Bouncing Your Way To Chaos Matt Aggleton Rochester Institute of Technology.

17
Bouncing Your Way To Chaos Matt Aggleton Rochester Institute of Technology
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    2

Transcript of Bouncing Your Way To Chaos Matt Aggleton Rochester Institute of Technology.

Bouncing Your Way To Chaos

Matt AggletonRochester Institute of Technology

Experimental Setup

Plastic tube

Watch glass

Vibrator arm

Accelerometer

Mechanicaloscillator

Sand bucket

Packing tape

1 inch

Sample Stage

• Watch glass– Automatic centering– Good approximation to flat– Automatic leveling

• Ball– Steel– 1/8 inch diameter

• Straw vs. Outer Tube– Viscous drag boundary

conditions– Centering

Watchglass

Straw

Outertube

Ball

1 inch

1/8 inch

• Forces on ball

• Dimensionless Variables

• Combine into independent dimensionless variables

vmgdt

xdm

2

2

The Math

• Once units are gone, only independent parameters left are Γ and μ

• Γ can be controlled via amplitude and frequency of oscillation

• μ’ = 6πRυ– R = ball radius

– υ = viscosity

Simpledrag term

A

xx ~

tt ~

effg

A 2

'

Wiring and Dataflow

LabVIEW

FunctionGenerator

Amplifier

DAQ Board

MechanicalOscillator

Accelerometer

LabVIEW Program

• Amplitude– Starting point– Step size– Endpoint

• Sampling– Sample Time– Cycle Time– Scan Rate

• DAQ limit 200KHz• 20KHz catches all hits

AmplitudeControls

File Controls

SamplingControls

ProgressIndicator

LabVIEW

• Easy interfacing with equipment– DAQ board

– IEEE 488.2

– Serial & Parallel

• Simple to learn• Wiring diagrams

instead of code

Data

Unfiltered Data Filtered Data

•Fourier Analysis •Subtract off first 3 dominant sinusoidal terms

•Set average value to zero

Time of Flight vs. Impact Time

• Time of flight: time ball is in air

• Impact time: time between ball impacts

• Accelerometer records impact

Low Coefficient of Restitution(impact time fails)

High Coefficient of Restitution(impact time succeeds)

Typical Data

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.5 1 1.5 2 2.5 3

Features of Graph• Data collected from

high Γ to low Γ• Single period on left• No obvious double

period region• Sharp transition to

chaosg

A 2

(s

econ

ds)

Hysteresis

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.5 1 1.5 2 2.5

g

A 2

(s

econ

ds) • Gamma

increasing

Hysteresis

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.5 1 1.5 2 2.5

g

A 2

(s

econ

ds) • Gamma

increasing• Gammadecreasing

Single vs. Double Periods

• At low Γ, ball bounces at each oscillation

• At high Γ, ball bounces at multiples of oscillations

• Single oscillation stable to lower Γ than multiple oscillations

One bounce for one oscillation

One bounce for two oscillations

Numerical Prediction of Double Periods

Chaotic dynamics of an air-damped bouncing ball, Naylor, et. al., Phys. Rev. E 66, 057201 (2002)

Experimental Confirmation of Double Periods

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g

A 2

(s

econ

ds)

Future Work

• Submerge ball in viscous fluid (in progress)– Analysis of drag force important– Vary radius, viscosity, buoyant effect– ____ is only for laminar flow in infinite fluid– We may be laminar, certainly not infinite

vFd

Acknowledgements

• Scott Franklin & research group

• Kevin, Melanie, Jesus, & Ken

• RIT Department of Physics