Zr ≥ 7 ×(C + N) + 0,15

X2CrAlTi18-2 1.4605 0,030 1,00 1,00 0,040 ≤ 0,015 17,00 to 18,00

4 × (C + N) + 0,15 to 0,80c

Al: 1,70 to 2,10

X2CrTiNb18 1.4509 0,030 1,00 1,00 0,040 ≤ 0,015 17,50 to 18,50

3 × C + 0,30 to 1,00

0,10 to 0,60

X2CrMoTi29-4 1.4592 0,025 1,00 1,00 0,030 ≤ 0,010 0.045 28,00 to 30,00

3,50 to 4.50

4 × (C + N) + 0,15 to 0,80c

a Elements not listed in this table may not be intentionally added to the steel without the agreement of the purchaser except for finishing the cast. All appropriate precautions are to be taken to avoid the addition of such elements from scrap and other materials used in production which would impair mechanical properties and the suitability of the steel.b For bars, rods, sections and the relevant semi-finished products, a maximum content of 0,030 % S applies.For any product to be machined, a controlled sulfur content of 0,015 % to 0,030 % is recommended and permitted.c The stabilization may be made by use of titanium or niobium or zirconium. According to the atomic number of these elements and the content of carbon and nitrogen, the equivalence shall be the following:

d Patented steel grade.

Ti = 74--- Nb = 7

4--- Zr

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 11: BS EN 10088-1

EN

10088-1:1995

BS

I 10-1998

Table 2 — Chemical composition (cast analysis)a of martensitic and precipitation hardening stainless steels

Steel designation % by mass

Name Number Cb Si max.

Mn max.

Pmax.

S Cr Cu Mo Nb Ni Others

X12Cr13 1.4006 0,08 to 0,15 1,00 1,50 0,040 ≤ 0,015c 11,50 to 13,50

≤ 0,75

X12CrS13 1.4005 0,08 to 0,15 1,00 1,50 0,040 0,15 to 0,35 12,00 to 14,00

≤ 0,60

X20Cr13 1.4021 0,16 to 0,25 1,00 1,50 0,040 ≤ 0,015c 12,00 to 14,00

X30Cr13 1.4028 0,26 to 0,35 1,00 1,50 0,040 ≤ 0,015c 12,00 to 14,00

X29CrS13 1.4029 0,25 to 0,32 1,00 1,50 0,040 0,15 to 0,25 12,00 to 13,50

≤ 0,60

X39Cr13 1.4031 0,36 to 0,42 1,00 1,00 0,040 ≤ 0,015c 12,50 to 14,50

X46Cr13 1.4034 0,43 to 0,50 1,00 1,00 0,040 ≤ 0,015c 12,50 to 14,50

X50CrMoV15 1.4116 0,45 to 0,55 1,00 1,00 0,040 ≤ 0,015c 14,00 to 15,00

0,50 to 0,80

V: 0,10 to 0,20

X70CrMo15 1.4109 0,65 to 0,75 0,70 1,00 0,040 ≤ 0,015c 14,00 to 16,00

0,40 to 0,80

X14CrMoS17 1.4104 0,10 to 0,17 1,00 1,50 0,040 0,15 to 0,35 15,50 to 17,50

0,20 to 0,60

X39CrMo17-1 1.4122 0,33 to 0,45 1,00 1,50 0,040 ≤ 0,015c 15,50 to 17,50

0,80 to 1,30

≤ 1,00

X105CrMo17 1.4125 0,95 to 1,20 1,00 1,00 0,040 ≤ 0,015c 16,00 to 18,00

0,40 to 0,80

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 12: BS EN 10088-1

EN

10088-1:1995

© B

SI 10-1998

7

Table 2 — Chemical composition (cast analysis)a of martensitic and precipitation hardening stainless steelsSteel designation % by mass

Name Number Cb Si max.

Mn max.

Pmax.

