Brownian flights [email protected] Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov...

55
Brownian flights [email protected] Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2) (1 ) (2)

Transcript of Brownian flights [email protected] Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov...

Page 1: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Brownian flights

[email protected]

Funded by: ANR Mipomodim,

A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

(1) (2)

Page 2: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 3: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

1)The physics of the problem.

Page 4: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

The polymers that possess electrical charges (polyelectrolytes) are soluble in the water because of hydrogen bondings.

The water molecules exhibit a dynamics made of adsorptions (due to hydrogen bondings) on the polymers followed by Brownian diffusions in the liquid.

Page 5: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 6: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Simulation of an hydrogen bond:

Page 7: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

The dynamics of the water molecules can be seen as an intermittent one: flights around the surface (« quick motion ») followed by a « slow » motion on the surface itself.

In this talk we will ignore the adsorption steps.

We are interested in the statistics of the flights , that is their duration and their length and wish to connect them to the geometry of the surface.

Page 8: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Brownian flights over a fractal nest:

P.L et al; P.R.L. (May 2006)

)(tFirst passage statistics for and )(r

Page 9: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Polymers and colloids in suspension exhibit rich and fractal geometry:

Page 10: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 11: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 12: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Main point: These statistics can be measured in experiences by using relaxometry methods in NMR (nuclear magnetic resonance).

Page 13: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

I(t+)

ttL /1)(

I(t)B0

L

A

A

L

time

I(t)

L

A

NMR EXPERIMENTATION

NMR Relaxation

R1slow(f) FTt(<I(0).I(t)>)

R1Slow(f)

f

Page 14: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Mathematical simulation of a flight:

We consider a surface or a curve which is fractal up to a certain scale, typically a piecewise affine approximation of a self-affine curve or surface.

We then choose at random an affine piece and consider a point in the complement of the surface nearby this piece.

We then start a Brownian motion from this point stopped when it hits back the surface and consider the length and duration of this flight.

Page 15: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

We have to precise the term « random »:

If we consider only one flight there are two natural models:

Uniform law: all points at a fixed vicinity of the surface have the same probability of being chosen as the starting point

The point is chosen as the first hitting point on the surface of a Brownian motion started from a distinguished point :=the harmonic measure

Page 16: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

In practise it is impossible to decide if it is the first flight.

If m is a distribution on the boundary, the law of the hitting point at the end of the flight is a new distribution T(m)

Is there an invariant distribution?

If one starts the process with one of the 2 above mentionned distributions, does the law of the nth hitting point converge to an invariant distribution?

Page 17: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

If we want to perform experiments one problem immediately arises:

The flights we consider are not first flights.

2) Experimenal results:

One solution: to use molecules that are non-fractal and homogeneous

Page 18: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 19: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

First Test: Probing a Flat Surface

An negatively charged particle AFM Observations

P.L et al Langmuir (2003)

Page 20: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

EXPERIMENTS VERSUS ANALYTICAL MODEL FOR FLAT INTERFACES

0

2

4

6

8

10

12

10-2 10-1 100 101

R1(s

-1)

Frequency (MHz)

-dR1/df

f (MHz)

10-3

10-2

10-1

100

101

102

103

10-2

10-1

100

101

Laponite Glass at C= 4% w/w

2

2

0 2

)2/1(

A

L

))/(2/1)/()//((1)(~ 2/3

002/1

0 L

tt /1)(

P.L. et al Europhysics letters, (2005), P.L. J. Phys: Condensed matter (2005)

Page 21: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 22: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Dilute suspension of Imogolite colloids

Almost )ln()(1 baR

Water NMR relaxation

Page 23: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Magnetic Relaxation Dispersion of Lithium Ion in Solution of DNA

DNA from Calf Thymus(From B. Bryant et al, 2003)

R1(s-1)

Page 24: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

3) Simulations

Page 25: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Brownian Exponants exponents: Influence of the surface roughness:

Self similarity/ Self affinity (D. Grebenkov, K.M. Kolwankar, B. Sapoval, P. Levitz)

2D

3D

Page 26: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

2

4 edd 3 edd

Page 27: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

12

Page 28: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

POSSIBLE EXTENSION TO LOW MINKOWSKI DIMENSIONS: (1<dsurface<2 with dambiant=3)

dsurface=1.25

Page 29: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

4) A simple 2D model.

