Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

15
Biosensors : A Survey Report Saraju P. Mohanty Dept. of Comp. Sc. and Engg. University of South Florida Tampa, FL 33620, USA. [email protected] November 24, 2001 Abstract A biosensor is a sensing device made up of a com- bination of a specific biological element and a transducer. The ”specific biological element” rec- ognizes a specific analyte and the changes in the biomolecule are usually converted into electrical signal (which is in turn calibrated to a certain scale) by a transducer. Aim of this survey work is to discuss the various biosensors available for dif- ferent biosensing applications. Initially, the survey focuses on the basics of biosensing devices which can serve as introductory tutorial for the readers who are new to this field. Later, the survey high- lights the technicalities of few biosensors in great detail. The survey ends with brief discussion on the major difficulties the biosensor research com- munities normally encounter. 1 Introduction The history of biosensors started in the year 1962 with the development of enzyme electrodes by the scientist Leland C. Clark. Since then the re- search communities from various fields like VLSI, physics, chemistry, material science, and so on, have come together to develop more sophisticated, reliable and matured biosensing devices for appli- cations in the fields of medicine, agriculture, and biotechnology, etc. What is a biosensor ? Various definitions and ter- minologies are used depending on the field of ap- plications. Depending on the field of applications biosensors are known as : immunosensors, op- trodes, chemical canaries, resonant mirrors, glu- cometers, biochips, biocomputers, and so on. Two generalized definitions of biosensors can be found in [2, 4]. Authors in [2] define it as : ”a biosen- sor is a chemical sensing device in which a bio- logically derived recognition entity is coupled to a transducer, to allow the quantitative development of some complex biochemical parameter”. Ac- cording to the authors [4] : ”a biosensor is a an- alytical device incorporating a deliberate and inti- mate combination of a specific biological element (that creates a recognition event) and a physical el- ement (that transduces the recognition event)”. The name ”biosensor” signifies that the device is a combination of two parts : bio-element sensor-element. The bio-element may be an enzyme, antibody, antigen, living cells, tissues, etc. The large variety of sensor-elements includes electric current, elec- 1

Transcript of Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

Page 1: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

Biosensors: A Survey Report

SarajuP. MohantyDept.of Comp.Sc.andEngg.

Universityof SouthFloridaTampa,FL 33620,[email protected]

November24,2001

Abstract

A biosensoris a sensingdevicemadeupof a com-bination of a specificbiological elementand atransducer. The”specificbiological element”rec-ognizesa specificanalyteand the changesin thebiomoleculeare usuallyconvertedinto electricalsignal (which is in turn calibrated to a certainscale)by a transducer. Aim of this survey work isto discussthevariousbiosensorsavailablefor dif-ferentbiosensingapplications.Initially, thesurveyfocuseson thebasicsof biosensingdeviceswhichcan serveas introductorytutorial for the readerswho are new to this field. Later, the survey high-lights the technicalitiesof few biosensors in greatdetail. The survey endswith brief discussiononthemajor difficultiesthebiosensorresearch com-munitiesnormallyencounter.

1 Introduction

Thehistoryof biosensorsstartedin theyear1962with the developmentof enzymeelectrodesbythe scientistLelandC. Clark. Sincethen the re-searchcommunitiesfrom variousfieldslikeVLSI,physics,chemistry, material science,and so on,havecometogetherto developmoresophisticated,reliableandmaturedbiosensingdevicesfor appli-

cationsin the fields of medicine,agriculture,andbiotechnology, etc.

Whatis a biosensor? Variousdefinitionsandter-minologiesareuseddependingon thefield of ap-plications.Dependingon thefield of applicationsbiosensorsare known as : immunosensors, op-trodes, chemicalcanaries, resonantmirrors, glu-cometers, biochips, biocomputers, andsoon. Twogeneralizeddefinitionsof biosensorscanbefoundin [2, 4]. Authors in [2] defineit as: ”a biosen-sor is a chemicalsensingdevice in which a bio-logically derivedrecognitionentity is coupledto atransducer, to allow the quantitative developmentof somecomplex biochemicalparameter”. Ac-cordingto the authors[4] : ”a biosensoris a an-alytical device incorporatinga deliberateandinti-matecombinationof a specificbiologicalelement(thatcreatesarecognitionevent)andaphysicalel-ement(thattransducestherecognitionevent)”.

Thename”biosensor”signifiesthatthedevice is acombinationof two parts:

� bio-element

� sensor-element.

