Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance...

22
Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs width RADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche RADCOR2013, Lumley Castle, England Sept. 25, 2013

Transcript of Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance...

Page 1: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Bounding the Higgs Width using Interferometry

L. Dixon Bounding the Higgs width RADCOR2013 1

Lance Dixon (SLAC)with Ye Li [1305.3854] and Stefan HöcheRADCOR2013, Lumley Castle, England

Sept. 25, 2013

Page 2: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Introduction• Often said that LHC cannot measure the

width of the Higgs boson.• However, using interference with the continuum

background for gg gg, it will be possible to put an upper limit on the Higgs width that is much better than ~ 1-5 GeV possible directly.

• It may eventually be possible to get close to the Standard Model width of 4 MeV.

• Similar idea can work for gg ZZ, far from Higgs resonance Kauer; Caola, Melnikov, 1307.4935

L. Dixon Bounding the Higgs width RADCOR2013 2

Page 3: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Schrödinger’s Higgs

How to use quantum superposition

to learn something new about the Higgs (its lifetime)

L. Dixon Bounding the Higgs width RADCOR2013 3

Page 4: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Narrow resonance interference

L. Dixon Bounding the Higgs width RADCOR2013 4

shifts peak position

(apparent mass)

or spin 2 “G”

(assume)

dominantly real

shifts peak height

(event yield)

Page 5: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Interference effects and G

• All non-interference measurements at LHC give signal proportional to ci

2 . cf2/ G

• Invariant under scaling all ci,f uniformly,

ci,f x ci,f

G x4 G• Interference effects go like ci

. cf ,

break this degeneracy• Allow one to measure or bound Higgs width

L. Dixon Bounding the Higgs width RADCOR2013 5

LD, Y. Li 1305.3854

Page 6: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Mass shift from real part

L. Dixon Bounding the Higgs width RADCOR2013 6

Smear lineshape with Gaussian with width s = 1.7 GeV

Perform least squares fit to Gaussian at mass M + dM dM ~ 100 MeV in SM at LO

S. Martin, 1208.1533, 1303.3342; D. de Florian et al, 1303.1397

Page 7: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Diagrams for NLO mass shift LD, Y. Li, 1305.3854

L. Dixon Bounding the Higgs width RADCOR2013 7

Bern, de Freitas, LD, hep-ph/0109078

Page 8: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Mass shift at NLO

• Reduced by 40% from LO LD, Y. Li, 1305.3854

• Interference increases, but signal increases more

L. Dixon Bounding the Higgs width RADCOR2013 8

Page 9: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

NLO mass shift vs. jet veto pT

L. Dixon Bounding the Higgs width RADCOR2013 9

Page 10: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

NLO mass shift vs. lower cut on Higgs pT

• Big cancellation between gg and qg channel at large pT

• Allows use of pT > 30 or 40 GeV sample as “control” mass L. Dixon Bounding the Higgs width RADCOR2013 10

Also S. Martin 1303.3342

Page 11: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Two other possible control masses

1. ZZ* 4 leptons

2. Mass in gg in VBF enhanced sample LD, S. Hoeche, Y. Li, in progress

• In general, comparing two gg masses could reduce systematics associated with e g energy calibration.

L. Dixon Bounding the Higgs width RADCOR2013 11

Kauer,Passarino,1206.4803

Page 12: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Mass shift increases with G

• Allows one to measure or bound Higgs width• All non-interference measurements at LHC

give signal proportional to ci2 . cf

2/ G• Interference effects go like ci

. cf ,

break degeneracy of scaling all ci,f uniformly,

ci,f x ci,f

G x4 G

L. Dixon Bounding the Higgs width RADCOR2013 12

Page 13: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Coupling vs. width

• Coupling product cg . cg = cgg determined

by requiring that event yield is unaffected:

• Ignoring I,

L. Dixon Bounding the Higgs width RADCOR2013 13

Page 14: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Mass shift vs. width

• Measurement statistically limited now, ~ 800 MeV• Systematically limited in HL-LHC era, ~ 100-200 MeV

L. Dixon Bounding the Higgs width RADCOR2013 14

Page 15: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

What about spin 2?

• Rejection of spin 2 vs. spin 0

relies on distribution in

cosq* for gg .gg• Without interference, this is

~ 1 spin 0

~ 1 + 6 cos2q* + cos4q* 2m+

• How much distortion from

interference effects?• SM Higgs: < few % LD, Siu, hep-ph/0302233

L. Dixon Bounding the Higgs width RADCOR2013 15

LD, Höche, Li, to appear

ATLAS, 1307.1432

Page 16: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Strong helicity dependence of Im part of background 1-loop amplitude

L. Dixon Bounding the Higgs width RADCOR2013 16

Im

+

-

+-+

+-= O(mq

2/mH2) ~ 0

Im

+-+

+-= O(1)

Spin 0

Spin 2m+

Non-minimalspin 2 can interfere withother helicity amplitudes,but only thishelicity config.has Im part

Dicus, Willenbrock (1988)

Page 17: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

(spin 2) - 1-loop interference simple

L. Dixon Bounding the Higgs width RADCOR2013 17

G

Page 18: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Im part remarkably flat in cosq

L. Dixon Bounding the Higgs width RADCOR2013 18

LO pT cut

Page 19: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Size of interference as function of width G

L. Dixon Bounding the Higgs width RADCOR2013 19

• Event yield ~ • Normalize to SM Higgsat photon pT

cut = 40 GeV.• Quadratic equation for• Constructive, destructive solutions • Completely model independent with respect to coupling strengths,other channels.

Page 20: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Spin 2 yield might be strongly affected– even if cosq* distribution is not

L. Dixon Bounding the Higgs width RADCOR2013 20

Page 21: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Conclusions• Interference effects, in particular the mass shift in gg, allow the possibility of bounding the Higgs width to well under the direct experimental resolution, maybe eventually approaching the SM width. Now under study experimentally.

• A few possible control masses.• In principle, interference effects also important for

testing non-SM hypotheses – e.g. spin 2 in gg. In practice, distortion of the cosq* distribution is very small where it is measurable.

L. Dixon Bounding the Higgs width RADCOR2013 21

Page 22: Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR2013 1 Lance Dixon (SLAC) with Ye Li [1305.3854] and Stefan Höche.

Spin-2 mass shift from real part

L. Dixon Bounding the Higgs width RADCOR2013 22

Smear lineshape with Gaussian with width s = 1.7 GeV.Do least squares fit to Gaussian at mass M + dM.