S Cr Cu Mo Nb Ni Others

X90CrMoV18 1.4112 0,85 to 0,95 1,00 1,00 0,040 ≤ 0,015c 17,00 to 19,00

0,90 to 1,30

V: 0,07 to 0,12

X17CrNi16-2 1.4057 0,12 to 0,22 1,00 1,50 0,040 ≤ 0,015c 15,00 to 17,00

1,50 to 250

X3CrNiMo13-4 1.4313 ≤ 0,05 0,70 1,50 0,040 ≤ 0,015 12,00 to 14,00

0,30 to 0,70

3,50 to 450

N: ≥ 0,020

X4CrNiMo16-5-1 1.4418 ≤ 0,06 0,70 1,50 0,040 ≤ 0,015c 15,00 to 17,00

0,80 to 1,50

4,00 to 600

N: ≥ 0,020

X5CrNiCuNb16-4 1.4542 ≤ 0,07 0,70 1,50 0,040 ≤ 0,015c 15,00 to 17,00

3,00 to 5,00

≤ 0,60 5 × C to 0,45

3,00 to 500

X7CrNiAl17-7 1.4568 ≤ 0,09 0,70 1,00 0,040 ≤ 0,015 16,00 to 18,00

6,50 to 7,80d

Al: 0,70 to 1,50

X8CrNiMoAl15-7-2 1.4532 ≤ 0,10 0,70 1,20 0,040 ≤ 0,015 14,00 to 16,00

2,00 to 3,00

6,50 to 7,80

Al: 0,70 to 1,50

X5CrNiMoCuNb14-5 1.4594 ≤ 0,07 0,70 1,00 0,040 ≤ 0,015 13,00 to 15,00

1,20 to 2,00

1,20 to 2,00

0,15 to 0,60

5,00 to 6,00

a Elements not quoted in this table may not be intentionally added to the steel without the agreement of the purchaser except for finishing the cast. All appropriate precautions are to be taken to avoid the addition of such elements from scrap and other materials used in production which would impair mechanical properties and the suitability of the steel.b Tighter carbon ranges may be agreed at the time of enquiry and order.c For bars, rods, sections and the relevant semi-finished products, a maximum content of 0,030 % S applies.For any product to be machined, a controlled sulfur content of 0,015 % to 0,030 % is recommended and permitted.d For better cold deformability, the upper limit may be increased to 8,30 %.

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 13: BS EN 10088-1

EN

10088-1:1995

BS

I 10-1998

Table 3 — Chemical composition (cast analysis)a of austenitic stainless steelsSteel designation % by massName Number C Si Mn P S N Cr Cu Mo Nb Ni Ti

max.

X10CrNi18-8 1.4310 0,05 to 0,15

≤ 2,00 ≤ 2,00 0,045 ≤ 0,015 ≤ 0,11 16,00 to 19,00

≤ 0,80 6,00 to 9,50

X2CrNiN18-7 1.4318 ≤ 0,030 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015 0,10 to 0,20

16,50 to 18,50

6,00 to 8,00

X2CrNi18-9 1.4307 ≤0,030 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b ≤ 0,11 17,50 to 19,50

8,00 to 10,00

X2CrNi19-11 1.4306 ≤ 0,030 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b ≤ 0,11 18,00 to 20,00

10,00 to 12,00c

X2CrNiN18-10 1.4311 ≤ 0,030 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b 0,12 to 0,22

17,00 to 19,50

8,50 to 11,50

X5CrNi18-10 1.4301 ≤ 0,07 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b ≤ 0,11 17,00 to 19,50

8,00 to 10,50

X8CrNiS18-9 1.4305 ≤ 0,10 ≤ 1,00 ≤ 2,00 0,045 0,15 to 0,35

≤ 0,11 17,00 to 19,00

≤ 1,00 8,00 to 10,00

X6CrNiTi18-10 1.4541 ≤ 0,08 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b 17,00 to 19,00

9,00 to 12,00c

5 × C to 0,70

X6CrNiNb18-10 1.4550 ≤ 0,08 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015 17,00 to 19,00

10 × C to 1,00

9,00 to 12,00c

X4CrNi18-12 1.4303 ≤ 0,06 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b ≤ 0,11 17,00 to 19,00

11,00 to 13,00

X1CrNi25-21 1.4335 ≤ 0,020 ≤ 0,25 ≤ 2,00 0,025 ≤ 0,010 ≤ 0,11 24,00 to 26,00

≤ 0,20 20,00 to 22,00

X2CrNiMo17-12-2 1.4404 ≤ 0,030 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b ≤ 0,11 16,50 to 18,50

2,00 to 2,50

10,00 to 13,00c

X2CrNiMoN17-11-2 1.4406 ≤ 0,030 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b 0,12 to 0,22

16,50 to 18,50

2,00 to 2,50

10,00 to 12,00c

X5CrNiMo17-12-2 1.4401 ≤ 0,07 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b ≤ 0,11 16,50 to 18,50

2,00 to 2,50

10,00 to 13,00

X1CrNiMoN25-22-2 1.4466 ≤ 0,020 ≤ 0,70 ≤ 2,00 0,025 ≤ 0,010 0,10 to 0,16

24,00 to 26,00

2,00 to 2,50

21,00 to 23,00

X6CrNiMoTi17-12-2 1.4571 ≤ 0,08 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b 16,50 to 18,50

2,00 to 2,50

10,50 to 13,50c

5 × C to 0,70

X6CrNiMoNb17-12-2 1.4580 ≤ 0,08 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015 16,50 to 18,50