The bio-elementmay be an enzyme, antibody,antigen,living cells,tissues,etc.Thelargevarietyof sensor-elementsincludeselectriccurrent,elec-

1

Page 2: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

tric potential,intensity andphaseof electromag-netic radiations,mass,conductance,impedance,temperature,viscosity, andsoon. Thebasiccon-ceptsof biosensorcanbeillustratedby thehelpofFig. 1. A specific”bio” element(say, enzyme)recognizesa specificanalyteandthe ”sensor”el-ementtransducesthe changein the biomoleculeinto electricalsignal.Thebio elementis veryspe-cific to theanalyteto which it is sensitive. It doesnot recognizesotheranalytes.

Signal

Bio Element TransducerAnalyte

Biosensor

Electrical

Figure1: BasicConceptsof Biosensor

Dependingonthetransducingmechanismusedthebiosensorscanbeof many typessuchas:

� Resonantbiosensors

� Optical-Detectionbiosensors

� Thermal-Detectionbiosensors

� Ion-SensitiveFETs(ISFETs)biosensors

� Electrochemicalbiosensors

Details of all thesedifferent types will be dis-cussedin this survey work. The electrochemicalbiosensorsbasedon the parametermeasuredcanbefurtherclassifiedas[1]:

� conductimetric

� amperometric

� potentiometric

Thebiosensorscanhavevarietyof biomedicalandindustryapplications.Someof thepossibleappli-cationsareshown in Fig. 2. The major applica-

Figure 2: PotentialApplications of Biosensors,Source: [2]

tion so far is in blood glucosesensingbecauseofabundantmarket potential. But, biosensorshavetremendousopportunityfor commercializationinotherfields of applicationaswell. Fig.3 shows aneedle-typeglucosebiosensorimplantedin subcu-taneousfatty tissue.Somecommerciallyavailableglucosebiosensorsproductsfrom Medisenseareshown in Fig. 4 andFig. 5. A handheldbiodetec-tor developedby G. Kovacs[19] is shown in Fig.6. Eventhoughbiosensorshavegotverygoodap-plicationpotentialit hasnot beenhighly commer-cialisedbecauseof several difficulties, for exam-ple,dueto thepresenceof biomoleculesalongwithsemiconductormaterialsthebiosensorcontamina-tion is amajorissue[2, 6].

This survey paperis organizedas follows. Sec-tion 2 discussesthe fundamentalmechanismsofbiosensors.Dif ferent typesof biosensorsarede-tailed in Section3. Section4 discussesdetailsofa biosensorthat canbe usedto monitor cell mor-phologyin tissuecultureenvironment. A biosen-sor basedon usinghologramto detectpancreaticdisordersis discussedin section5. Section6 dis-cusesDNA detection-on-a-chip.Variousglucosebiosensorsarediscussedin section7.

2

Page 3: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

Figure 3: A needle-typeglucosebiosensorim-plantedin subcutaneousfatty tissue

Figure 4: Medisenseglucose biosensor Pen,Source:http://www.medisense.com

Figure 5: Medisense glucose biosen-sor with Big Digital Display, Source:http://www.medisense.com

Figure6: A handheldbiodetectordevelopedby G.Kovacs,Source:[20]

2 Basic Concepts of Biosensors

We have alreadyseenthat a biosensorconsistsof a bio-elementanda sensor-element. The bio-elementof themaybeanenzyme,antibody, livingcells,tissue,etc.,andthesensingelementmaybeelectric current,electric potential,and so on. Adetailedlist of differentpossiblebio-elementsandsensor-elementsis in Fig. 7.

The ”bio” andthe ”sensor”elementscanbe cou-pled togetherin one of the four possiblewayslistedbelow [19] (referFig. 8).

� MembraneEntrapment

� PhysicalAdsorption

� Matrix Entrapment

� CovalentBonding

3

Page 4: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

Biosensors

Sensor-ElementBio-Element

Enzyme

Antibody

Tissue

Microbial

Polysaccharide

Nucleic Acid

Electric Potential

Electric Current

Electric Conductance

Electric Impedance

Intensity and phase of em radiation

Mass

Temperature

Viscocity

Figure7: Elementsof aBiosensor

In the membraneentrapmentscheme,a semiper-meablemembraneseparatesthe analyteand thebioelement, and the sensor is attachedto thebioelement.Thephysicaladsorptionschemeis de-pendentonacombinationof vanderWaalsforces,hydrophobicforces, hydrogenbonds, and ionicforcestoattachthebiomaterialto thesurfaceof thesensor. Theporousentrapmentschemeis basedonforming a porousencapsulationmatrix aroundthebiological materialthat helpsin binding it to thesensor. In thecaseof thecovalentbondingthesen-sorsurfaceis treatedasa reactivegroupsto whichthebiologicalmaterialscanbind.

