Bohmian trajectories from coherent states, Istanbul 3 July 2013

22
Bohmian quantum trajectories from coherent states Sanjib Dey Pseudo-Hermitian Hamiltonians in Quantum Physics XII Koc University, Istanbul 2-6 July 2013 Based on arXiv:1305.4619, with Prof. Andreas Fring (City University) Sanjib Dey (City University London) Bohmian trajectories from coherent states 1 / 22

Transcript of Bohmian trajectories from coherent states, Istanbul 3 July 2013

Page 1: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Bohmian quantum trajectories from coherent states

Sanjib Dey

Pseudo-Hermitian Hamiltonians in Quantum Physics XIIKoc University, Istanbul 2-6 July 2013

Based on arXiv:1305.4619, with Prof. Andreas Fring (City University)

Sanjib Dey (City University London) Bohmian trajectories from coherent states 1 / 22

Page 2: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Classical mechanics in complex plane

Two possibilities to obtain complex Hamiltonian :1 p2 + x2 + ix3

2 p2 + x2 ⇐ p = pr + ipi, x = xr + ixi

Direct connection : complex Hamiltonians⇐⇒ P T symmetry.

Solve canonical equations of motion :

xr =12

(∂Hr

∂pr+

∂Hi

∂pi

), xi =

12

(∂Hi

∂pr− ∂Hr

∂pi

),

pr = −12

(∂Hr

∂xr+

∂Hi

∂xi

), pi =

12

(∂Hr

∂xi− ∂Hi

∂xr

)

Sanjib Dey (City University London) Bohmian trajectories from coherent states 2 / 22

Page 3: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Example : Poschl-Teller potential

H =p2

2m+

V0

2

[λ(λ−1)

cos2(x/2a)+

κ(κ−1)sin2(x/2a)

]− V0

2(λ+κ)2 for 0≤ x≤ aπ

Complexify : x⇒ xr + ixi, p⇒ pr + ipi

Real and imaginary part

Hr =p2

r −p2i

2m− V0

2(λ+κ)2

+V0

[(λ2−λ)

[cosh

( xia

)cos( xr

a

)+1][

cosh( xi

a

)+ cos

( xra

)]2

−(κ2−κ)

[cosh

( xia

)cos( xr

a

)−1][

cos( xr

a

)− cosh

( xia

)]2

]

Hi =pipr

m+V0

[(λ2−λ)sinh

( xia

)sin( xr

a

)[cosh

( xia

)+ cos

( xra

)]2 − (κ2−κ)sinh( xi

a

)sin( xr

a

)[cos( xr

a

)− cosh

( xia

)]2]

P T : xr→−xr, xi→ xi, pr→ pr, pi→−pi, i→−iSanjib Dey (City University London) Bohmian trajectories from coherent states 3 / 22

Page 4: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Classical trajectory : Poschl-Teller potential

- 2500

- 2500- 2500

- 2500- 2500

- 2500

- 2000

- 2000

- 2000

- 2000

- 2000

- 2000

- 1500

- 1500

- 1500

- 1500

- 1500

- 1500

- 1000 - 1000

- 1000 - 1000

- 1000

- 1000

- 500

- 500

0

00

500

500500

(a)xi

xr

- 6 - 4 - 2 0 2 4 6

- 3

- 2

- 1

0

1

2

3

- 2500

- 2500

- 2500

- 2500

- 2000

- 2000- 2000

- 2000- 1500

- 1500- 1500

- 1500- 1000

- 1000

- 1000

- 1000

- 500

- 500

- 500

- 500

00

0

0 0

0

0

500

500

500

500

(b)xi

xr

- 6 - 4 - 2 0 2 4 6

- 3

- 2

- 1

0

1

2

3

Blue : x0 = 4.5, p0 = 41.8376i, E =−31.7564Black : x0 = 3+1.5i, p0 =−30.1922+0.385121i, E =−6.55991−13.5182i

Sanjib Dey (City University London) Bohmian trajectories from coherent states 4 / 22

Page 5: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Can we explain the motion of the quantum particle in thesame way??

Sanjib Dey (City University London) Bohmian trajectories from coherent states 5 / 22

Page 6: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Bohmian mechanics

Quantum theory⇒ Solution of Schrodinger equation : ψ⇒ Probabilitiesof actual result.

Is it possible to find some other interpretation?

David Bohm(1952)⇒ Alternative trajectory based interpretation.

Undoubtedly successful : photodissociation problems, tunnellingprocess, atom diffraction by surfaces, high harmonic generation etc.

