Blankertz Bbci Print

27
Enhancing Brain-Computer Interfaces by Machine Learning Techniques Benjamin Blank ertz 1 , Guido Dornhege 1 , Steven Lemm 1,2 , Gabriel Curio 2 , and Klaus-Robert Müller 1,3 [email protected] 1 Intelligent Data Analysis Group Fraunhofer-FIRST, Berlin, Germany 2 Neurophysics Group, Department of Neurology Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany 3 Department of Computer Science University of Potsdam, Germany [typeset using Foil T E X]

Transcript of Blankertz Bbci Print

Page 1: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 1/27

Enhancing Brain-Computer Interfaces

by Machine Learning Techniques

Benjamin Blankertz1, Guido Dornhege1, Steven Lemm1,2,Gabriel Curio2, and Klaus-Robert Müller1,3

[email protected]

1Intelligent Data Analysis GroupFraunhofer-FIRST, Berlin, Germany

2Neurophysics Group, Department of NeurologyCampus Benjamin Franklin, Charité University Medicine, Berlin, Germany

3Department of Computer ScienceUniversity of Potsdam, Germany

[typeset using FoilTEX]

Page 2: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 2/27

1

Overview of the Talk

• BCI research

◦ introduction

◦ invasive, dependent, evoked potential BCIs

◦ operant conditioning vs. detection of cognitive states

• Can ML help BCI research?

• The Berlin BCI project

◦ BBCI system design

◦ recent developments

Page 3: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 3/27

2

Brain-Computer Interfacing

Fz

Cz

Pz

Oz

EEG signal e.g. LDA control device, e.g.

       F     e     a      t

     u     r     e     s

        (        d

    ≈

       4       0       0        )

BCI: Translation of human intentions into a technical control signal

without using activity of muscles or peripheral nerves

Page 4: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 4/27

3

Different Ways to Do It

invasive non-invasiveimplanted sensors (electrode array,

needle electrodes, subdural ECoG)

without penetrating the scalp, mostly

EEG

dependent independenton non CNS activity, e.g., controlledeye movement

from peripheral muscles and nerves,using only CNS activity

evoked potentials unstimulated brain signalsrequire stimuli, users modulate (auto-matic or voluntarily) brain responses

users can voluntarily produce the re-quired signals

synchronous asynchronouscommands can only be emitted syn-

chronously with an external pace

the system detectes when the user

wants to emit a command

operant conditioning detection of mental states

Page 5: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 5/27

4

Invasive BCIs, e.g., Nicolelis et al.

Brain activity of monkeysis measures from implanted

electrodes.After training an algorithmon the firing rates whileperforming real movements,the monkey can control arobotic arm by brain activity

alone.

Figure taken from [Nicolelis et al,

2000]

[Laubach et al., 2000,

Kennedy et al., 2000,Reina et al., 2001,

Levine et al., 2000]

Page 6: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 6/27

5

BCI using SSVEP

Regarding a stimulus blinking at a frequency between 7 and 30 Hzevokes a rhythm of the same frequency in the visual cortex.

2 3 4

6 7 85

1

9 0

In the Beijing setup each button flashes atan individual frequency. By spectral analysisof the EEG the regarded button can be de-tected from 1 s windows.

[dependent, asynchronous, evoked poten-tials]

[Middendorf  et al., 2000, Cheng et al., 2002]

Page 7: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 7/27

6

BCI using the P300 Component

An awaited infrequent stimulus (deviant) in a series of standardstimuli elicits a P300 component at central scalp position.

In the Donchin setup the subjectconcentrates on a letter of a 6×6symbol matrix. Rows and columns arehighlighted several times in randomorder.

P300 components are most stronglyelicited when the row resp. column isflashed which contains the selectedletter.

[independent?, synchronous, evoked

potentials]

[Farwell and Donchin, 1988,

Meinicke et al., 2003]

Page 8: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 8/27

7

Opposing BCI Approaches

In the following only non-invasive, independent, unstimulated BCIs will be considered.

Operant Conditioning.

• subjects learn to voluntary con-trol changes of particular compo-nents/features of the EEG.

procedure:

• provide feedback of a specific EEGfeature, e.g. as cursor movement;

• subjects concentrate on moving thecursor to a given target.

• typically some parameters are dy-namically adapted, but the bulk of the learning load is on the user.

Detection of Mental States.

• machines learn to recognize the specificmental states of the particular user.

procedure:

• a set of mental states is chosen (discrim-inability, appropriateness for application).