A typically usedbioelementis anenzyme.Thesearelargeproteinmoleculesthatactascatalystsinchemicalreactions,but remainunchangedat theendof reaction.Fig. 9 shows theworking princi-ple of enzymes.Theenzymesareextremelyspe-cific in their action. Meaning,an enzymeX willchangea specificsubstanceA ( not C ) to anotherspecificsubstanceB ( notD ). This is illustratedintheFig. 10. Thisextremelyspecificityactionof theenzymesis thebasisof biosensors.

3 Types of biosensors

In this sectionwewill discussthevarioustypesofpossiblebiosensors.We will analyzetheworkingmechanismof eachoneof them.

BB

BB

BB

B

B B B B BBBB

Sensor

Sensor

SemipermeableMembrane

Membrane

(a)

(b)

Membrane Entrapment

Physical Adsorption

Sensor

Sensor

(c) Matrix Entrapment

(d) Covalent Bonding

B B B B BB BB

B B BB BBBB Porous Encapsulation

Covalent Bond

Figure8: Couplingof Bio-Materialwith theSen-sor, Source: [19]

3.1 Resonant biosensors

In this typeof biosensorsanacousticwave trans-ducer is coupled with antibody (bio-element).Whentheanalytemolecules(antigen)getattachedto themembrane,themembranemasschanges,re-sultingin a subsequentchangein theresonantfre-quency of the transducer. This frequency changeis measuredout [19].

3.2 Optical-detection biosensors

The output transducedsignal that is measuredis light signal for this type of biosensors. Thebiosensorscanbe madebasedon optical diffrac-tion or electrochemilluminence.In opticaldiffrac-tion baseddevices,a silicon wafer is coatedwitha protein via covalent bonds. The wafer is ex-posedto UV light throughaphotomaskandthean-tibodiesmadeinactivatedin the exposedregions.The dicedwafer chipswhenincubatedin analyte

4

Page 5: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

Figure9: WorkingPrincipleof Enzymes,Source:[5]

antigen-antibodybinding is formed in active re-gions,thuscreatingdiffractiongrating. This grat-ing producesdiffraction signal when illuminatedwith alight sourcesuchaslaser. Thissignalcanbemeasuredor canbefurtheramplifiedbeforemea-suringfor improving sensitivity [19].

3.3 Thermal-detection biosensors

This typeof biosensorsareconstructedcombiningenzymeswith temperaturesensors.Whentheana-lyte comesin contactwith theenzyme,theheatre-actionof theenzymeis measuredandis calibratedagainsttheanalyteconcentration[19].

3.4 Ion-Sensitive biosensors

Theseare basically semiconductorFETs havingion-sensitivesurface[7, 19]. Thesurfaceelectricalpotentialchangeswhentheionsandthesemicon-ductorinteract.Thispotentialchangecanbemea-sured. The Ion Sensitive Field Effect Transistor(ISFET) canbe constructedby covering the sen-sorelectrodewith a polymerlayer. This polymerlayeris selectively permeableto analyteions.Theionsdiffusethroughthepolymerlayerandin turncausea changein theFET surfacepotential. Fig.11 shows anISFEThaving enzymeenzymelayer

Figure10: Specificityof Enzymes,Source: [5]

placedon it; also called ENFET (EnzymeFieldEffect Transistor)[7]. This type of biosensorareprimarily usedfor pH detection.

3.5 Electrochemical biosensors

Electrochemicalbiosensorsare mainly used fordetectionof hybridisedDNA, DNA-bindingdrugs,glucoseconcentration,etc.Theunderlyingprinci-ple for thisclassof biosensorsis thatmany chemi-cal reactionsproduceor consumeionsor electronswhich in turn causesomechangein the electri-cal propertiesof thesolutionwhich canbesensedout andusedasmeasuringparameter[1, 19]. Theelectrochemicalbiosensorscanbeclassifiedbasedon the measuringelectrical parametersas : (1)conductimetric,(2) amperometricand (3) poten-tiometric [1]. A comparative discussionof thesethreetypesis give in Table1.