2,00 to 2,50

10 × C to 1,00

10,50 to 13,50

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 14: BS EN 10088-1

EN

10088-1:1995

© B

SI 10-1998

9

Table 3 — Chemical composition (cast analysis)a of austenitic stainless steelsSteel designation % by mass

Name Number C Si Mn P S N Cr Cu Mo Nb Ni Ti

X2CrNiMo17-12-3 1.4432 ≤ 0,030 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b ≤ 0,11 16,50 to 18,50

2,50 to 3,00

10,50 to 13,00

X2CrNiMoN17-13-3 1.4429 ≤ 0,030 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015 0,12 to 0,22

16,50 to 18,50

2,50 to 3,00

11,00 to 14,00c

X3CrNiMo17-13-3 1.4436 ≤ 0,05 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b ≤ 0,11 16,50 to 18,50

2,50 to 3,00

10,50 to 13,00c

X2CrNiMo18-14-3 1.4435 ≤ 0,030 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b ≤ 0,11 17,00 to 19,00

2,50 to 3,00

12,50 to 15,00

X2CrNiMoN18-12-4 1.4434 ≤ 0,030 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015 0,10 to 0,20

16,50 to 19,50

3,00 to 4,00

10,50 to 14,00c

X2CrNiMo18-15-4 1.4438 ≤ 0,030 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b ≤ 0,11 17,50 to 19,50

3,00 to 4,00

13,00 to 16,00c

X2CrNiMoN17-13-5 1.4439 ≤ 0,030 ≤1,00 ≤ 2,00 0,045 ≤ 0,015 0,12 to 0,22

16,50 to 18,50

4,00 to 5,00

12,50 to 14,50

X1CrNiSi18-15-4 1.4361 ≤ 0,015 3,70 to 4,50

≤ 2,00 0,025 ≤ 0,010 ≤ 0,11 16,50 to 18,50

≤ 0,20 14,00 to 16,00

X12CrMnNiN17-7-5 1.4372 ≤ 0,15 ≤ 1,00 5,50 to 7,50

0,045 ≤ 0,015 0,05 to 0,25

16,00 to 18,00

3,50 to 5,50

X2CrMnNiN17-7-5 1.4371 ≤ 0,030 ≤ 1,00 6,00 to 8,00

0,045 ≤ 0,015 0,15 to 0,20

16,00 to 17,00

3,50 to 5,50

X12CrMnNiN18-9-5 1.4373 ≤ 0,15 ≤ 1,00 7,50 to 10,50

0,045 ≤ 0,015 0,05 to 0,25

17,00 to 19,00

4,00 to 6,00

X3CrNiCu19-9-2 1.4560 ≤ 0,035 ≤ 1,00 1,50 to 2,00

0,045 ≤ 0,015 ≤ 0,11 18,00 to 19,00

1,50 to 2,00

8,00 to 9,00

X6CrNiCuS18-9-2 1.4570 ≤ 0,08 ≤ 1,00 ≤ 2,00 0,045 0,15 to 0,35

≤ 0,11 17,00 to 19,00

1,40 to 1,80

≤ 0,60 8,00 to 10,00

X3CrNiCu18-9-4 1.4567 ≤ 0,04 ≤ 1,00 ≤ 2,00 0,045 ≤ 0,015b ≤ 0,11 17,00 to 19,00

3,00 to 4,00

8,50 to 10,50

X3CrNiCuMo17-11-3-2 1.4578 ≤ 0,04 ≤ 1,00 ≤ 1,00 0,045 ≤ 0,015 ≤ 0,11 16,50 to 17,50

3,00 to 3,50

2,00 to 2,50

10,00 to 11,00

X1NiCrMoCu31-27-4 1.4563 ≤ 0,020 ≤ 0,70 ≤ 2,00 0,030 ≤ 0,010 ≤ 0,11 26,00 to 28,00

0,70 to 1,50

3,00 to 4,00

30,00 to 32,00

X1NiCrMoCu25-20-5 1.4539 ≤ 0,020 ≤ 0,70 ≤ 2,00 0,030 ≤ 0,010 ≤ 0,15 19,00 to 21,00

1,20 to 2,00

4,00 to 5,00

24,00 to 26,00Li

cens

ed C

opy:

lboc

vzr

lboc

vzr,

Mar

ch 2

4, 2

002,

Unc

ontr

olle

d C

opy,

(c)

BS

I

Page 15: BS EN 10088-1

EN

10088-1:1995

10©

BS

I 10-1998

Table 3 — Chemical composition (cast analysis)a of austenitic stainless steelsSteel designation % by massName Number C Si Mn P S N Cr Cu Mo Nb Ni Ti