We consider a simple 2D model for which we can rigorously derive the statistics of flights.

In this model the topological structure of the level lines of the distance-to-the-curve function is trivial.

Page 30: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 31: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 32: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 33: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Case of the second flight:

There is an invariant measure equivalent with harmonic measure

Page 34: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 35: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

5) THE 3D CASE.

Page 36: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

u

vU

General case: we want to compare the probability P(u,v,U) that a Brownian path started at u touches the red circle of center v and radius half the distance from v to the boundary of U before the boundary of U with its analogue P(v,u,U)

Page 37: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 38: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

This last result is not true in d=2 without some extra condition. But we are going to assume this condition anyhow to hold in any dimension since we will need it for other purposes.

In dimension d it is well-known that sets of co-dimension greater or equal to 2 are not seen by Brownian motion. For the problem to make sense it is thus necessary to assume that the boundary is uniformly « thick ». This condition is usually defined in terms of capacity. It is equivalent to the following condition:

Page 39: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Every open subset in the d-dimensional space can be partitionned (modulo boundaries) as a union of dyadic cubes such that:

(Whitney decomposition)

For all integers j we define Wj =the number of Whitney cubes of order j.

Page 40: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 41: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

We now wish to relate the numbers Wj to numbers related to Minkowski dimension.

For a compact set E and k>0 we define Nk as the number of (closed) dyadic cubes of order k that meet E.

Page 42: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 43: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 44: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

This gives a rigourous justification of the results of the simulations in the case of the complement of a closed set of zero Lebesgue measure.

For the complement of a curve in 2D in particular, it gives the result if we allow to start from both sides.

Page 45: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

A pair (U,E) where U is a domain and E its boundary is said to be porous if for every x in E and r>0 (r<diam(E)) B(x,r) contains a ball of radius >cr also included in U.

U

Page 46: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

If the pair (U,E) is porous it is obvious that the numbers Wj and Nj are essentially the same.

Problem: the domain left to a SAW is not porous.

So if the domain is porous, have a « thick » boundary and a Minkowski dimension, then the power-law satisfied by the statistics of the flights is the expected one.

Page 47: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

6) Self-avoiding Walks

Page 48: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

P.LEVITZ

Page 49: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

3/52

4 edd

Self-Avoiding Walk, 2ed

3 edd 3/7

S.A.W.

d=4/3

Page 50: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Theorem (Beffara, Rohde-Schramm): The dimension of the SLEk curve is 1+k/8.

Theorem (Rohde-Schramm): The conformal mapping from UHP onto Ut is Holder continuous (we say that Ut is a Holder domain).

Page 51: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

A Holder domain is weakly porous in the following sense:

If B(x,2-j) is a ball centered at the boundary then the intersection of this ball with the domain contains a Whitney square of order less than j+Cln(j).

As a corollary we can compare the Minkowski and Whitney numbers in the case of Holder domains:

Page 52: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Relation time-length:

Page 53: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)
Page 54: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Perspectives:

Taking into account the adsorption steps

Intermittent dynamics (predator-prey)

Strategy replaced by geometry

Page 55: Brownian flights zins@math.cnrs.fr Funded by: ANR Mipomodim, A.Batakis (1), D.Grebenkov (2),K.Kolwankar, P.Levitz (2), B.Sapoval, M.Zinsmeister (1) (2)

Link with the spectrum of the Laplacian and Weyl-Berry problem.

Link with reflected Brownian Motion and Benyamini-Chen-Rohde work.