5

Page 6: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

Figure 11: EnzymeField Effect Transistor(EN-FET),Source: [7]

3.5.1 Conductimetric biosensors

The measuredparameteris the electrical con-ductance/resistanceof the solution. When elec-trochemicalreactionsproduceions or electronsthe overall conductivity/resistivity of the solutionchanges.This changeis measuredandcalibratedto a properscale. Conductancemeasurementhasrelatively low sensitivity. The electric field gen-eratedusingsinusoidalvoltage(AC) which helpsin minimizingundesirableeffectssuchasFaradaicprocess,doublelayer charging andconcentrationpolarization[1].

3.5.2 Amperometric biosensors

Thishighsensitivity biosensorcabdetectelctroac-tive speciespresentin biological test samples.Sincethebiologicaltestsamplesmaynotbeintrin-sically electro-active, enzymesneededto catalyzeproductionof radio-activespecies.In thiscase,themeasuredparameteris current[1].

ElectrochemicalSensingCharacteristics Conductimetric Amperometric Potentiometric

Measured Conductance/ Current Potential/Parameter Resistance VoltageApplied Sinusoidal Constant RampVoltage (AC) Potential(DC) Voltage

Sensitivity Low HighGoverning Incremental Cottrell NesrtEquation Resistance Eqn. Eqn.

Fabrication FET+Enzyme FET+Enzyme FET+Enzyme2 elctrodes oxideelectrode

Table1: Dif ferentElectrochemicalSensing

3.5.3 Potentiometric biosensors

In this type of sensorsthe measuredparameterisoxidation/reductionpotential(of anelectrochemi-calreaction).Theworkingprincipleof thatwhenarampvoltageis appliedto anelectrodein solutionthe currentflow occursbecauseof electrochemi-cal reaction.Thevoltageat which thesereactionsoccursindicateaparticularreactionandparticularspecies[1].

4 A biosensor to monitor cellmorphology

Keeseand Giaever [3] have designeda biosen-sor that can be used to monitor cell morphol-ogy in tissueculture environment. The sensingprincipleusedis known asElectricCell-substrateImpedanceSensing(ECIS). In this process,asmallgold electrodeis immersedin tissueculturemedium. Whencells get attachedandspreadontheelectrodes,theimpedancemeasuredacrosstheelectrodeschange.This changingimpedancecanbeusedfor understandingcell behavior in culturemedium. This is the key themebehindthe pro-posedbiosensorwhich is well projectedby thehelpof Fig. 12.

The attachment and spreading behavior of thecellsareimportantfactorsfor this biosensor. Thecancerouscells usually can grow and reproduce

6

Page 7: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

Figure 12: Electric Cell-substrateImpedanceSensing(ECIS),Source: [3]

(mitosis) freely in a medium without being at-tachedto any substrate/surface.But, normalcellsneedto beattachedto a surfacebeforethey grow.After attachmentthe shapeof the cells becomesflat andno longerremainssphericalshaped.Fig.13 demonstratesthis cell behavior in a tissuecul-turemedium.

The principle of measurementis schematicallyrepresentedby the help of Fig. 14. The cells aregrown on gold electrodes.Theelectrodesareim-mersedin tissueculturemediumwhich works aselectrolyte.Theappliedvoltageis

��������� �. The

voltageis appliedthrougha�����

resistance.Tomeasuremagnitudeand phaseof the voltagethelock-in-amplifieris used.Since,thecurrentis con-stant,the measuredmagnitudeandphasecanbeassumedasproportionalto impedance(resistanceandcapacitance).Fig. 15 shows capacitanceandresistancemeasurementsovera timeperiod.Aftersometimeit is foundthattheR, C valuesfluctuatevery often. This happenswhencellsarealive andmoving.

Theelectrodesusedabove is fabricatedby thefol-lowing processsteps:

Figure13: A cell in tissueculturemedium,Source: [3]

� a thin gold film is sputteredon a polycarbon-atesubstrate

� film is patternedandinsulatedby lithographytechniques.

The small electrodemadeis of ��������� diameter.A completesix well unit with ECIS electrodesisshown in Fig. 16.

Theadvantagesof this biosensorare:

� The biosensoris lesstime consumingcom-paredto theconventionalmethods.

� It is possibleto automateand quantify cellmorphologymeasurement.

� Thefluctuatingpatterncanbeusedassigna-turefor acell.

Thepossibledisadvantagesof this biosensormaybe:

� The accuracy of the biosensoris doubtful, itmayhappentwo cellscanhavealmostsimilarpattern.

7

Page 8: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

Figure14: ECISschematicdiagram,Source: [3]

� If the averageimpedanceis to be taken asa measurethen it is possiblethat two en-tirely differentpatternscanhave sameaver-agevalue.