• in a controlled measurement subjects pro-duce brain signals according to requestedmental states.

• after training a classifier the natural men-tal states of the subject can be recognizedwithout subject training.

Page 9: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 9/27

8

Operant Conditioning: the Tübingen Group

The slow cortical potentals (SCPs) at central scalp position can be voluntarycontrolled. But this learning process might require many training sessions.

The yellow ball travels at a constant speedfrom left to right, vertically controlled bySCPs. When the ball reaches the rightborder one of the targets gets selected.

When an acceptable accuracy is reachedafter some training sessions, subjects areswitched to a language support program.

base-line

feed-back

0 2 4-10time [s]

[Birbaumer et al., 2000, Hinterberger et al., 2004]

Page 10: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 10/27

9

Operant Conditioning: the Albany Group

The µ rhythm in sensorimotor cortex is known to be susceptible to conditioning.However, learning the voluntary control takes several training seesions.

The blue ball travels at a constant speed

from left to right. Vertical movementis determined by a linear equation fromspontaneous µ and/or β  power at 1 to3 Laplace filtered electrodes.

[Wolpaw et al., 2003, McFarland et al., 2000]

Page 11: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 11/27

10

Detection of Mental States: the Graz Group

Motor related mental states arecharacterized by a modulation

(ERD) of the µ-rhythm.

This can be used for BCI systems that do notrequire extensive training time. In the teletennis

game below the racket can be controlled by leftvs. right hand imagery.

[Pfurtscheller et al., 2003,

Peters et al., 2001]

other groups, e.g., [Sykacek et al., 2003, Millán et al., 2002, Parra et al., 2002]

Page 12: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 12/27

11

Challenges in BCI Research

At present, the applicability of such a system is severely limited by

• high subject variability in performance

• low detection rates of mental states

• slow command speed

• low number of possible decisions per command

• slow response times

• cumbersome preparation

When those limitations are overcome to a sufficient degree, a whole range of new userinterface applications might emerge.

Page 13: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 13/27

12

Why a Machine Learning Approach?

• The neurophysiology of the mental states that are used in BCIs are well-known.

• For example, the intention for a hand movement is reflected by the so calledlateralized readiness potential (LRP): a negative shift of the brain potentialscontralateral to the hand.

−1000 −500 0 500

−4

−2

0

2

C3

time [ms]

  e   l  e  c   t  r   i  c  a   l  p  o   t  e  n   t   i  a   l

   [     µ      V      ]

−1000 −500 0 500

−4

−2

0

2

C4

time [ms]

  e   l  e  c   t  r   i  c  a   l  p  o   t  e  n   t   i  a   l

   [     µ      V      ]

left tap [−200 −100] ms right tap [−200 −100] ms

® It seems possible to extract simple features that very well distinguish between themental states.

• What the hack do we need ML for?

Page 14: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 14/27

13

Subject-Specificity

• Traditional neurophysiology shows you only the ›average brain‹.

• In BCIs we need to classify single-brain single-trials.

• Even averages of single brains’ signals show a great diversity:

aa: left tap [−200 −100] ms aa: right tap [−200 −100] ms af: left tap [−200 −100] ms af: r ight tap [−200 −100] ms aj: left tap [−200 −100] ms aj: r ight tap [−200 −100] ms

ak: left tap [−200 −100] ms ak: right tap [−200 −100] ms al: left tap [−200 −100] ms al: r ight tap [−200 −100] ms an: left tap [−200 −100] ms an: right tap [−200 −100] ms

• Above are intra-subject averages of the pre-movement period -200 to -100 ms priorto a left resp. right hand finger tap.

Page 15: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 15/27

14

BBCI towards Patient Applications

0

−1200

−1200

2

−1000

−1000

4

−800

−800

6

−600

−600

8

−400

−400

10

−200

−200

0

−30

−10

100

−20

−5

200

−10

0

300

0

5

400

10

10

500

20

time [msec]

30

      [     µ      V      ]

time [msec]

      [     µ      V      ]

filtered signalfeature values

windowed signalwindow

Frequency [Hz]

δ ϑ α

← baseline only

discarded binsselected bins

[−520 −120] ms

F

FC

C

CP

multi−channel EEG

 [  −2 4  0 m s  ]  

 [  −1  9  0 m s  ]  