X1CrNiMoCuN25-25-5 1.4537 ≤ 0,020 ≤ 0,70 ≤ 2,00 0,030 ≤ 0,010 0,17 to 0,25

24,00 to 26,00

1,00 to 2,00

4,70 to 5,70

24,00 to 27,00

X1CrNiMoCuN20-18-7d 1.4547d ≤ 0,020 ≤ 0,70 ≤ 1,00 0,030 ≤ 0,010 0,18 to 0,25

19,50 to 20,50

0,50 to 1,00

6,00 to 7,00

17,50 to 18,50

X1NiCrMoCuN25-20-7 1.4529 ≤ 0,020 ≤ 0,50 ≤ 1,00 0,030 ≤ 0,010 0,15 to 0,25

19,00 to 21,00

0,50 to 1,50

6,00 to 7,00

24,00 to 26,00

a Elements not quoted in this table may not be intentionally added to the steel without the agreement of the purchaser except for finishing the cast. All appropriate precautions are to be taken to avoid the addition of such elements from scrap and other materials used in production which would impair mechanical properties and the suitability of the steel.b For bars, rods, sections and the relevant semi-finished products, a maximum content of 0,030 % S applies. For any product to be machined, a controlled sulfur content of 0,015 % to 0,030 % is recommended and permitted.c Where for special reasons, e.g. hot workability for the fabrication of seamless tubes where it is necessary to minimize the delta ferrite content, or with the aim of low permeability, the maximum Ni content may be increased by the following amounts: 0,50 % (m/m): 1.4571 1,00 % (m/m): 1.4306, 1.4406, 1.4429, 1.4434, 1.4436, 1.4438, 1.4541, 1.4550 1,50 % (m/m): 1.4404d Patented steel grade.

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 16: BS EN 10088-1

EN

10088-1:1995

© B

SI 10-1998

11

Table 4 — Chemical composition (cast analysis)a of austenitic-ferritic stainless steelsSteel designation % by mass

Name Number Cmax.

Simax.

Mnmax.

Pmax.

Smax.

N Cr Cu Mo Ni W

X2CrNiN23-4c 1.4362c 0,030 1,00 2,00 0,035 0,015 0,05 to 0,20

22,00 to 24,00

0,10 to 0,60

0,10 to 0,60

3,50 to 5,50

X3CrNiMoN27-5-2 1.4460 0,05 1,00 2,00 0,035 0,015b 0,05 to 0,20

25,00 to 28,00

1,30 to 2,00

4,50 to 6,50

X2CrNiMoN22-5-3 1.4462 0,030 1,00 2,00 0,035 0,015 0,10 to 0,22

21,00 to 23,00

2,50 to 3,50

4,50 to 6,50

X2CrNiMoCuN25-6-3 1.4507 0,030 0,70 2,00 0,035 0,015 0,15 to 0,30

24,00 to 26,00

1,00 to 2,50

2,70 to 4,00

5,50 to 7,50

X2CrNiMoN25-7-4c 1.4410c 0,030 1,00 2,00 0,035 0,015 0,20 to 0,35

24,00 to 26,00

3,00 to 4,50

6,00 to 8,00

X2CrNiMoCuWN25-7-4 1.4501 0,030 1,00 1,00 0,035 0,015 0,20 to 0,30

24,00 to 26,00

0,50 to 1,00

3,00 to 4,00

6,00 to 8,00

0,50 to 1,00

a Elements not listed in this table may not be intentionally added to the steel without the agreement of the purchaser except for finishing the cast. All appropriate precautions are to be taken to avoid the addition of such elements from scrap and other materials used in production which would impair mechanical properties and the suitability of the steel.b For bars, rods, sections and the relevant semi-finished products, a maximum content of 0,030 % S applies.For any product to be machined, a controlled sulfur content of 0,015 % to 0,030 % is recommended and permitted.c Patented steel grade.

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 17: BS EN 10088-1

EN 10088-1:1995

12 © BSI 10-1998

Annex A (informative)Reference data on some physical propertiesTable A.1 to Table A.4 give reference data on some physical properties for stainless steels.

Annex B (informative) Classification of gradesStainless steels covered in this European Standard are classified according to their structure and their chemical composition.

B.1 Ferritic, semi-ferritic and martensitic steels

Chromium is the main alloying element and the chromium not bound to carbon decides the corrosion resistance.

B.2 Ferritic and semi-ferritic steels

Ferritic steels have a carbon content limit of 0,08 %. Due to this they do not display significant hardening after quenching.The ferritic structure in α phase (alpha) and δ phase (delta, residual structure from high temperature) is magnetic.This structure is ductile in specific manufacturing conditions, especially in thin cross sections.The ferritic free-cutting grades most commonly used for bars include a sulfur addition greater than 0,15 % to facilitate machining. This sulfur addition means a considerable reduction of corrosion resistance.Ferritic steels have a relatively good weldability. A European Standard covering the conditions for welding these materials is in preparation byCEN/TC 121. In general, a low heat-input is advisable to avoid embrittlement by coarse grain.According to their chemical composition, some grades may undergo a partial martensitic transformation and shall be called semi- ferritic.