� It is not clear if the biosensoris useful fornonmammaliancellsandplantcells.

5 A holographic biosensor forscreening pancreatic disor-ders

Hologramsarephotographsof 3D impressionsonthesurfaceof light. Tomakeahologramoneneedsto photographlight waves. Whenanobjectwavemeetsareferencewave,astandingwavepatternofinterferenceis createdwhichcanbephotographed;thus creatinga hologram. A hologramis gener-ally recordedon silver hallidefilm. Thefilm con-sistsof a basematerialof glassor plastic. Thenthereis a photoactive layercalledemulsion. Thisemulsionlayer is madeup of gelatin (a colorless/ yellowish protein). Silver andhallide materialsfloat in the gelatin layer. They chemicallyreactto form silver hallide molecule. When light en-ergy goesinto thegelatinit is transferedto thesil-

Figure 15: Resistanceand capacitancemeasure-mentover time,Source: [3]

(a) Six electrode array

(b) Cross section of one electrode

Figure16: Electrodestructure,Source: [3]

8

Page 9: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

ver hallide molecule. For moredetailsof holog-raphyreadersarerecommendedto visit theURL :http://www.holography.ru/ .

Millington, et al. [8] have developeda biosen-sor which uses hologram as sensing element.This biosensorcanhave potentialapplicationsinscreeningpancreaticdisordersat lowerprice. Thebioelementusedis bovine pancreatic trypsin in-hibitor (BPTI) which is an enzyme. To screenpancreaticdisorderstrypsin needsto be detectedin duodenealfluid or stoolsample.By properuseof BPTI trypsindetectioncanbemadepossible.

Whenthe hologramis illuminatedby white lightconstructive interference gives a characteristicspectrumhaving spectral peak and wavelengthpeakdescribedby ”Bragg equation”.Thecharac-teristic spectrumis dependenton the gelatinma-trix of thehologram.If gelatinmoleculesof holo-gram film are proteasedegradedthe characteris-tic spectrumchanges.This changesis specifictothe type of degradation. The authorsstudiedthespectrumafter degradingthe gelatinwith trypsinandBPTI. The reflectedlight from the hologramwas detectedby spectrographand CCD detectorat intervals of 1 or 2 minutesandwereanalyzedfor peakwavelengthandreflectivity changewithtime. Fig. 17 shows thepeakwavelengthandre-flectivity response.The major advantageof thisbiosensoris that very small trypsin levels canbedetectedwithin 60 minutesperiod.

6 DNA detection-on-a-chip(Lab-on-a-chip system)

The category of biosensorsusedfor DNA detec-tion are also known as biodetectors. The biode-tectorsareusedto identify a small concentrationof DNA (of microorganismlike virus or bacteria)is largesample.This relieson comparingsampleDNA with DNA of known microorganism(probeDNA). Sincethesamplesolutionmaycontainonly

(a) Peak wavelength response

(b) Peak reflectivity response

Figure 17: Peakwavelengthand reflectivity re-sponse,Source: [8]

asmallnumberof biorganismmolecules,multiplecopiesof thesampleDNA needsto becreatedforproperanalysis. This is achieved by the help ofpolymerasechain reaction(PCR).PCRstartsbysplitting sample’s of double-helixDNA into twopartsby heatingit about ������� . If the reagentscontainpropergrowth enzymes,theneachof thesestrandswill grow thecomplementarymissingpartandform double-helixstructureagain. This hap-penswhen temperatureis lowered. This in oneheating/coolingcycle theamountof sampleDNAis doubled(onecycle time is oneaboutminute).Thus,for � cycles �! copiesaremade.Typically,25-40cyclesareneededto produceapproximatelya billion copies.This amountis sufficient enoughto be detectedoptically. While the PCR is busyin copying DNA identificationalsocouldbemade

9

Page 10: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

(b) Magnified view of chamber unit

(a) Peterson’s microfluidic device

Figure18: Biodetectordevelopedby K. Peterson,Source: [20]

possibleusingfluorescentDNA probes.

In general,PCRis veryverypowerconsumingbe-causeof heating/coolingcycle which takesabout30 minutes. So it was previously not possibleto fabricateportablebatteryoperatedbiodetectorswhich cando PCR.But, usingMEMS suchkindbiodectorswhich arebasicallylab-on-a-chipsys-temshave beendeveloped.In theseMEMS baseddevicestheamountof reagentusedis scaleddown.Fig. 18 shows a microfludicdevice developedbyK. Peterson[13, 20]. This lab-on-a-chipsystem

containschannels,valvesandchambersasshownin thefigure. To detectmicroorganismDNA stepsfollowedare:

� Some milliliters of sample solution arepumpedinto thechamber.