 [  −1 4  0 m s  ]  

motordetec-tion

motordiscrimi-nation

SPELLING IS

C . . . E F . . . K

error correctionor rejection unit

asynchronous feedbacke.g. mental typewriter

LRP feature extractionbrain signal classifier

error detectionNe/Pe features

Page 16: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 16/27

15

BBCI towards Gaming Applications

−1200 −1000 −800 −600 −400 −200−10

−5

0

5

10

time [msec]

      [     µ      V      ]

filtered signalfeature values

[−520 −120] ms

F

FC

C

CP

multi−channel EEG

C3 C4

rightleft

       l      e       f       t

      r       i      g       h       t

       f      o      o       t

low-pass filter

FFT based

subject-specificband-pass filter,e.g. 7-14Hz,-> multi-classCSP

band-pass4-40 Hz ->AR coefs.

continuousfeedback

multi-channelEEG

multiple feature extration classifier

CSPx 

featurecombiner’PROB’

ARx 

MRPx 

or

• So far, for online feedback we used only the CSP features.

Page 17: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 17/27

16

Common Spatial Patterns (CSP) for Two Classes

Original data: Each class has a specific spatial extension.Let Σ

1and Σ

2be the covariance matrices of the two classes.

The blue cross visualizes the covarianz matrix of  Σ1 + Σ2.

Make a whitening of  Σ1 + Σ2, i.e., determine matrix P  such thatP (Σ1 + Σ2)P  = I  (possible due to positive definiteness of Σ1 + Σ2).® Principal axis of the classes are perpendicular. Define: Σ̂i = P ΣiP .

Calculate orthogonal matrix R and diagonal maxtrix D by spectral theorysuch that Σ̂1 = RDR. Therefore Σ̂2 = R(1−D)R since Σ̂1+Σ̂2 = I .® Variance along the axis of input space is complementatory with respectto the two classes.

Essential idea for multi-class extension:CSP is based on the simultaneous diagonalization of two covariancematrices with corresponding eigenvalues summing up to 1.

Page 18: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 18/27

17

Extension of CSP to Multi-Class Problems

Find matrix R and diagonal (Di)i=1,...N  with elements in [0, 1], such that

RΣiR

= Di for all i = 1,...,N  andN 

i=1 Di = I .For N > 2 only approximate solutions exist. Choose patterns corresponding to thehighest eigenvalue score defined by score(λ) := max(λ, 1−λ

1−λ+λ(N −1)2).

CSPs of band-pass filtered EEG signals reflect ERD/ERS effects.As features vectors variances of the projected signals are calculated. Then use yourfavorite multi-class classifier. [Dornhege et al., 2004a, Dornhege et al., 2004b]

Page 19: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 19/27

18

Combination of EEG features

Some mental activities or states are reflected by different neurophysiological features.Motor related brain activity (actual movement, imagery, intentions) is reflected by

LateralizedReadinessPotential (LRP)

               [           r

        2                    ]

0 1000 2000 3000 [ms]

C4 lap

0 1000 2000 3000 [ms]

−1

−0.5

0

0.5

C3 lap

                    [     µ      V      ]

® early distinction be-tween the signals of left and right trials.

Event-RelatedDesynchronization(ERD)

               [           r

        2                    ]

0 1000 2000 3000 [ms]

C4 lap

0 1000 2000 3000 [ms]

−20

0

20

C3 lap

     [     %     ]

® long persisting dis-tinction between thesignals of  left andright trials.

® As seen from the time courses, the LRP and the ERD seem to reflect independent cortical processes. [Dornhege et al., 2003, Dornhege et al., 2004a]

Page 20: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 20/27

19

Combination of EEG features

LRP ERDWhen different EEG features provide complementaryinformation, a suitable feature combination is likely toboost classification rates.

The covariance matrix of a concatenated feature vector(LRP and ERD features) reveals only little inter-featurecorrelation. ® independence might be a valid model

assumption.

Furthermore combined features have the potential of being more robust againstartifacts, since

• oscillatory features, as ERD, are susceptible to EMG artifacts, while

• slow potential features, as LRPs, are susceptible to EOG and drift artifacts.

Page 21: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 21/27

20

Feature Combination Based on Independence

Goal: find the Bayes optimal classifier under the assumption that the features arenormally distributed with equal covariance matrices and independent.

Let X i for i ∈ F , e.g., F  = {LRP, ERD}, be random variables for the features andY  ∈ L, e.g., L = {L, R, F} for the labels. Assume

• (X i|Y  = y) ∼ N (µi,y, Σi) for all i ∈ F, y ∈ L and

• (X i|Y )i∈F  are independent.