Bohmian mechanics =⇒ Still ongoing and controversial.Keeping interpretational issues aside =⇒ Apply it.

Sanjib Dey (City University London) Bohmian trajectories from coherent states 6 / 22

Page 7: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Bohmian mechanics (real case)

Time dependent Schrodinger equation :

ih∂ψ(x, t)

∂t=− h2

2m∂2ψ(x, t)

∂x2 +V(x)ψ(x, t)

WKB polar decomposition :

ψ(x, t) = R(x, t)eih S(x,t), R(x, t),S(x, t) ∈ R

Substitute ψ(x, t) into Schrodinger equation and separate real and imaginarypart :

St +(Sx)

2

2m+V(x)− h2

2mRxx

R= 0 ⇐ Quantum Hamilton-Jacobi equation

mRt +RxSx +12

RSxx = 0 ⇐ Continuity equation

Sanjib Dey (City University London) Bohmian trajectories from coherent states 7 / 22

Page 8: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Real Bohmian

∗ Velocity :

mv(x, t) = Sx =h2i

[ψ∗ψx−ψψ∗x

ψ∗ψ

]∗ Quantum potential :

Q(x, t) =− h2

2mRxx

R=

h2

4m

[(ψ∗ψ)2

x

2(ψ∗ψ)2 −(ψ∗ψ)xx

ψ∗ψ

]

∗ Effective potential Veff(x, t) = V(x)+Q(x, t).∗ Two options to compute quantum trajectories :

1 Solve⇒ v(x, t)2 Solve⇒ mx =−∂Veff/∂x

Sanjib Dey (City University London) Bohmian trajectories from coherent states 8 / 22

Page 9: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Bohmian mechanics (complex case)

∗ Decompose :ψ(x, t) = e

ih S(x,t), S(x, t) ∈ C

∗ Substitute ψ(x, t)⇒ time dependent Schrodinger equation :

St +(Sx)

2

2m+V(x)− ih

2mSxx = 0

∗ Velocity :

mv(x, t) = Sx =hi

ψx

ψ

∗ Quantum potential :

Q(x, t) =− ih2m

Sxx =−h2

2m

[ψxx

ψ− ψ2

x

ψ2

]∗ Less explored in the literature.

Sanjib Dey (City University London) Bohmian trajectories from coherent states 9 / 22

Page 10: Bohmian trajectories from coherent states, Istanbul 3 July 2013

What do we learn from Bohmian mechanics??

Unlike the usual interpretation, it gives us a system in a precisely definablestate, whose dynamics are determined by definite laws, analogous to classical

equations of motion.

Sanjib Dey (City University London) Bohmian trajectories from coherent states 10 / 22

Page 11: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Generalised Klauder coherent state

Klauder coherent state

ψJ(x, t) :=1

N (J)

∑n=0

Jn/2 exp(−iωten)√ρn

φn(x), J ∈ R+0

ρn := ∏nk=1 ek, N 2(J) := ∑

k=0 Jk/ρk, ρ0 = 1

SummaryCoherent states ψJ(x, t)⇒ Bohmian scheme⇒ Bohmian trajectories.

Draw classical trajectories.

How close !!! coherent states⇐⇒ classical case.

Sanjib Dey (City University London) Bohmian trajectories from coherent states 11 / 22

Page 12: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Application : Poschl-Teller model (real case)

φn(x) =1√Nn

cosλ

( x2a

)sinκ

( x2a

)2F1

[−n,n+κ+λ;k+

12

;sin2( x

2a

)]Stationary state Bohmian :

v(t) = 0 ⇐ Not the behaviour of a classical particle.

Klauder coherent state :

ψJ(x, t) :=1

N (J)

∑n=0

Jn/2 exp(−iωten)√ρn

φn(x)

ρn = n!(n+κ+λ)n, N 2(J) = 0F1 (1+κ+λ;J)

Classical solution :

x(t) = a arccos

[α−β

2+√

γcos

(√2Em

ta

)], α, β, γ constant

Sanjib Dey (City University London) Bohmian trajectories from coherent states 12 / 22

Page 13: Bohmian trajectories from coherent states, Istanbul 3 July 2013

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 02 . 0 0

2 . 0 1

2 . 0 2

2 . 0 3

2 . 0 4

2 . 0 5

x ( t )

t

( a )

0 5 10 15 20 252

3

4

5

6

(c)

J = 20 J = 10 J = 2 J = 20.2846

x(t)

t

Qualitatively not identical with classical trajectories !!