B.3 Martensitic steels

Martensitic steels have the highest carbon contents, 0,08 % to over 1 %. Their mechanical strength may be increased considerably by quench heat treatment; the martensitic structure obtained is magnetic and fragile; it shall undergo tempering treatment before use.Some grades include sulfur additions greater than 0,15 % and are for high-speed machining.

In addition to the grades defined in this standard, there are grades intended for specific applications. For example, some of the steels specified for bearings are of compositions within the range of stainless steels.

B.4 Precipitation-hardening steels

Heat treatment confers a greater mechanical strength on these steels associated with good corrosion resistance.The increased strength results from the precipitation of intermetallic compounds from the martensitic structure during the final hardening treatment.The specific treatment conditions shall be adjusted depending on the desired level of mechanical properties and the data provided by the manufacturers.

B.5 Austenitic steels

Chromium and nickel are the main elements alloyed with the iron.The structure of these steels is γ austenite (gamma phase) with the possible presence of δ ferrite (delta phase), residual from high temperatures.The austenitic γ (gamma) phase is non- magnetic.Metastable austenite may be transformed into martensite by plastic deformation and/or by cooling at low temperature.The stability of the austenite may be increased by the addition of austenite-forming elements: carbon, nickel, manganese, nitrogen and copper.The austenitic steels possess good general corrosion resistance. They do not display hardening after any heat treatment; on the other hand, their mechanical strength may be increased by nitrogen additions or by cold forming.If the steels cool slowly after heat treatment or welding (e.g. in thick sections), chromium carbides precipitate in the grain boundaries in a critical temperature range of approximately 600 °C to 800 °C. This causes intergranular corrosion in contact with acids and other corrosive media.There are two principal ways of avoiding this problem, by alteration to chemical analysis given in B.5.3 and B.5.4.Austenitic steels have good weldability. A European Standard covering the conditions for welding these materials is in preparation by CEN/TC 121.Austenitic steels have good toughness properties also at low temperatures and high safety against brittle fracture.

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 18: BS EN 10088-1

EN 10088-1:1995

© BSI 10-1998 13

According to the carbon content and the alloying elements, the austenitic steels may be classified as follows.

B.5.1 Austenitic steels without molybdenum

These are the grades most commonly used because they represent a good compromise between cost versus corrosion resistance.They are more difficult to machine than the ferritic and martensitic grades and as in those categories, there are resulfurized variants (S ≤ 0,15 %). This sulfur addition means a considerable reduction of corrosion resistance.

B.5.2 Austenitic molybdenum steels

The addition of molybdenum in general improves the corrosion resistance, especially against chloride induced pitting.Higher sulfur contents may impair this effect.In a nitric acid and nitrous gases environment molybdenum additions are rather unfavourable.

B.5.3 Extra low carbon austenitic steels

One method of avoiding intergranular corrosion is to make steels with ≤ 0,030 % carbon, in which case all the carbon remains in solid solution, and it therefore does not combine with chromium to form chromium carbide precipitates.

B.5.4 Stabilized austenitic steels

The addition of titanium and/or niobium prevents the precipitation of chromium carbides linked to heat treatment and/or welding processes. Furthermore, these steels display good strength properties up to about 600 °C.

B.5.5 Super austenitic steels

These steels are enriched in chromium and molybdenum contents and have a completely austenitic structure by higher nickel and nitrogen contents. They have an excellent corrosion resistance in aggressive environments.

B.5.6 Comparison of methods of avoiding intergranular corrosion

Up to the 1960s, the stabilized steel “solution” to this problem was preferred, as it was difficult, expensive and unreliable to refine extra low carbon steels in the electric arc furnace.

However, the technological advances in stainless steelmaking since then have enabled extra low carbon steels to be made more cheaply, quickly and reliably than stabilized grades.On the other hand, the stabilized grades have higher strength at elevated temperatures.Further advice on steel selection is available from manufacturers. Whichever “solution” is chosen, the steel will be melted and processed to be free from the risk of intergranular corrosion in the delivery condition, and there should be no need to specify intergranular corrosion testing as part of many purchase specifications.

B.6 Austenitic-ferritic (Duplex) steels

These steels usually have a high chromium and low nickel content, with the distinctive feature of displaying a two-phase structure at room temperature (austenite content lying between 40 % and 60 %).Their strength properties are higher than those of austenitic steels.These steels have an especially good resistance against stress corrosion.

B.7 Creep-resisting steels

Variants of the steels described by clauses B.1 to B.6, often with an increased carbon content, are used as creep-resisting steels.