This leads to the following decision rule for observed xi:

Decide for class argmaxy∈L

i∈F 

wi,yxi + bi,y

with wi,y := Σ−1i µi,y and bi,y = −0.5µ

i,ywi,y for i ∈ F, y ∈ L

Page 22: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 22/27

21

Different Quality of LRP and ERD Features

based on ERD features

0 5 00 1 00 0 1 50 0 2 00 0 2 50 0 3 00 0 3 50 0 4 00 0 4 50 0 5 00 0−15

−10

−5

0

5

10

15leftright

based on LRP

0 5 00 1 00 0 1 50 0 2 00 0 2 50 0 3 00 0 3 50 0 4 00 0 4 50 0 5 00 0−10

−8

−6

−4

−2

0

2

4

6leftright

based on combination of the two

0 5 00 1 00 0 1 50 0 2 00 0 2 50 0 3 00 0 3 50 0 4 00 0 4 50 0 5 00 0−15

−10

−5

0

5

10

15leftright

The combination of ERD andLRP features exploits the mer-its of the two: rapid responseof LRP features and the persis-tence of ERD features.

Page 23: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 23/27

22

Multi-Class Feature Combination Results

aa2 aa3 ac af3 af6 ah ak ar0

0.2

0.4

0.6

0.8

1 #2

#3

#4

#5

#6

comb

Information Transfer Rate

[bits per decision] for 6subjects in an imagery ex-periment with up to 6mental states. Black top-pings shows the gain ob-tained by feature combi-

nation.

® To use more than 2 classes in all but one case useful. In both experiments withmore than 3 classes the best result is achieved with 4 classes.

® Our feature combination method essentially improve classification performance.Note that without this methods best results are at 3 not at 4 classes.

Page 24: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 24/27

23

Conclusion

• ML adapts BCIs to the brain of the particular user.

• ML can decrease the learning load imposed on the user.

• feature combination can boost classification accuracies and combine the merits of the single features.

Ongoing Research in the Berlin BCI project

• improve on 2-D cursor control

• feedback experiments with feature combination

• further feedback applications including mental typewriter

• online adaptve CSP version to account for EEG non-stationarity

• detection of movement intentions regarding phantom limbs in amputees

Page 25: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 25/27

24

References

[Review articles]

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan,

“Brain-computer interfaces for communication and control”, Clin. Neurophysiol., 113: 767–791, 2002.

[2] A. Kübler, B. Kotchoubey, J. Kaiser, J. Wolpaw, and N. Birbaumer, “Brain-Computer

Communication: Unlocking the Locked In”, Psychol. Bull., 127(3): 358–375, 2001.

[3] E. A. Curran and M. J. Stokes, “Learning to control brain activity: A review of the production and

control of EEG components for driving brain-computer interface (BCI) systems”, Brain Cogn., 51:

326–336, 2003.

[Publications of the Berlin BCI group]

see http://ida.first.fhg.de/projects/bci/bbci_official/http://ida.first.fhg.de/projects/bci/bbci_official/http://ida.first.fhg.de/projects/bci/bbci_official/

[BCI Competition: watch out for the next one]

see http://ida.first.fhg.de/projects/bci/competition/http://ida.first.fhg.de/projects/bci/competition/http://ida.first.fhg.de/projects/bci/competition/

Page 26: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 26/27

25

References (part 2)

[Birbaumer et al., 2000] N. Birbaumer, A. Kübler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen,B. Kotchoubey, N. Neumann, and H. Flor. The though translation device (TTD) for completly paralyzed patients. IEEE 

Trans. Rehab. Eng., 8(2):190–193, June 2000.

[Cheng et al., 2002] M. Cheng, X. Gao, S. Gao, and D. Xu. Design and implementation of a brain-computer interface withhigh transfer rates. IEEE Trans. Biomed. Eng., 49(10):1181–1186, 2002.

[Dornhege et al., 2003] Guido Dornhege, Benjamin Blankertz, Gabriel Curio, and Klaus-Robert Müller. Combining featuresfor BCI. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Inf. Proc. Systems (NIPS 02), volume 15,pages 1115–1122, 2003.

[Dornhege et al., 2004a] Guido Dornhege, Benjamin Blankertz, Gabriel Curio, and Klaus-Robert Müller. Boosting bit rates innon-invasive EEG single-trial classifications by feature combination and multi-class paradigms. IEEE Trans. Biomed. Eng.,2004. in revision.