� Thesampleis concentratedto a volumeof amicroliter.

� SampleDNA arenow extractedfrom samplesolution.

� PCRis performed. A small thin-film heaterheatstheDNA andfanhelpsin cooling. Thecycle time is 25seconds.

� Flouroscenceprobe DNAs bind the sampleDNA.

� WhentheLEDscausetheprobeDNAs to flu-orescentthe glow is capturedby photodiodeandhencecanbedetected.

In [20] anotherbiodetectorhas beendiscussed.Thisbiodetectorusesmagneticfield insteadof op-tics or flouresence.This biodetectorwith thehelpof magneticsensorsandmicrobeadsis ableto de-tectpresenceandconcentrateof bioagents.Fig. 19showsa magneticbiodetectordevelopedby NavalResearchLaboratory(NRL). Themagneticsensoror groupof sensorsis coatedwith single-stranded(i.e. onepart of double-helix)DNA probesspe-cific for abioagentor sampleDNA. Onceasingle-strandof DNA probeanda single-strandof sam-ple DNA combinethey form a double stranded(double-helix) structure. The resulting double-helix structurebindsasinglemagneticmicrobead.Whena magneticbeadis presentabove a sensor,the sensor’s resistancedecreaseswhich is the de-tectableentity. The magneticbeadsare of-the-shelfproductsof diameter�#"%$���� which arecom-monly usedfor biochemicalseparation.Themorebeads,largeris thedecreasein resistance.

The MEMS based microreactor developed byNorthrup,et al. [10] have cycle timesasshortas

10

Page 11: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

Figure 19: Magnetic biodetectordeveloped byNRL, Source: [20]

several secondsand35 cycles(for full amplifica-tion of DNAs) takesseveralminutes.Theadvan-tagesof thisbiosensorare:

� �'& � � timesfasterthanconventionalPCRs

�)( ��* moreefficient in numberof DNA copiesproduced

� easilydesignedto usesmallvolumes

� economical.

Figure20: Biodetectordevelopedby Northrupetal., Source: [10]

Fig. 20 illustratestheschematicdetectionprocessafter the PCR-amplificationbeingcompletedin areactionchamber. Thenylon basedteststrip con-tainsthespecificDNA probe.Thesample(ampli-fied) DNA is put into a reagent.If the two typesof DNAs bind each-otherthen the DNA-biotin-steptavidin-enzyme complex will changecolor,thusdetectingthesampleDNA. ThePCRreactionchambercanbedesignedof severaldifferentsizes.Thecross-sectionof a reactionchamberis shownin Fig. 21. The IC-fabricationstepsusedto de-

Figure 21: PCR cross-sectiondeveloped byNorthrupetal., Source: [13]

velopthis PCRarelistedbelow.

� A (�+ � diameter, �#",���-� thick singlecrystalsiliconwaferis taken.

� Silicon nitride ( of thickness� &)���.� ) is de-

positedon to entirewaferby LPCVD.

� Photolithographicpatternis donefor reactionchamber.

� Silicon nitride is etchedby RIE processoverthechamberarea.

� Silicon is etchedto silicon nitride backsidedefiningthechambervolume.

11

Page 12: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

� Thewafer is patternedandetcheddependinguponreactionchamberdesign.

� Silicon nitride alongwith polysilicon de-positedby LPCVD.

� Polysilicon is dopedwith boronup to resis-tivity of ���/&0����� �21�3�4!576�8�9 .

� Aluminum contactdepositedthatdefinestheheatergeometry.

� Polyethyleneinput andoutputtubesarecon-structed.

� Glasscoversealingis done.

7 Glucose biosensors

The most successfulcommercialbiosensorsareamperometricglucosebiosensors.Thesebiosen-sorshavebeenmadeavailablein themarketin var-ious shapesandforms suchasglucosepens,glu-cosebig display, andsoon asdiscussedin section1. Theaimof thissectionis to doandetailedstudyof someglucosebiosensors.