B.8 Heat-resisting steels

These ferritic or austenitic types of steel are used in part for their excellent resistance to oxidation and to corrosion by high-temperature gases and also for retaining their mechanical properties over a wide range of temperature.

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 19: BS EN 10088-1

EN

10088-1:1995

14©

BS

I 10-1998

Table A.1 — Reference data on some physical properties of ferritic stainless steels

Steel designation Density Modulus of elasticity at: Mean coefficient of thermal expansion between 20 °C

and:

Thermal conductivity

at 20 °°C

Specific thermal capacity at 20 °C

Electrical resistivity

at 20 °C

Magnetizable

Name Number 20 °C

100 °C

200 °C

300 °C

400°C

500 °C

100 °C

200 °C

300 °C

400 °C

500 °C

kg/dm3 kN/mm2 10–6 × Κ–1 W/m·K J/kg·K Ω·mm2/m

X2CrNi12 1.4003 10,4 10,8 11,2 11,6 11,9 25 430 0,6

X2CrTi12 1.4512 10,5 11,0 11,5 12,0 12,0 25 460 0,60

X6CrNiTi12 1.4516 10,5 11,5 30 460 0,60

X6Cr13 1.4000 10,5 11,0 11,5 12,0 12,0 30 460 0,60

X6CrAl13 1.4002 10,5 11,0 11,5 12,0 12,0 30 460 0,60

X2CrTi17 1.4520 10,4 10,8 11,2 11,6 11,9 20 430 0,7

X6Cr17 1.4016 10,0 10,0 10,5 10,5 11,0 25 460 0,60

X3CrTi17 1.4510 10,0 10,0 10,5 10,5 11,0 25 460 0,60

X3CrNb17 1.4511 7,7 10,0 10,0 10,5 10,5 11,0 25 460 0,60

X6CrMo17-1 1.4113 220 215 210 205 195 10,0 10,5 10,5 10,5 11,0 25 460 0,70

X6CrMoS17 1.4105 10,0 10,5 10,5 10,5 11,0 25 460 0,70 Yes

X2CrMoTi17-1 1.4513 10,0 10,5 10,5 10,5 11,0 25 460 0,70

X2CrMoTi18-2 1.4521 10,4 10,8 11,2 11,6 11,9 23 430 0,8

X2CrMoTiS18-2 1.4523 10,4 10,8 11,2 11,6 11,9 23 430 0,8

X6CrNi17-1 1.4017 10,2 10,8 30 460 0,70

X6CrMoNb17-1 1.4526 11,7 12,1 30 440 0,70

X2CrNbZr17 1.4590 11 11,5 26 460 0,60

X2CrAlTi18-2 1.4605 7,5 10,2 11 25 460 1,0

X2CrTiNb18 1.4509 7,7 10,0 10,0 10,5 10,5 25 460 0,60

X2CrMoTi29-4 1.4592 11,5 12 17 440 0,67

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 20: BS EN 10088-1

EN

10088-1:1995

© B

SI 10-1998

15

Table A.2 — Reference data on some physical properties of martensitic and precipitation hardening stainless steelsSteel designation Density Modulus of elasticity at: Mean coefficient of

thermal expansion between 20 °C and:

Thermal conductivity

at 20 °C

Specific thermal

capacity at 20 °C

Electrical resistivity at

20 °C

Magnetizable

Name Number 20 °C

100 °C

200 °C

300 °C

400 °C

100 °C

200 °C

300 °C

400 °C

kg/dm3 kN/mm2 10–6 × Κ–1 W/m·K J/kg·K Ω·mm2/m

X12Cr13 1.4006 10,5 11,0 11,5 12,0 30 460 0,60

X12CrS13 1.4005 10,5 11,0 11,5 12,0 30 460 0,60

X20Cr13 1.4021 10,5 11,0 11,5 12,0 30 460 0,60

X30Cr13 1.4028 10,5 11,0 11,5 12,0 30 460 0,65

X29CrS13 1.4029 10,5 11,5 30 460 0,55

X39Cr13 1.4031 10,5 11,0 11,5 12,0 30 460 0,55

X46Cr13 1.4034 215 212 205 200 190 10,5 11,0 11,5 12,0 30 460 0,55

X50CrMoV15 1.4116 7,7 10,5 11,0 11,0 11,5 30 460 0,65

X70CrMo15 1.4109 10,5 11,0 11,0 11,5 30 460 0,65

X14CrMoS17 1.4104 10,0 10,5 10,5 10,5 25 460 0,70 Yes

X39CrMo17-1 1.4122 10,4 10,8 11,2 11,6 15 430 0,8

X105CrMo17 1.4125 10,4 10,8 11,2 11,6 15 430 0,8

X90CrMoV18 1.4112 10,4 10,8 11,2 11,6 15 430 0,8

X17CrNi16-2 1.4057 10,0 10,5 10,5 10,5 25 460 0,70

X3CrNiMo13-4 1.4313 10,5 10,9 11,3 11,6 25 430 0,6

X4CrNiMo16-5-1 1.4418 10,3 10,8 11,2 11,6 15 430 0,8

X5CrNiCuNb16-4 1.4542 200 195 185 175 170 10,9 11,1 16 500 0,71

X7CrNiAl17-7 1.4568 7,8 13,0 13,5 14,0 16 500 0,80

X8CrNiMoAl15-7-2 1.4532 14,0 14,4 16 500 0,80 Yes

X5CrNiMoCuNb14-5 1.4594 10,9 11,1 16 500 0,71

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 21: BS EN 10088-1

EN

10088-1:1995

16©

BS

I 10-1998

Table A.3 — Reference data on some physical properties of austenitic stainless steelsSteel designation Density Modulus of elasticity at: Mean coefficient of thermal

expansion between 20 °C and:

Thermal Conductivity

at 20 °C

Specific thermal

capacity at 20 °C

Electrical resistivity

at 20 °C

Magnetizable

Name Number 20 °C

100 °C

200 °C

300 °C

400 °C

500 °C

100 °C

200 °C

300 °C

400 °C

500 °C

kg/dm3 kN/mm2 10–6 × Κ–1 W/m·K J/kg·K Ω·mm2/m

X10CrNi18-8 1,4310 16,0 17,0 17,0 18,0 18,0 15 500 0,73X2CrNiN18-7 1.4318 16,0 16,5 17,0 17,5 18,0 15 500 0,73X2CrNi18-9 1.4307 16,0 16,5 17,0 18,0 18,0 15 500 0,73X2CrNi19-11 1.4306 16,0 16,5 17,0 17,5 18,0 15 500 0,73X2CrNiN18-10 1.4311 200 194 186 179 172 165 16,0 16,5 17,0 17,5 18,0 15 500 0,73X5CrNi18-10 1.4301 7,9 16,0 16,5 17,0 17,5 18,0 15 500 0,73X8CrNiS18-9 1.4305 16,0 16,5 17,0 17,5 18,0 15 500 0,73X6CrNiTi18-10 1.4541 16,0 16,5 17,0 17,5 18,0 15 500 0,73X6CrNiNb18-10 1.4550 16,0 16,5 17,0 17,5 18,0 15 500 0,73X4CrNi18-12 1.4303 16,0 16,5 17,0 17,5 18,0 15 500 0,73X1CrNi25-21 1.4335 195 190 182 174 166 158 15,8 16,1 16,5 16,9 17,3 14 450 0,85X2CrNiMo17-12-2 1.4404 16,0 16,5 17,0 17,5 18,0 15 500 0,75X2CrNiMoN17-11-2 1.4406 200 194 186 179 172 165 16,0 16,5 17,0 17,5 18,0 15 500 0,75X5CrNiMo17-12-2 1.4401 16,0 16,5 17,0 17,5 18,0 15 500 0,75X1CrNiMoN25-22-2 1.4466 8,0 195 190 182 174 166 158 15,7 17,0 14 500 0,80X6CrNiMoTi17-12-2 1.4571 16,5 17,5 18,0 18,5 19,0 15 500 0,75X6CrNiMoNb17-12-2 1.4580 16,5 17,5 18,0 18,5 19,0 15 500 0,75X2CrNiMo17-12-3 1.4432 16,0 16,5 17,0 17,5 18,0 15 500 0,75X2CrNiMoN17-13-3 1.4429 16,0 16,5 17,0 17,5 18,0 15 500 0,75X3CrNiMo17-13-3 1.4436 16,0 16,5 17,0 17,5 18,0 15 500 0,75X2CrNiMo18-14-3 1.4435 16,0 16,5 17,0 17,5 18,0 15 500 0,75 Noa

X2CrNiMoN18-12-4 1.4434 16,0 16,5 17,0 17,5 18,0 15 500 0,75X2CrNiMo18-15-4 1.4438 16,0 16,5 17,0 17,5 18,0 14 500 0,85X2CrNiMoN17-13-5 1.4439 200 194 186 179 172 165 16,0 16,5 17,0 17,5 18,0 14 500 0,85X1CrNiSi18-15-4 1.4361 7,7 16,5 14X12CrMnNiN17-7-5 1.4372 15 0,70X2CrMnNiN17-7-5 1.4371 7,8 17,0 17,5 18,0 18,5 15 500 0,70X12CrMnNiN18-9-5 1.4373 15 0,70