Let us look at the uncertainty !!

Let us look at the behaviour of|ψ(x, t)|2 with time too.

Sanjib Dey (City University London) Bohmian trajectories from coherent states 13 / 22

Page 14: Bohmian trajectories from coherent states, Istanbul 3 July 2013

0 5 1 0 1 5 2 0 2 50

1

2

3

4

5

6

7

Q = - 0 . 3 0 7 5 9 3 Q = - 0 . 1 4 9 5 2 3 Q = - 0 . 0 4 2 5 5 5

∆x ∆p

t

( a )

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

t = 0t = 1t = 10t = 20t = 30

|(x

,t)|2

x

(b)

Not a squeezed coherent state, ∆x∆p ≫ }/2 !!Shape of the wave packet changes with time, i.e. not a classical particle!!

Need to localise the wavepacket.

How can we do that??

Sanjib Dey (City University London) Bohmian trajectories from coherent states 14 / 22

Page 15: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Mandel parameter

ψJ(x, t) := 1N (J)

∑n=0

Jn/2 exp(−iωten)√ρn

φn(x)

ψJ(x, t) :=∞

∑n=0

cn(J)e−iωten |φn〉, cn =Jn/2

N (J)√

ρn⇐ weighting function

We need, ψJ(x, t)⇒ to be well localised.

To examine : check weighting probability, |cn|2⇒ Poissonian.

Deviation of |cn|2 from Poissonian is captured by Mandel parameter, Q .

If ψJ is strongly weighted around 〈n〉, Q = ∆n2

〈n〉 −1 = J ddJ ln d

dJ lnN 2

Q = 0 ⇒ Pure Poissonian, Q > 0 ⇒ Super-Poissonian.Q < 0 ⇒ Sub-Poissonian, |Q | � 1 ⇒ Quasi-Poissonian.

Sanjib Dey (City University London) Bohmian trajectories from coherent states 15 / 22

Page 16: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Sub-Poissonian regime

0 5 1 0 1 5 2 0 2 50

1

2

3

4

5

6

7

Q = - 0 . 3 0 7 5 9 3 Q = - 0 . 1 4 9 5 2 3 Q = - 0 . 0 4 2 5 5 5

∆x ∆p

t

( a )

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

t = 0t = 1t = 10t = 20t = 30

|(x

,t)|2

x

(b)

Q =−0.307593,−0.149523,−0.042555

We are in sub-Poissonian regime !!!What happens in the quasi-Poissonian, Q→ 0 regime??

Sanjib Dey (City University London) Bohmian trajectories from coherent states 16 / 22

Page 17: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Q(J,κ+λ) = J2+κ+λ

0F1(3+κ+λ;J)0F1(2+κ+λ;J) −

J1+κ+λ

0F1(2+κ+λ;J)0F1(1+κ+λ;J)

Let us control κ, λ and J, so that Q→ 0

0 5 10 15 20 25

0.5100

0.5103

0.5106

0.5109

0.5112

x p

t

Q= -0.000054529 Q= -0.000013634 Q= -0.000002726

(a)

0.0 0.4 0.8 1.2

0.5000055

0.5000070

0 1 2 3 4 5 60

1

2

3

t = 0 , J = 0 . 0 0 2 2 9 0 6 t = 0 . 6 5 , J = 0 . 0 0 2 2 9 0 6 t = 0 , J = 2 t = 4 , J = 2|Ψ

(x,t)|2

x

( b )

Two sets : κ = 90, λ = 100, J = 2,0.5,0.1 andκ = 2, λ = 3, J = 2,0.5,0.1

Sanjib Dey (City University London) Bohmian trajectories from coherent states 17 / 22

Page 18: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Quasi-Poissonian regime

0.0 0.2 0.4 0.6 0.8 1.02.00

2.01

2.02

2.03

2.04

2.05 (a)

J = 2.0 J = 0.5 J = 0.1

x(t)

t 0 5 10 15 20 25 302.00

2.01

2.02

2.03

2.04

2.05

2.06 (b)

J = 0.0022906 J = 0.00057265 J = 0.000114531

x(t)

t

Sanjib Dey (City University London) Bohmian trajectories from coherent states 18 / 22

Page 19: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Stationary state : complex case

ψn(x) =1√Nn

cosλ

( x2a

)sinκ

( x2a

)2F1

[−n,n+κ+λ;k+

12

;sin2( x

2a

)]