[Dornhege et al., 2004b] Guido Dornhege, Benjamin Blankertz, Gabriel Curio, and Klaus-Robert Müller. Increase informationtransfer rates in BCI by CSP extension to multi-class. In Advances in Neural Inf. Proc. Systems (NIPS 03), volume 16,2004. to appear.

[Farwell and Donchin, 1988] L.A. Farwell and E. Donchin. Talking off the top of your head: toward a mental prosthesisutilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol., 70:510–523, 1988.

[Hinterberger et al., 2004] Thilo Hinterberger, Stefan Schmidt, Nicola Neumann, Jürgen Mellinger, Benjamin Blankertz,Gabriel Curio, and Niels Birbaumer. Brain-computer communication with slow cortical potentials: Methodology and criticalaspects. IEEE Trans. Biomed. Eng., 2004. to appear.

[Kennedy et al., 2000] P.R. Kennedy, R.A.E. Bakay, M.M. Moore, K. Adams, and J. Goldwaithe. Direct control of acomputer from the human central nervous system. IEEE Trans. Rehab. Eng., 8(2):198–202, 2000.

[Laubach et al., 2000] M. Laubach, J. Wessberg, and M.A. Nicolelis. Cortical ensemble activity increasingly predictsbehaviour outcomes during learning of a motor task. Nature , 405(6786):523–525, 2000.

Page 27: Blankertz Bbci Print

8/3/2019 Blankertz Bbci Print

http://slidepdf.com/reader/full/blankertz-bbci-print 27/27

26[Levine et al., 2000] S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro,

D. A. Ross, K. V. Elsievich, and B. J. Smith. A direct brain interface based on event-related potentials. IEEE Trans.Rehab. Eng., 8(2):180–185, 2000.

[McFarland et al., 2000] D. J. McFarland, L. A. Miner, T. M. Vaughan, and J. R. Wolpaw. Mu and beta rhythmtopographies during motor imagery and actual movements. Brain Topogr., 12(3):177–186, 2000.

[Meinicke et al., 2003] Peter Meinicke, Matthias Kaper, Florian Hoppe, Manfred Heumann, and Helge Ritter. Improving

transfer rates in brain computer interfacing: A case study. In S. Thrun S. Becker and K. Obermayer, editors, Advances inNeural Information Processing Systems 15 , pages 1107–1114, 2003.

[Middendorf  et al., 2000] M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones. Brain-computer interface based on thesteady-state visual-evoked response. IEEE Trans. Rehab. Eng., 8(2):211–214, June 2000.

[Millán et al., 2002] José Millán, Josep Mouri no, Marco Franzé, Febo Cinotti, Markus Varsta, Jukka Heikkonen, and FabioBabiloni. A local neural classifier for the recognition of EEG patterns associated to mental tasks. IEEE Transactions Neural Networks , 13(3):678–686, 2002.

[Parra et al., 2002] L. Parra, C. Alvino, A. C. Tang, B. A. Pearlmutter, N. Yeung, A. Osman, and P. Sajda. Linear spatial

integration for single trial detection in encephalography. NeuroImage , 7(1):223–230, 2002.[Peters et al., 2001] B. O. Peters, G. Pfurtscheller, and H. Flyvbjerg. Automatic differentiation of multichannel EEG signals.

IEEE Trans. Biomed. Eng., 48(1):111–116, 2001.

[Pfurtscheller et al., 2003] G. Pfurtscheller, C. Neuper, G. Müller, B. Obermaier, G. Krausz, A. Schlögl, R. Scherer,B. Graimann, C. Keinrath, D. Skliris, M. Woertz, G. Supp, and C. Schrank. Graz-bci: state of the art and clinicalapplications. IEEE Trans. Neural Sys. Rehab. Eng., 11(2):177–180, 2003.

[Reina et al., 2001] G. Anthony Reina, Daniel W. Moran, and Andrew B. Schwartz. On the relationship between joint angularvelocity and motor discharge during reaching. J. Neurophysiol., 85(6):2576–2589, 2001.

[Sykacek et al., 2003] P. Sykacek, S. Roberts, M. Stokes, E. Curran, and L. Pickup. Probabilistic methods in BCI research.IEEE Trans. Neural Sys. Rehab. Eng., 11(2):192–195, 2003.

[Wolpaw et al., 2003] J. R. Wolpaw, D. J. McFarland, T. M. Vaughan, and G. Schalk. The Wadsworth Center brain-computerinterface (BCI) research and development program. IEEE Trans. Neural Sys. Rehab. Eng., 11(2):207–207, 2003.