Thefirst historic experimentthat servedasoriginof glucosebiosensorswascarriedout by LelandC. Clark [5]. He usedplatinum (Pt) electrodesto detectoxygen. The enzymeglucoseoxidase(GOD) was placedvery close to the surface ofplatinumby physicallytrappingit againsttheelec-trodesby a pieceof dialysismembrane.The en-zymeactivity changesdependingonthesurround-ing oxygenconcentration.Fig. 22shows thereac-tion catalysedby GOD. Glucosereactswith glu-coseoxidase(GOD) to form gluconicacid.At thesametime producingtwo electronsand two pro-tons,thusreducingGOD.This reducedGOD,sur-roundingoxygen,electronsandprotons(producedabove) react to form hydrogenperoxide(

;:�</:)

andoxidizedGOD (theoriginal form). This GODcanagainreactwith moreglucose.More theglu-cosecontent,more the oxygenconsumptionand

henceless is the detection. On the other hand,more the glucose, more the

;:�</:production.

Hence,either the consumptionof</:

or the pro-duction of

=:></:can be detectedby the help of

platinumelectrodeswhich canserve asmeasuresfor glucoseconcentration.

Figure22: Clark’sExperiment,Source: [5]

P. Yu andS.Dong[9] havedevelopedadisposableamperometricbiosensorfor detectionof glucose.Thebiosensoris button-shapedhaving overall di-ameterof $��-� andthicknessof ��"%$�$��-� . Fig. 23shows theconstructionof thebiosensor. Thedis-posablesensorconsistsof following layers:

� layer1: metallicsubstrate

� layer2: graphitelayer

� layer3: isolatinglayer

� layer4: mediatormodifiedmembrane

� layer5 : immobilized enzyme membrane(GOD)

� layer6: celluloseacetatemembrane

12

Page 13: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

(b) Botton-shaped biosensor

(a) Construction Layers

Figure23: Detailsof a disposableglucosebiosen-sor, Source: [9]

This biosensorusesgraphiteelectrodeinsteadofplatinum electrode(usedin caseof Clark). Theisolatinglayeris placedon thegraphiteelectrodesthat can filter out certain interfering substances(ascorbicacid, uric acid) while allowing passageof

;:></:and

</:. The mediatormodified mem-

branehelps in keepingthe GOD membraneat-tachedwith the graphiteelectrodewhen electro-chemicalreactiontakesplaceat appliedpotential( ?�" ( � � ). The celluloseacetateouter layer placedover theGOD membranealsoprovidesbarrierforinterferingsubstances.Theamperometricreadingof the biosensor(current Vs glucoseconcentra-tion) is shown in Fig. 24. Therelationshipis linearuptoglucoseconcentrationof ����� �A@!BC1�B +ED 9F8 .

Figure24: Calibrationcurve of a disposableglu-cosebiosensor, Source: [9]

8 Conclusions

In this survey report we have discussedvariousbiosensorin detail. The survey initially, brieflyintroducesthe basic conceptson the biosensor.Highl-evel view of different types of biosensorsalsogiven. Working principles,constructions,ad-vantagesand disadvantagesof many biosensorsgiven.Theauthorwould like to mentionthatthereare variousdifficulties for which somesolutionsexist, but still more researchefforts needto begivento find betteralternatives.Few of themmen-tionedbelow :

� contamination : bioelementsandchemicalsusedin the biosensorsneedto be preventedfrom leakingout of the biosensorover time(seriousissuefor nondisposableones).

� immobilisation of biomolecules : to avoidcontamination,biomoleculesare attachedtothetransducerasstronglyaspossible,but theproblemwith this is that the behavior of en-zymeswhenabsorbedon surfaceis lessun-

13

Page 14: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

derstood(reactionof enzymesin freesolutionis betteruderstood.

� sterilization : if a sterilized probe is usedsome sensor’s biomolecules may be de-stroyed whereasif non-sterileprobesusedsomecompromisesneeded.

� uniformity of biomolecule preparation :fabricationof biosensorsthat can reproduceresultsneedsuchuniformity.

� selectivity and detection range : shouldbe more selective and more detectionrangeshouldbelarge.

� cost :researchshouldbe focussedfor devel-opmentof low-costbiosensors.

At present,when people talk about bioterror-ism, thedevelopmentof faster, reliable,accurate,portableandlow-costbiosensorshasbecomemoreimportantthanever.

Acknowledgment

The authoracknowledgesDr. ShekharBhansaliwho gave him the opportunity to do this surveywork as a part of ”Introduction to MicrosystemsTechnology (MEMs)” course requirement inthe Departmentof Electrical Engineering,USF,Tampa,USA.

Disclaimers

Someof the figures usedin this paperare bor-rowed from othersourcesandusedhereonly foracademicspurposeand the authordoesn’t claimany originality for thesame.