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 22: BS EN 10088-1

EN

10088-1:1995

© B

SI 10-1998

17

Table A.3 — Reference data on some physical properties of austenitic stainless steelsSteel designation Density Modulus of elasticity at: Mean coefficient of thermal

expansion between 20 °C and:

Thermal conductivity

at 20 °C

Specific thermal

capacity at 20 °C

Electrical resistivity

at 20 °C

Magnetizable

Name Number 20 °C

100 °C

200 °C

300 °C

400 °C

500 °C

100 °C

200 °C

300 °C

400 °C

500 °C

kg/dm3 kN/mm2 10–6 × Κ–1 W/m·K J/kg·K Ω·mm2/m

X3CrNiCu 19-9-2 1.4560X6CrNiCuS18-9-2 1.4570 7,9X3CrNiCu18-9-4 1.4567 16,7 17,2 17,7 18,1 18,4X3CrNiCuMo17-11-3-2 1.4578X1NiCrMoCu31-27-4 1.4563 8,0 15,8 16,1 16,5 16,9 17,3 12 450 1,0X1NiCrMoCu25-20-5 1.4539 15,8 16,1 16,5 16,9 17,3 12 450 1,0X1CrNiMoCuN25-25-5 1.4537 8,1 195 190 182 174 166 158 15,0 16,5 14 500 0,85X1CrNiMoCuN20-18-7 1.4547 8,0 16,5 17 17,5 18 18 14 500 0,85X1NiCrMoCuN25-20-7 1.4529 8,1 15,8 16,1 16,5 16,9 17,3 12 450 1,0a Small amounts of ferrite and/or martensite caused by cold deformation will increase the magnetizability.

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 23: BS EN 10088-1

EN

10088-1:1995

18©

BS

I 10-1998

Table A.4 — Reference data on some physical properties of austenitic-ferritic stainless steels

Steel designation Density Modulus of elasticity at: Mean coefficient of thermal expansion

between 20 °C and:

Thermal conductivity

at 20 °C

Specific thermal

capacity at 20 °C

Electrical resistivity at

20 °C

Magnetizable

Name Number 20 °C

100 °C

200 °C

300 °C

100 °C

200 °C

300 °C

kg/dm3 kN/mm2 10–6 × Κ–1 W/m·K J/kg·K Ω·mm2/m

X2CrNiN23-4 1.4362

X3CrNiMoN27-5-2 1.4460

X2CrNiMoN22-5-3 1.4462

X2CrNiMoCuN25-6-3 1.4507 7,8 200 194 186 180 13,0 13,5 14,0 15 500 0,8 Yes

X2CrNiMoN25-7-4 1.4410

X2CrNiMoCuWN25-7-4 1.4501

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 24: BS EN 10088-1

BS EN 10088-1:1995

© BSI 10-1998 19

List of references

See national foreword.

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI

Page 25: BS EN 10088-1

BSI389 Chiswick High RoadLondonW4 4AL

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

BSI Ð British Standards Institution

BSI is the independent national body responsible for preparing British Standards. Itpresents the UK view on standards in Europe and at the international level. It isincorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standardsshould make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. Wewould be grateful if anyone finding an inaccuracy or ambiguity while using thisBritish Standard would inform the Secretary of the technical committee responsible,the identity of which can be found on the inside front cover. Tel: 020 8996 9000.Fax: 020 8996 7400.

BSI offers members an individual updating service called PLUS which ensures thatsubscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should beaddressed to Customer Services. Tel: 020 8996 9001. Fax: 020 8996 7001.

In response to orders for international standards, it is BSI policy to supply the BSIimplementation of those that have been published as British Standards, unlessotherwise requested.

Information on standards

BSI provides a wide range of information on national, European and internationalstandards through its Library and its Technical Help to Exporters Service. VariousBSI electronic information services are also available which give details on all itsproducts and services. Contact the Information Centre. Tel: 020 8996 7111.Fax: 020 8996 7048.

Subscribing members of BSI are kept up to date with standards developments andreceive substantial discounts on the purchase price of standards. For details ofthese and other benefits contact Membership Administration. Tel: 020 8996 7002.Fax: 020 8996 7001.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, ofthe publications of the international standardization bodies. Except as permittedunder the Copyright, Designs and Patents Act 1988 no extract may be reproduced,stored in a retrieval system or transmitted in any form or by any means ± electronic,photocopying, recording or otherwise ± without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, ofnecessary details such as symbols, and size, type or grade designations. If thesedetails are to be used for any other purpose than implementation then the priorwritten permission of BSI must be obtained.

If permission is granted, the terms may include royalty payments or a licensingagreement. Details and advice can be obtained from the Copyright Manager.Tel: 020 8996 7070.

Lice

nsed

Cop

y: lb

ocvz

r lb

ocvz

r, M

arch

24,

200

2, U

ncon

trol

led

Cop

y, (

c) B

SI