-6 -4 -2 0 2 4 6

-2

-1

0

1

2x

0= ±0.1

x0= ±1.5

x0= ±2.0

x0= ±2.45

x0= 5.0

x0= 5.5

x0(t)

t

(a)

-6 -4 -2 0 2 4 6-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

x0= ±0.1x0= ±0.3x0= ±0.9x0= ±1.5x0= ±2.7x0= ±3.6x0= ±4.5x0= ±5.0x0= ±5.5

x5(t)

t

(b)

Sanjib Dey (City University London) Bohmian trajectories from coherent states 19 / 22

Page 20: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Classical and Klauder state

- 0.9

- 0.9 - 0.9

- 0.9 - 0.9

- 0.9

- 0.9

- 0.9

- 0.9

- 0.9

- 0.8 - 0.8

- 0.8 - 0.8- 0.8

- 0.8

- 0.8- 0.8

- 0.8- 0.8

- 0.7

- 0.7

- 0.6

- 0.6

- 0.5

- 0.5

- 0.4

- 0.4

- 0.3- 0.3- 0.3 - 0.3 - 0.3

- 0.3- 0.2- 0.2

- 0.2- 0.2

- 0.2 - 0.1- 0.1- 0.1- 0.1 - 0.1

xi

xr

(a)

- 20 - 15 - 10 - 5 0 5

- 3

- 2

- 1

0

1

2

3

- 0.8

- 0.8

- 0.8

- 0.8

- 0.8- 0.8

- 0.8

- 0.8

- 0.8

- 0.6- 0.6

- 0.6- 0.6

- 0.6

- 0.6

- 0.6

- 0.6

- 0.6

- 0.4- 0.4- 0.4

- 0.4 - 0.4

- 0.4

- 0.4- 0.4

- 0.4

- 0.2

- 0.2

- 0.2 - 0.2

- 0.2- 0.2

- 0.2 - 0.2

- 0.2

00

00

0

0

00 0

0

0

0

0

0

0.2

0.20.2

0.2

0.20.2

0.2 0.2

0.2

0.4

0.4

0.4

0.4

0.4 0.4

0.4

0.4

0.4

0.6

0.60.6

0.6

0.6

0.6

0.6

0.6

0.6

0.80.80.8

0.8

0.8

0.8

0.8

0.8

0.8

xr

xi (b)

- 20 - 15 - 10 - 5 0 5

- 3

- 2

- 1

0

1

2

3

Sub-Poissonian regime, Q < 0

Sanjib Dey (City University London) Bohmian trajectories from coherent states 20 / 22

Page 21: Bohmian trajectories from coherent states, Istanbul 3 July 2013

Classical and Klauder state

- 2500

- 2500- 2500

- 2500- 2500

- 2500

- 2000

- 2000

- 2000

- 2000

- 2000

- 2000

- 1500

- 1500

- 1500

- 1500

- 1500

- 1500

- 1000 - 1000

- 1000 - 1000

- 1000

- 1000

- 500

- 500

0

00

500

500500

(a)xi

xr

- 6 - 4 - 2 0 2 4 6

- 3

- 2

- 1

0

1

2

3

- 2500

- 2500

- 2500

- 2500

- 2000

- 2000- 2000

- 2000- 1500

- 1500- 1500

- 1500- 1000

- 1000

- 1000

- 1000

- 500

- 500

- 500

- 500

00

0

0 0

0

0

500

500

500

500

(b)xi

xr

- 6 - 4 - 2 0 2 4 6

- 3

- 2

- 1

0

1

2

3

Quasi-Poissonian regime, Q → 0Perfect matching : Classical⇐⇒ Klauder coherent state

Sanjib Dey (City University London) Bohmian trajectories from coherent states 21 / 22

Page 22: Bohmian trajectories from coherent states, Istanbul 3 July 2013

ConclusionDirect connection : quantum⇐⇒classical, through Bohmiantrajectories.

Q→ 0, Klauder state is a perfect coherent state for both real andcomplex cases.

Klauder state is canonical and squeezed state for Harmonic Oscillator.

Must take Klauder state for generalised models, instead of Glauber state.

OutlookOne can study different potentials especially the complex case.

Also noncommutative models where one has direct connection with P T ,dealing with pseudo-Hermitian Hamiltonians.

Interesting to explore how the conventional quantum mechanicaldescription can be reproduced from Bohmian scheme.

Thank you for your attentionSanjib Dey (City University London) Bohmian trajectories from coherent states 22 / 22