References

[1] R. S. SethiandC. R. Lowe, ”Electrochemi-calMicrobiosensors”,IEE ColloqiumonMi-

crosensors, 1990,pp.911-915.

[2] S. P. J. Higson, S. M. Reddy and P. M.Vadgama, ”Enzyme and other biosensors: Evolution of a technology”, EngineeringScienceand EducationJournal, Feb 1994,pp.41-48.

[3] C. R. Keeseand I. Giaever, ”A BiosensorthatMonitorsCell Morphologywith ElectricFields”, IEEE Engineeringin MedicineandBiology, June/July1994,pp.435-445.

[4] D. M. Fraser, ”Biosensors: MakingSenseofThem”, Medical Device Technology, Vol.5,No.8,pp.38-41,1994.

[5] D. M. Fraser, ”Glucose biosensors- theSweetSmell of Success”,Medical DeviceTechnology, Vol.5,No.9,pp.44-47,1994.

[6] D. M. Fraser, ”BiosensorMarkets-Oppertu-nities andObstacles”Medical Device Tech-nology, 1995,Vol.6,No.2,pp.32-37.

[7] D. M. Fraser, ”Biosensorsin Critical Care”Medical Device Technology, 1995, Vol.6,No.3,pp.36-40.

[8] R. B. Millington, A. G. Mayes, J. Blyth,C. R. Lowe, ”A Holographic Biosensor”,Proc.of the8th InternationalConferenceonSolid-StateSensors and Actuators, and Eu-rosensors IX, TRANSDUCERS’95, June25-29,1995,pp.509-512.

[9] P. Yu and S. Dong, ”A DisposableSensorandIts Applicationsin theMeassurementsofGlucoseand Lead”, Proc. of the 8th Inter-national Conferenceon Solid-StateSensorsandActuators,andEurosensors IX, TRANS-DUCERS’95, June25-29,1995,pp.513-516.

[10] M. A. Northrup, C. Gonzalez,et. al., ”AMEMS-BasedMiniatureDNA AnalysisSys-tem”, Proc. of the 8th InternationalConfer-enceon Solid-StateSensors and Actuators,

14

Page 15: Biosensors, A Survey Report by Saraju P Mohanty(2001) 10.1.1.19.2093

and Eurosensors IX, TRANSDUCERS’95,June25-29,1995,pp.764-767.

[11] C. Podaru,C. Boston,et. al., ”An Amper-ometricGlucoseBiosensor”,Proc. of Inter-national SemiconductorConference, 1996,Vol.1,pp.101-102.

[12] Jean-MarieORY, F. JacquesandY. Boudey,”A biosensorfor waterquality monitoring”,Proc.of IEEEInstrumentationandMeasure-mentTechnology Conference, Brussels,Bel-gium,June4-6,1996,Vol.2,pp.1354-1359.

[13] K. Peterson,”Biomedical Applications ofMEMS”, Electron devices meeting, 1996,pp.239-242.

[14] D. R. Baselt, G. U. Lee, et. al., ”A High-Sensitivity Micromachined Biosensor”,Proc. of the IEEE, Vol.85, No.4, Apr 1997,pp.672-680.

[15] P. J. Hesketh, S. Zivanovic, et. al., ”Micro-fabricated Biosensorsand Microsystems”,Procof 21stInternationalConferenceonMi-croelectronics (MIEL’97), Sep1997, Vol.1,pp.63-69.

[16] L. SellamiandR. W. Newcomb, ”A MOS-FET Bridge Fluid Biosensor”, Proc. ofthe IEEE International Symposiumon Cir-cuits and Systems, 1999, ISCAS’99, Vol.5,pp.140-143.

[17] M. C. Hsieh,Y. K. Fang,et.al., ”A Contact-TypePiezoresistive Micro-ShearStressSen-sorfor Above-KneeProsthesisApplication”,IEEE Journal of MicroelectromechanicalSystems, Vol.10, No.1, Mar 2001, pp.121-127.

[18] J.H. Kim, B. G. Kim, et.al., ”A New Mono-lithic Micro Biosenserfor Blood Analysis”,Proc.of 14thIEEEInternationalConferenceon Microelectromechanical Systems, 2001,MEMS’2001,pp.443-446.

[19] GregoryKovacs,”MicromachinedTransduc-ers: Sourcebook”,WCB/McGraw Hill, Inc.

[20] C. Aston, ”Biological Warfare Canaries”,CoverStory: IEEESpectrum,October2001.

15